feat: readme add usage
Browse files
README.md
CHANGED
@@ -36,6 +36,60 @@ This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://hug
|
|
36 |
## Task
|
37 |
The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: 'en_XX' : 'en', 'de_DE': 'de', 'es_XX': 'es', 'fr_XX':'fr', 'ru_RU':'ru', 'tr_TR':'tr'.
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
## Dataset
|
40 |
Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.
|
41 |
```
|
@@ -83,7 +137,3 @@ tloss: 3.365 - 1.445
|
|
83 |
| mlsum-ru | 1.25 | 1.54 | 1.31 | 0.46 | 0.46 | 0.44 | 1.25 | 1.54 | 1.31 |
|
84 |
| cnewsum | 26.43 | 29.44 | 26.38 | 7.38 | 8.52 | 7.46 | 25.99 | 28.94 | 25.92 |
|
85 |
|
86 |
-
# USAGE
|
87 |
-
```
|
88 |
-
soon
|
89 |
-
```
|
|
|
36 |
## Task
|
37 |
The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: 'en_XX' : 'en', 'de_DE': 'de', 'es_XX': 'es', 'fr_XX':'fr', 'ru_RU':'ru', 'tr_TR':'tr'.
|
38 |
|
39 |
+
# USAGE
|
40 |
+
Assume that you are using the provided MultilingualSummarizer.ipynb file and included files from git repository.
|
41 |
+
```
|
42 |
+
## Configuration of summarization pipeline
|
43 |
+
#
|
44 |
+
def summ_config():
|
45 |
+
cfg = OrderedDict([
|
46 |
+
|
47 |
+
## summarization model - checkpoint
|
48 |
+
# ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs
|
49 |
+
# ctu-aic/mt5-base-multilingual-summarization-multilarge-cs
|
50 |
+
# ctu-aic/mbart25-multilingual-summarization-multilarge-cs
|
51 |
+
("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"),
|
52 |
+
|
53 |
+
## language of summarization task
|
54 |
+
# language : string : cs, en, de, fr, es, tr, ru, zh
|
55 |
+
("language", "en"),
|
56 |
+
|
57 |
+
## generation method parameters in dictionary
|
58 |
+
#
|
59 |
+
("inference_cfg", OrderedDict([
|
60 |
+
("num_beams", 4),
|
61 |
+
("top_k", 40),
|
62 |
+
("top_p", 0.92),
|
63 |
+
("do_sample", True),
|
64 |
+
("temperature", 0.95),
|
65 |
+
("repetition_penalty", 1.23),
|
66 |
+
("no_repeat_ngram_size", None),
|
67 |
+
("early_stopping", True),
|
68 |
+
("max_length", 128),
|
69 |
+
("min_length", 10),
|
70 |
+
])),
|
71 |
+
#texts to summarize values = (list of strings, string, dataset)
|
72 |
+
("texts",
|
73 |
+
[
|
74 |
+
"english text1 to summarize",
|
75 |
+
"english text2 to summarize",
|
76 |
+
]
|
77 |
+
),
|
78 |
+
#OPTIONAL: Target summaries values = (list of strings, string, None)
|
79 |
+
('golds',
|
80 |
+
[
|
81 |
+
"target english text1",
|
82 |
+
"target english text2",
|
83 |
+
]),
|
84 |
+
#('golds', None),
|
85 |
+
])
|
86 |
+
return cfg
|
87 |
+
|
88 |
+
cfg = summ_config()
|
89 |
+
msummarizer = MultiSummarizer(**cfg)
|
90 |
+
ret = msummarizer(**cfg)
|
91 |
+
```
|
92 |
+
|
93 |
## Dataset
|
94 |
Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.
|
95 |
```
|
|
|
137 |
| mlsum-ru | 1.25 | 1.54 | 1.31 | 0.46 | 0.46 | 0.44 | 1.25 | 1.54 | 1.31 |
|
138 |
| cnewsum | 26.43 | 29.44 | 26.38 | 7.38 | 8.52 | 7.46 | 25.99 | 28.94 | 25.92 |
|
139 |
|
|
|
|
|
|
|
|