culteejen commited on
Commit
dec1faf
·
1 Parent(s): 06e8455

Upload model to Hugging Face

Browse files
BC-no-theta.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d288cba1bd6c70bcf77248f7ec7f775a58652b018c1436b1ca5c20b3aba9e56b
3
- size 44132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd198ab8aac4e97c9c807732f633064f71c0bda5394d4838ad5d872961101a6c
3
+ size 44067
BC-no-theta/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9415afd360>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9415afd3f0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9415afd480>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9415afd510>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9415afd5a0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9415afd630>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9415afd6c0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9415afd750>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9415afd7e0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9415afd870>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9415afd900>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9415afd990>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f9472194340>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 4,
46
- "num_timesteps": 204800,
47
- "_total_timesteps": 200000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1681943739926950023,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKYZ3UIywBDAAADIQgAAyEKk58RC3KtvQgAAyEK0b3hC3ZuBQngOd0JuRO9CjSSJPtEtgUIAAMhCa4lLQiLhVEKUVWBCAADIQgAAyEIngrxCF5oTQ/XkLUAs3t9BAADIQgAAyEIAAMhCAADIQhOVw0KAqohCEPjGQs6F+ULkhn0/AADIQvIwOULCXz5CQqtIQgAAyEIAAMhCAADIQjvoiEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,16 +67,16 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.02400000000000002,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFhVxOslGSUCUhpRSlIwBbJRNLQGMAXSUR0CFdAePJaJRdX2UKGgGaAloD0MIrHDLR1ICG8CUhpRSlGgVTS0BaBZHQIV0Turp7kZ1fZQoaAZoCWgPQwjURJ+PMvo9QJSGlFKUaBVNLQFoFkdAhYO0oKD02HV9lChoBmgJaA9DCL8MxohEIQ9AlIaUUpRoFU0tAWgWR0CFiob2lEZ0dX2UKGgGaAloD0MI542TwrwnHECUhpRSlGgVTS0BaBZHQIWO7c9GI9F1fZQoaAZoCWgPQwiCjla1pOc/QJSGlFKUaBVNLQFoFkdAhY8mgi/wiXV9lChoBmgJaA9DCHPzjeieFTRAlIaUUpRoFU0tAWgWR0CFmzDJEH+qdX2UKGgGaAloD0MINnaJ6q0/RECUhpRSlGgVTS0BaBZHQIWfOPJaJRB1fZQoaAZoCWgPQwjYZmMl5hUzQJSGlFKUaBVNLQFoFkdAhaLbVjI7vHV9lChoBmgJaA9DCCQLmMCtsyxAlIaUUpRoFU0tAWgWR0CFoxepn6EbdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIWwlndweeZ1fZQoaAZoCWgPQwhAvRk1X20pQJSGlFKUaBVNLQFoFkdAhbiCvxH5J3V9lChoBmgJaA9DCKVKlL2lbC5AlIaUUpRoFU0tAWgWR0CFvtyf+S8rdX2UKGgGaAloD0MIx9XIrrSsKECUhpRSlGgVTS0BaBZHQIW/MO/cnE51fZQoaAZoCWgPQwiGdePd0YuAwJSGlFKUaBVLsWgWR0CGELhl18sudX2UKGgGaAloD0MI24gnu5nR4j+UhpRSlGgVTS0BaBZHQIYTjj1f3N91fZQoaAZoCWgPQwg9LNSa5m9MQJSGlFKUaBVNLQFoFkdAhh54oJAt4HV9lChoBmgJaA9DCKSMuAA05j5AlIaUUpRoFU0tAWgWR0CGHubgjyFxdX2UKGgGaAloD0MIZDxKJTxpRUCUhpRSlGgVTS0BaBZHQIYqHQKKHfx1fZQoaAZoCWgPQwiqEI/Ey0c6QJSGlFKUaBVNLQFoFkdAhi56nJkoW3V9lChoBmgJaA9DCLsPQGoTp/s/lIaUUpRoFU0tAWgWR0CGPWzfJmuldX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIY9opF1B+p1fZQoaAZoCWgPQwhZpIl3AD2AwJSGlFKUaBVL82gWR0CGQ5v73wkPdX2UKGgGaAloD0MI8Gq5MxMcNECUhpRSlGgVTS0BaBZHQIZNi+lCTll1fZQoaAZoCWgPQwhPrimQ2a9IQJSGlFKUaBVNLQFoFkdAhlzSdFvyb3V9lChoBmgJaA9DCP2hmSfXaDhAlIaUUpRoFU0tAWgWR0CGXVlQuVX4dX2UKGgGaAloD0MIPPiJA+gfO8CUhpRSlGgVTS0BaBZHQIZjAkE9t/F1fZQoaAZoCWgPQwgj+N9KdtwtQJSGlFKUaBVNLQFoFkdAhm/h+fAbhnV9lChoBmgJaA9DCD3RdeEH/yxAlIaUUpRoFU0tAWgWR0CGgOxVQyh0dX2UKGgGaAloD0MIiZro81FmK8CUhpRSlGgVTS0BaBZHQIaBcuvllsh1fZQoaAZoCWgPQwgJwhVQqDM8QJSGlFKUaBVNLQFoFkdAhoeJnQID5nV9lChoBmgJaA9DCO9v0F59BCZAlIaUUpRoFU0tAWgWR0CGj6OLiuMddX2UKGgGaAloD0MIxhUXR8WWgMCUhpRSlGgVS7NoFkdAhpEUoBq9G3V9lChoBmgJaA9DCFFn7iHh2ydAlIaUUpRoFU0tAWgWR0CGmqySmqHXdX2UKGgGaAloD0MIV81zRL4bU0CUhpRSlGgVTS0BaBZHQIaeT1EmY0F1fZQoaAZoCWgPQwimXrcIjDUFwJSGlFKUaBVNLQFoFkdAhqjeCbtqpXV9lChoBmgJaA9DCN0HILWJQylAlIaUUpRoFU0tAWgWR0CGqv3xFy7xdX2UKGgGaAloD0MIVU0QdR9IKMCUhpRSlGgVTS0BaBZHQIa2vs5XEIh1fZQoaAZoCWgPQwiKk/sdirZCQJSGlFKUaBVNLQFoFkdAhrtyJj2Ba3V9lChoBmgJaA9DCByWBn5URYDAlIaUUpRoFUv1aBZHQIbClpudf9h1fZQoaAZoCWgPQwgjZ2FPO/wiQJSGlFKUaBVNLQFoFkdAhsb19fCyhXV9lChoBmgJaA9DCBqmttRBPh7AlIaUUpRoFU0tAWgWR0CG1f17IDHPdX2UKGgGaAloD0MIG0mCcAWQNECUhpRSlGgVTS0BaBZHQIcX/kWAPNF1fZQoaAZoCWgPQwhPWriswm4sQJSGlFKUaBVNLQFoFkdAhxz6a1Cw8nV9lChoBmgJaA9DCB0hA3l2yR/AlIaUUpRoFU0tAWgWR0CHIIPGyX2NdX2UKGgGaAloD0MI6BIOvcWFQUCUhpRSlGgVTS0BaBZHQIcvAOnVG1B1fZQoaAZoCWgPQwhcBTHQtXtIQJSGlFKUaBVNLQFoFkdAhzVoKtxMnXV9lChoBmgJaA9DCM5RR8fVaCLAlIaUUpRoFU0tAWgWR0CHPVs3yZrpdX2UKGgGaAloD0MIvhQeNHsKgsCUhpRSlGgVTSUBaBZHQIdAadH2AXl1fZQoaAZoCWgPQwjCpWPOM7YcQJSGlFKUaBVNLQFoFkdAh09iJ40Mw3V9lChoBmgJaA9DCL38TpMZ7+W/lIaUUpRoFU0tAWgWR0CHVNrJKaoddX2UKGgGaAloD0MIQZyHE5iOTkCUhpRSlGgVTS0BaBZHQIdaV9hJAdJ1fZQoaAZoCWgPQwjmQA+1bfg2QJSGlFKUaBVNLQFoFkdAh10OKGcnV3V9lChoBmgJaA9DCBTLLa3mToLAlIaUUpRoFUumaBZHQIdquOZLIxR1fZQoaAZoCWgPQwiFtpxLcTVBQJSGlFKUaBVNLQFoFkdAh2xAnDziCXV9lChoBmgJaA9DCIlEoWXd30VAlIaUUpRoFU0tAWgWR0CHcIzBRAKOdX2UKGgGaAloD0MITRB1H4DkE0CUhpRSlGgVTS0BaBZHQId3wuAZsKt1fZQoaAZoCWgPQwhJ10y+GZR/wJSGlFKUaBVLt2gWR0CHemRUWEbpdX2UKGgGaAloD0MIlEp4Qq+