--- base_model: - mistralai/Mistral-Small-Instruct-2409 --- # Mistral-Small-Instruct CTranslate2 Model This repository contains a CTranslate2 version of the [Mistral-Small-Instruct model](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409). The conversion process involved AWQ quantization followed by CTranslate2 format conversion. ## Quantization Parameters The following AWQ parameters were used: ```zero_point=true``` ```q_group_size=128``` ```w_bit=4``` ```version=gemv``` ## Quantization Process The quantization was performed using the [AutoAWQ library](https://casper-hansen.github.io/AutoAWQ/examples/). AutoAWQ supports two quantization approaches: 1. **Without calibration data**: - Quick process (~few minutes) - Uses standard quantization schema - Suitable for general use cases 2. **With calibration data**: - Longer process (3-4 hours on RTX 4090) - Preserves full precision for task-specific weights - Slightly better performance for targeted tasks ## Calibration Details This model was quantized with calibration data. Specifically, the [cosmopedia-100k](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia-100k) dataset was used, which is good for overall QA and instruction-following. Key parameters: - `max_calib_seq_len`: 8192 (enables long-form responses) - `text_token_length`: 2048 (minimum input token length during quantization) While these parameters don't fundamentally alter the model's architecture, they fine-tune its behavior for specific input-output length patterns and topic domains. ## Requirements ```torch 2.2.2``` ```ctranslate2 4.4.0``` - NOTE: The soon-to-be-released ```ctranslate2 4.5.0``` will support ```torch``` greater than version 2.2.2. These instructions will be updated when that occurs. ## Sample Script ``` import os import sys import ctranslate2 import gc import torch from transformers import AutoTokenizer system_message = "You are a helpful person who answers questions." user_message = "Hello, how are you today? I'd like you to write me a funny poem that is a parody of Milton's Paradise Lost if you are familiar with that famous epic poem?" model_dir = r"D:\Scripts\bench_chat\models\mistralai--Mistral-Small-Instruct-2409-AWQ-ct2-awq" # uses ~13.8 GB def build_prompt_mistral_small(): prompt = f""" [INST] {system_message} {user_message}[/INST]""" return prompt def main(): model_name = os.path.basename(model_dir) print(f"\033[32mLoading the model: {model_name}...\033[0m") intra_threads = max(os.cpu_count() - 4, 4) generator = ctranslate2.Generator( model_dir, device="cuda", # compute_type="int8_bfloat16", # NOTE...YOU DO NOT USE THIS AT ALL WHEN USING AWQ/CTRANSLATE2 MODELS intra_threads=intra_threads ) tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None) prompt = build_prompt_mistral_small() tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) print(f"\nRun 1 (Beam Size: {beam_size}):") results_batch = generator.generate_batch( [tokens], include_prompt_in_result=False, max_batch_size=4096, batch_type="tokens", beam_size=1, num_hypotheses=1, max_length=512, sampling_temperature=0.0, ) output = tokenizer.decode(results_batch[0].sequences_ids[0]) print("\nGenerated response:") print(output) del generator del tokenizer torch.cuda.empty_cache() gc.collect() if __name__ == "__main__": main() ```