File size: 1,976 Bytes
084ec94
 
462e9e9
084ec94
 
462e9e9
 
084ec94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

base_model: bert-base-cased
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: mi-clase-antes-clase
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mi-clase-antes-clase

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9634
- Accuracy: 0.54

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6273        | 1.0   | 38   | 1.5415          | 0.29     |
| 1.1773        | 2.0   | 76   | 1.2650          | 0.41     |
| 0.8388        | 3.0   | 114  | 1.2112          | 0.48     |
| 0.6961        | 4.0   | 152  | 1.1264          | 0.53     |
| 0.4043        | 5.0   | 190  | 1.4790          | 0.48     |
| 0.2038        | 6.0   | 228  | 1.5849          | 0.51     |
| 0.1678        | 7.0   | 266  | 1.6482          | 0.54     |
| 0.0467        | 8.0   | 304  | 1.9042          | 0.51     |
| 0.0127        | 9.0   | 342  | 2.0245          | 0.54     |
| 0.0098        | 10.0  | 380  | 1.9634          | 0.54     |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.2.2
- Datasets 2.20.0
- Tokenizers 0.19.1