fNUCUhpRSlGgVTS0BaBZHQIeBfo3aSLZ1fZQoaAZoCWgPQwgXDRmP8mGAwJSGlFKUaBVLsWgWR0CHhQlDWsijdX2UKGgGaAloD0MIpABRMGOK7T+UhpRSlGgVTS0BaBZHQIeGz0xubZx1fZQoaAZoCWgPQwi8ehUZncZ+wJSGlFKUaBVLrmgWR0CHkCmLLpzLdX2UKGgGaAloD0MI32qduBwvCkCUhpRSlGgVTS0BaBZHQIeS+qR2bG51fZQoaAZoCWgPQwhdbjDUYSUoQJSGlFKUaBVNLQFoFkdAh6BlqrR0EHV9lChoBmgJaA9DCESKARJNFDVAlIaUUpRoFU0tAWgWR0CHouJRfnfVdX2UKGgGaAloD0MIBDqTNpVmgsCUhpRSlGgVS+RoFkdAh6WcZUDMeXV9lChoBmgJaA9DCOhM2lTdY0pAlIaUUpRoFU0tAWgWR0CHrUHSnccmdX2UKGgGaAloD0MIO6kvSzs9K8CUhpRSlGgVTS0BaBZHQIe7BpL26Cl1fZQoaAZoCWgPQwjtgywLJnI7QJSGlFKUaBVNLQFoFkdAh72OAAhjfHV9lChoBmgJaA9DCPzkKEAUjDhAlIaUUpRoFU0tAWgWR0CHwLwIdELIdX2UKGgGaAloD0MIOJ86VikBOkCUhpRSlGgVTS0BaBZHQIfJ/3+MqBp1fZQoaAZoCWgPQwh8CoDxDAolQJSGlFKUaBVNLQFoFkdAiBSvysjmjnV9lChoBmgJaA9DCLvvGB6byYDAlIaUUpRoFU0FAWgWR0CIFpaTwDvFdX2UKGgGaAloD0MI7SjOUUdEVUCUhpRSlGgVTS0BaBZHQIgXObZvkzZ1fZQoaAZoCWgPQwi5p6s7FsM0QJSGlFKUaBVNLQFoFkdAiCMNcfNiY3V9lChoBmgJaA9DCNoc5zbBNILAlIaUUpRoFUviaBZHQIgqximVJMB1fZQoaAZoCWgPQwhhcTjzq9kQwJSGlFKUaBVNLQFoFkdAiDCGDUVi4XV9lChoBmgJaA9DCKEuUigLGzFAlIaUUpRoFU0tAWgWR0CIMwsYl6Z6dX2UKGgGaAloD0MInwCKkcU6gMCUhpRSlGgVS/loFkdAiDvA1vVEu3V9lChoBmgJaA9DCKwCtRg8dkFAlIaUUpRoFU0tAWgWR0CISy6S1Vo6dX2UKGgGaAloD0MIZ5qw/WSiTECUhpRSlGgVTS0BaBZHQIhQwNgBtDV1fZQoaAZoCWgPQwja/wBr1b4YwJSGlFKUaBVNLQFoFkdAiFPOVX3g1nV9lChoBmgJaA9DCEonEkw1t1ZAlIaUUpRoFU0tAWgWR0CIXNdWQwK0dX2UKGgGaAloD0MIatswCoI/LUCUhpRSlGgVTS0BaBZHQIhmOWldkax1fZQoaAZoCWgPQwijBtMwfBJNQJSGlFKUaBVNLQFoFkdAiGnMrupjt3V9lChoBmgJaA9DCG4T7pV5bUVAlIaUUpRoFU0tAWgWR0CIa0j4YaYNdX2UKGgGaAloD0MIje+LS1XazL+UhpRSlGgVTS0BaBZHQIhwXP7el9B1fZQoaAZoCWgPQwiH26FhMV46QJSGlFKUaBVNLQFoFkdAiHzQC8vmHXV9lChoBmgJaA9DCOCEQgQcSi/AlIaUUpRoFU0tAWgWR0CIgg/oJRfndX2UKGgGaAloD0MILO+qB8yJQMCUhpRSlGgVTS0BaBZHQIiEe5nUUfx1fZQoaAZoCWgPQwiQSrGjccw3QJSGlFKUaBVNLQFoFkdAiIxIo3JgcHV9lChoBmgJaA9DCM4Xey++IEtAlIaUUpRoFU0tAWgWR0CImM2WIGhVdX2UKGgGaAloD0MISDFAogkWR0CUhpRSlGgVTS0BaBZHQIidNqQA+6l1fZQoaAZoCWgPQwiVYkfjEPp/wJSGlFKUaBVLQmgWR0CInn7VrhzedX2UKGgGaAloD0MI0F/oEaMdQkCUhpRSlGgVTS0BaBZHQIigMYdhiLF1fZQoaAZoCWgPQwiInL6erzkZwJSGlFKUaBVNLQFoFkdAiKdWWIGhVXV9lChoBmgJaA9DCDigpSvYrk3AlIaUUpRoFU0tAWgWR0CIum163RXwdX2UKGgGaAloD0MIg6RPq+ioUsCUhpRSlGgVTS0BaBZHQIi7yABkqc51fZQoaAZoCWgPQwhxBKkUO143QJSGlFKUaBVNLQFoFkdAiL1Vog3cYnV9lChoBmgJaA9DCCWzeofbEU5AlIaUUpRoFU0tAWgWR0CIxpPk7wKCdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 250,
80
  "n_steps": 2048,
81
  "gamma": 0.99,
82
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fa2f1360>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fa2f13f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fa2f1480>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fa2f1510>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f32fa2f15a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f32fa2f1630>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fa2f16c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fa2f1750>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f32fa2f17e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fa2f1870>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fa2f1900>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fa2f1990>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f32fa5df580>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 4,
46
+ "num_timesteps": 106496,
47
+ "_total_timesteps": 100000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1681944654316928986,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACRjzkJE3Ry//wmpQtOrHEIAAMhCAADIQsFA6UECARxCj0itQgAAyEJA2u1CDG2MP0c7vUKb06VCaEFcQgAAyEIAAMhCAADIQsDSqEKLp5dCZjG6QlVyGcAAAMhCn+a0QQAAyEIAAMhCZl1ZQgAAyEIAAMhCAADIQp2HvUIj0JA/AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCi306Qvp1WkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+6VeashWsCUhpRSlIwBbJRNLQGMAXSUR0B04S+rU9ZBdX2UKGgGaAloD0MIRl9BmrHwOUCUhpRSlGgVS1NoFkdAdOqPRArxzHV9lChoBmgJaA9DCCSZ1Tvc+j5AlIaUUpRoFUtPaBZHQHTtQtFrl/91fZQoaAZoCWgPQwjABkSIKydsQJSGlFKUaBVNLQFoFkdAdPBCeVcD83V9lChoBmgJaA9DCL5r0JfezjNAlIaUUpRoFU0oAWgWR0B099xDLKV6dX2UKGgGaAloD0MIfotOllqPScCUhpRSlGgVS2RoFkdAdQpfhddE9nV9lChoBmgJaA9DCD4g0JmUwIHAlIaUUpRoFUvHaBZHQHUQE2DQJHB1fZQoaAZoCWgPQwj2Kcdk8U12QJSGlFKUaBVNLQFoFkdAdSrcAiml7HV9lChoBmgJaA9DCFLWbyZmO3JAlIaUUpRoFU0tAWgWR0B1LpdcB2fTdX2UKGgGaAloD0MIxsIQOT2Re0CUhpRSlGgVTS0BaBZHQHVLxp5/smh1fZQoaAZoCWgPQwjCps6j4hlvQJSGlFKUaBVNLQFoFkdAdVDi3XqZ+nV9lChoBmgJaA9DCC0hH/RsamZAlIaUUpRoFUvhaBZHQHVeiowVTJh1fZQoaAZoCWgPQwh5XFSLiD9WQJSGlFKUaBVL+GgWR0B1zshq0tyxdX2UKGgGaAloD0MIEr9iDRfBL8CUhpRSlGgVS1hoFkdAddgnwG4ZuXV9lChoBmgJaA9DCEbvVMA9H1DAlIaUUpRoFUubaBZHQHXereQ+2Vp1fZQoaAZoCWgPQwgSMpBnF7BwwJSGlFKUaBVLYWgWR0B141FfAsTWdX2UKGgGaAloD0MIQSybOSQQUECUhpRSlGgVTS0BaBZHQHXmeN1hb4d1fZQoaAZoCWgPQwhsPUM4ZmdnQJSGlFKUaBVNLQFoFkdAdepddE9dNXV9lChoBmgJaA9DCOt0IOupX03AlIaUUpRoFUtdaBZHQHXyB0lqrR11fZQoaAZoCWgPQwiIY13cRiFEwJSGlFKUaBVLYmgWR0B19qj1wo9cdX2UKGgGaAloD0MIKv7viAqLUECUhpRSlGgVS0poFkdAdfa0pVjqfXV9lChoBmgJaA9DCOp1i8BYxydAlIaUUpRoFUuhaBZHQHX3FkMCtA91fZQoaAZoCWgPQwjoSgSqf3AgwJSGlFKUaBVLE2gWR0B1+d6Ww/xEdX2UKGgGaAloD0MIQdMSKwMcgMCUhpRSlGgVS2toFkdAdgM/HYHxBnV9lChoBmgJaA9DCA3jbhCttQjAlIaUUpRoFUt3aBZHQHYJyCz1K5F1fZQoaAZoCWgPQwjh7xezJQVDQJSGlFKUaBVL2WgWR0B2EeLwWnCPdX2UKGgGaAloD0MI2sU0070GIkCUhpRSlGgVS1VoFkdAdhJKqn3tbHV9lChoBmgJaA9DCE1LrIxGwWDAlIaUUpRoFU0tAWgWR0B2Hpgtvn8sdX2UKGgGaAloD0MI+uyA64rPVkCUhpRSlGgVS4loFkdAdiYrwOOKfnV9lChoBmgJaA9DCDCBW3fz7DhAlIaUUpRoFU0kAWgWR0B2JyFev6j4dX2UKGgGaAloD0MIHQWIghnjL0CUhpRSlGgVS11oFkdAditCEYfnwHV9lChoBmgJaA9DCDhm2ZPAJj3AlIaUUpRoFUsJaBZHQHYspIg/1QJ1fZQoaAZoCWgPQwhk6xnCEcaAwJSGlFKUaBVLymgWR0B2Lv4i5d4WdX2UKGgGaAloD0MIbywoDApjgcCUhpRSlGgVSz5oFkdAdi8a24NI9XV9lChoBmgJaA9DCHnpJjEI1mTAlIaUUpRoFUtpaBZHQHY2UDuBtk51fZQoaAZoCWgPQwiyvKseMFckwJSGlFKUaBVLVGgWR0B2Os2VE/jbdX2UKGgGaAloD0MIjxfS4aG2ZUCUhpRSlGgVS1xoFkdAdjyT/Q0GeXV9lChoBmgJaA9DCN6wbVFm4xFAlIaUUpRoFUsNaBZHQHY9OhkAggZ1fZQoaAZoCWgPQwgaFM0D2J+IwJSGlFKUaBVLeWgWR0B2Pdx0dRzjdX2UKGgGaAloD0MI5C7CFAXGjMCUhpRSlGgVS3RoFkdAdlIYO2AoX3V9lChoBmgJaA9DCB1znrFvPXjAlIaUUpRoFUvqaBZHQHZbV6NVBD51fZQoaAZoCWgPQwiASpUoeydjwJSGlFKUaBVL52gWR0B2YtBNVR1pdX2UKGgGaAloD0MIk/5eCo+SZkCUhpRSlGgVS6NoFkdAdmoVR1oxpXV9lChoBmgJaA9DCCR9WkX/F2pAlIaUUpRoFU0tAWgWR0B2bKQT238XdX2UKGgGaAloD0MIs9DOaRYwIkCUhpRSlGgVSw5oFkdAdm+oc7yQP3V9lChoBmgJaA9DCG6nrRHBJGNAlIaUUpRoFUtZaBZHQHZ9V+3H7xd1fZQoaAZoCWgPQwgO9buw1dKBQJSGlFKUaBVNLQFoFkdAdpQx//echHV9lChoBmgJaA9DCPD49q5BRyNAlIaUUpRoFUsPaBZHQHaXHrleWv91fZQoaAZoCWgPQwiXOPJAZAEwwJSGlFKUaBVNLQFoFkdAdpxdP+GXX3V9lChoBmgJaA9DCKYr2EY88SBAlIaUUpRoFUunaBZHQHaeMSwnpjd1fZQoaAZoCWgPQwhREaeT7NR9wJSGlFKUaBVLQWgWR0B2pxy/9Hc2dX2UKGgGaAloD0MISDZXzXP8aMCUhpRSlGgVTS0BaBZHQHannnyNGVl1fZQoaAZoCWgPQwgIO8WqwWKNwJSGlFKUaBVLgWgWR0B2qiLQ5WBCdX2UKGgGaAloD0MILbEyGnkNg8CUhpRSlGgVS3doFkdAdq04N7SiNHV9lChoBmgJaA9DCIdT5uYbjThAlIaUUpRoFUsPaBZHQHavtcB2fTV1fZQoaAZoCWgPQwgNxLKZw1p7wJSGlFKUaBVLP2gWR0B2sz3Dej20dX2UKGgGaAloD0MIrkhMUMNjPECUhpRSlGgVSxBoFkdAdrT+PzWf9XV9lChoBmgJaA9DCJ4JTRJLGGBAlIaUUpRoFUtbaBZHQHbAQ+2VmjF1fZQoaAZoCWgPQwhY42w6AkgtQJSGlFKUaBVL4WgWR0B2xIp5NXYEdX2UKGgGaAloD0MIY35uaMqLWECUhpRSlGgVS+9oFkdAdsfBLf1pTXV9lChoBmgJaA9DCJgwmpXtuUnAlIaUUpRoFUviaBZHQHbOfXCj1wp1fZQoaAZoCWgPQwh2qRH6mW4wQJSGlFKUaBVLDGgWR0B20KtEG7jDdX2UKGgGaAloD0MInu+nxkuAZcCUhpRSlGgVS/toFkdAdu/EyLyc1HV9lChoBmgJaA9DCPwYc9eSGXhAlIaUUpRoFU0tAWgWR0B29Bp22XsxdX2UKGgGaAloD0MILQlQU0tGcUCUhpRSlGgVTS0BaBZHQHb8wcPvrnl1fZQoaAZoCWgPQwhZvi7Df5JjQJSGlFKUaBVLFWgWR0B2/xVmz0HydX2UKGgGaAloD0MI2QqaltgZb0CUhpRSlGgVTS0BaBZHQHcDj5ftx+91fZQoaAZoCWgPQwidDfln5qmFwJSGlFKUaBVLPWgWR0B3cVmSQo1DdX2UKGgGaAloD0MIeVvptdlXZMCUhpRSlGgVTS0BaBZHQHeKUWqLjxV1fZQoaAZoCWgPQwhDOdGuAoiDQJSGlFKUaBVNLQFoFkdAd4yr433pOnV9lChoBmgJaA9DCNYcIJjDyoLAlIaUUpRoFUuxaBZHQHeNGcvugHx1fZQoaAZoCWgPQwgLmMCtu/lBQJSGlFKUaBVLEGgWR0B3jnVc2R7rdX2UKGgGaAloD0MIPZl/9E2WOcCUhpRSlGgVSw9oFkdAd47P6sQumXV9lChoBmgJaA9DCHu8kA4PsR9AlIaUUpRoFUvlaBZHQHePgljVhCt1fZQoaAZoCWgPQwj034PXrmxywJSGlFKUaBVLomgWR0B3o19c8kledX2UKGgGaAloD0MIkDLiAlAHf0CUhpRSlGgVTS0BaBZHQHezMkhRqGl1fZQoaAZoCWgPQwjxZ3izBoZ7wJSGlFKUaBVNCwFoFkdAd7RkCFK02XV9lChoBmgJaA9DCDAuVWkL0W5AlIaUUpRoFU0tAWgWR0B3vAYBNmDldX2UKGgGaAloD0MIpaKx9ncLUcCUhpRSlGgVTS0BaBZHQHfXlme18b91fZQoaAZoCWgPQwiUMqmhDUQ+QJSGlFKUaBVNLQFoFkdAd+lTRYzSC3V9lChoBmgJaA9DCLL2d7bH43JAlIaUUpRoFU0tAWgWR0B36qXyAhB7dX2UKGgGaAloD0MICyk/qXbqe0CUhpRSlGgVTS0BaBZHQHfx75dnkDJ1fZQoaAZoCWgPQwjJzAUuTzx4QJSGlFKUaBVNLQFoFkdAeBIVzZHuqnV9lChoBmgJaA9DCNzZVx6kqXvAlIaUUpRoFU0nAWgWR0B4HeP/7zkIdX2UKGgGaAloD0MIZjIcz2eQW0CUhpRSlGgVTS0BaBZHQHggM4o7V8V1fZQoaAZoCWgPQwiEKjV7oNNtQJSGlFKUaBVNLQFoFkdAeCdePq9oOHV9lChoBmgJaA9DCFZFuMkoE4RAlIaUUpRoFU0tAWgWR0B4QrMB6rvLdX2UKGgGaAloD0MIFqdaC7PwJMCUhpRSlGgVSxNoFkdAeEayC4Bmw3V9lChoBmgJaA9DCLYQ5KAEqHZAlIaUUpRoFU0tAWgWR0B4Ueb4Ju2rdX2UKGgGaAloD0MI2safqCxXc0CUhpRSlGgVTS0BaBZHQHhTuB+Wnj11fZQoaAZoCWgPQwjlCu9yUXt4QJSGlFKUaBVNLQFoFkdAeFn5D7ZWaXV9lChoBmgJaA9DCCOfVzx1A37AlIaUUpRoFUupaBZHQHhzSSNfgJl1fZQoaAZoCWgPQwjFc7aA0D5vQJSGlFKUaBVNLQFoFkdAeHWGFSKm9HV9lChoBmgJaA9DCOqVsgxxNn3AlIaUUpRoFUvtaBZHQHh2akZaV2R1fZQoaAZoCWgPQwi7fsFu2LdvwJSGlFKUaBVNJwFoFkdAeHu9QoCuEHV9lChoBmgJaA9DCMHEH0WdJW/AlIaUUpRoFUvpaBZHQHiTN4iX6ZZ1fZQoaAZoCWgPQwhq2sU0ExB/wJSGlFKUaBVL92gWR0B4mN/wy6+WdX2UKGgGaAloD0MIC0J5H6dIhcCUhpRSlGgVTSYBaBZHQHikZYkmhM91fZQoaAZoCWgPQwi4rS08L2UoQJSGlFKUaBVLEGgWR0B4p+RvFWGRdX2UKGgGaAloD0MI3nNgOaLXg0CUhpRSlGgVTS0BaBZHQHivr+98JD51ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 130,
80
  "n_steps": 2048,
81
  "gamma": 0.99,
82
  "gae_lambda": 0.95,
BC-no-theta/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:443b944212557a649423368930ec892ec359f6cd16265fa7e7736169a35af5ef
3
  size 18973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c901fc15314856fe184ca6fb4770d611ee87735c4f73e3284ece1cc5b7eadb0a
3
  size 18973
BC-no-theta/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4833bd239d0e0599ab34df000a06d65e819878df97875f2fd718e73bb02db3b6
3
  size 9295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02c89bcfd15fde076a49acf0a92c07910be23c9bbf83f094804414cc36b2043d
3
  size 9295
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9415afd360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9415afd3f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9415afd480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9415afd510>", "_build": "<function ActorCriticPolicy._build at 0x7f9415afd5a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9415afd630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9415afd6c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9415afd750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9415afd7e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9415afd870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9415afd900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9415afd990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9472194340>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681943739926950023, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKYZ3UIywBDAAADIQgAAyEKk58RC3KtvQgAAyEK0b3hC3ZuBQngOd0JuRO9CjSSJPtEtgUIAAMhCa4lLQiLhVEKUVWBCAADIQgAAyEIngrxCF5oTQ/XkLUAs3t9BAADIQgAAyEIAAMhCAADIQhOVw0KAqohCEPjGQs6F+ULkhn0/AADIQvIwOULCXz5CQqtIQgAAyEIAAMhCAADIQjvoiEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFhVxOslGSUCUhpRSlIwBbJRNLQGMAXSUR0CFdAePJaJRdX2UKGgGaAloD0MIrHDLR1ICG8CUhpRSlGgVTS0BaBZHQIV0Turp7kZ1fZQoaAZoCWgPQwjURJ+PMvo9QJSGlFKUaBVNLQFoFkdAhYO0oKD02HV9lChoBmgJaA9DCL8MxohEIQ9AlIaUUpRoFU0tAWgWR0CFiob2lEZ0dX2UKGgGaAloD0MI542TwrwnHECUhpRSlGgVTS0BaBZHQIWO7c9GI9F1fZQoaAZoCWgPQwiCjla1pOc/QJSGlFKUaBVNLQFoFkdAhY8mgi/wiXV9lChoBmgJaA9DCHPzjeieFTRAlIaUUpRoFU0tAWgWR0CFmzDJEH+qdX2UKGgGaAloD0MINnaJ6q0/RECUhpRSlGgVTS0BaBZHQIWfOPJaJRB1fZQoaAZoCWgPQwjYZmMl5hUzQJSGlFKUaBVNLQFoFkdAhaLbVjI7vHV9lChoBmgJaA9DCCQLmMCtsyxAlIaUUpRoFU0tAWgWR0CFoxepn6EbdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIWwlndweeZ1fZQoaAZoCWgPQwhAvRk1X20pQJSGlFKUaBVNLQFoFkdAhbiCvxH5J3V9lChoBmgJaA9DCKVKlL2lbC5AlIaUUpRoFU0tAWgWR0CFvtyf+S8rdX2UKGgGaAloD0MIx9XIrrSsKECUhpRSlGgVTS0BaBZHQIW/MO/cnE51fZQoaAZoCWgPQwiGdePd0YuAwJSGlFKUaBVLsWgWR0CGELhl18sudX2UKGgGaAloD0MI24gnu5nR4j+UhpRSlGgVTS0BaBZHQIYTjj1f3N91fZQoaAZoCWgPQwg9LNSa5m9MQJSGlFKUaBVNLQFoFkdAhh54oJAt4HV9lChoBmgJaA9DCKSMuAA05j5AlIaUUpRoFU0tAWgWR0CGHubgjyFxdX2UKGgGaAloD0MIZDxKJTxpRUCUhpRSlGgVTS0BaBZHQIYqHQKKHfx1fZQoaAZoCWgPQwiqEI/Ey0c6QJSGlFKUaBVNLQFoFkdAhi56nJkoW3V9lChoBmgJaA9DCLsPQGoTp/s/lIaUUpRoFU0tAWgWR0CGPWzfJmuldX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQIY9opF1B+p1fZQoaAZoCWgPQwhZpIl3AD2AwJSGlFKUaBVL82gWR0CGQ5v73wkPdX2UKGgGaAloD0MI8Gq5MxMcNECUhpRSlGgVTS0BaBZHQIZNi+lCTll1fZQoaAZoCWgPQwhPrimQ2a9IQJSGlFKUaBVNLQFoFkdAhlzSdFvyb3V9lChoBmgJaA9DCP2hmSfXaDhAlIaUUpRoFU0tAWgWR0CGXVlQuVX4dX2UKGgGaAloD0MIPPiJA+gfO8CUhpRSlGgVTS0BaBZHQIZjAkE9t/F1fZQoaAZoCWgPQwgj+N9KdtwtQJSGlFKUaBVNLQFoFkdAhm/h+fAbhnV9lChoBmgJaA9DCD3RdeEH/yxAlIaUUpRoFU0tAWgWR0CGgOxVQyh0dX2UKGgGaAloD0MIiZro81FmK8CUhpRSlGgVTS0BaBZHQIaBcuvllsh1fZQoaAZoCWgPQwgJwhVQqDM8QJSGlFKUaBVNLQFoFkdAhoeJnQID5nV9lChoBmgJaA9DCO9v0F59BCZAlIaUUpRoFU0tAWgWR0CGj6OLiuMddX2UKGgGaAloD0MIxhUXR8WWgMCUhpRSlGgVS7NoFkdAhpEUoBq9G3V9lChoBmgJaA9DCFFn7iHh2ydAlIaUUpRoFU0tAWgWR0CGmqySmqHXdX2UKGgGaAloD0MIV81zRL4bU0CUhpRSlGgVTS0BaBZHQIaeT1EmY0F1fZQoaAZoCWgPQwimXrcIjDUFwJSGlFKUaBVNLQFoFkdAhqjeCbtqpXV9lChoBmgJaA9DCN0HILWJQylAlIaUUpRoFU0tAWgWR0CGqv3xFy7xdX2UKGgGaAloD0MIVU0QdR9IKMCUhpRSlGgVTS0BaBZHQIa2vs5XEIh1fZQoaAZoCWgPQwiKk/sdirZCQJSGlFKUaBVNLQFoFkdAhrtyJj2Ba3V9lChoBmgJaA9DCByWBn5URYDAlIaUUpRoFUv1aBZHQIbClpudf9h1fZQoaAZoCWgPQwgjZ2FPO/wiQJSGlFKUaBVNLQFoFkdAhsb19fCyhXV9lChoBmgJaA9DCBqmttRBPh7AlIaUUpRoFU0tAWgWR0CG1f17IDHPdX2UKGgGaAloD0MIG0mCcAWQNECUhpRSlGgVTS0BaBZHQIcX/kWAPNF1fZQoaAZoCWgPQwhPWriswm4sQJSGlFKUaBVNLQFoFkdAhxz6a1Cw8nV9lChoBmgJaA9DCB0hA3l2yR/AlIaUUpRoFU0tAWgWR0CHIIPGyX2NdX2UKGgGaAloD0MI6BIOvcWFQUCUhpRSlGgVTS0BaBZHQIcvAOnVG1B1fZQoaAZoCWgPQwhcBTHQtXtIQJSGlFKUaBVNLQFoFkdAhzVoKtxMnXV9lChoBmgJaA9DCM5RR8fVaCLAlIaUUpRoFU0tAWgWR0CHPVs3yZrpdX2UKGgGaAloD0MIvhQeNHsKgsCUhpRSlGgVTSUBaBZHQIdAadH2AXl1fZQoaAZoCWgPQwjCpWPOM7YcQJSGlFKUaBVNLQFoFkdAh09iJ40Mw3V9lChoBmgJaA9DCL38TpMZ7+W/lIaUUpRoFU0tAWgWR0CHVNrJKaoddX2UKGgGaAloD0MIQZyHE5iOTkCUhpRSlGgVTS0BaBZHQIdaV9hJAdJ1fZQoaAZoCWgPQwjmQA+1bfg2QJSGlFKUaBVNLQFoFkdAh10OKGcnV3V9lChoBmgJaA9DCBTLLa3mToLAlIaUUpRoFUumaBZHQIdquOZLIxR1fZQoaAZoCWgPQwiFtpxLcTVBQJSGlFKUaBVNLQFoFkdAh2xAnDziCXV9lChoBmgJaA9DCIlEoWXd30VAlIaUUpRoFU0tAWgWR0CHcIzBRAKOdX2UKGgGaAloD0MITRB1H4DkE0CUhpRSlGgVTS0BaBZHQId3wuAZsKt1fZQoaAZoCWgPQwhJ10y+GZR/wJSGlFKUaBVLt2gWR0CHemRUWEbpdX2UKGgGaAloD0MIlEp4Qq+fNUCUhpRSlGgVTS0BaBZHQIeBfo3aSLZ1fZQoaAZoCWgPQwgXDRmP8mGAwJSGlFKUaBVLsWgWR0CHhQlDWsijdX2UKGgGaAloD0MIpABRMGOK7T+UhpRSlGgVTS0BaBZHQIeGz0xubZx1fZQoaAZoCWgPQwi8ehUZncZ+wJSGlFKUaBVLrmgWR0CHkCmLLpzLdX2UKGgGaAloD0MI32qduBwvCkCUhpRSlGgVTS0BaBZHQIeS+qR2bG51fZQoaAZoCWgPQwhdbjDUYSUoQJSGlFKUaBVNLQFoFkdAh6BlqrR0EHV9lChoBmgJaA9DCESKARJNFDVAlIaUUpRoFU0tAWgWR0CHouJRfnfVdX2UKGgGaAloD0MIBDqTNpVmgsCUhpRSlGgVS+RoFkdAh6WcZUDMeXV9lChoBmgJaA9DCOhM2lTdY0pAlIaUUpRoFU0tAWgWR0CHrUHSnccmdX2UKGgGaAloD0MIO6kvSzs9K8CUhpRSlGgVTS0BaBZHQIe7BpL26Cl1fZQoaAZoCWgPQwjtgywLJnI7QJSGlFKUaBVNLQFoFkdAh72OAAhjfHV9lChoBmgJaA9DCPzkKEAUjDhAlIaUUpRoFU0tAWgWR0CHwLwIdELIdX2UKGgGaAloD0MIOJ86VikBOkCUhpRSlGgVTS0BaBZHQIfJ/3+MqBp1fZQoaAZoCWgPQwh8CoDxDAolQJSGlFKUaBVNLQFoFkdAiBSvysjmjnV9lChoBmgJaA9DCLvvGB6byYDAlIaUUpRoFU0FAWgWR0CIFpaTwDvFdX2UKGgGaAloD0MI7SjOUUdEVUCUhpRSlGgVTS0BaBZHQIgXObZvkzZ1fZQoaAZoCWgPQwi5p6s7FsM0QJSGlFKUaBVNLQFoFkdAiCMNcfNiY3V9lChoBmgJaA9DCNoc5zbBNILAlIaUUpRoFUviaBZHQIgqximVJMB1fZQoaAZoCWgPQwhhcTjzq9kQwJSGlFKUaBVNLQFoFkdAiDCGDUVi4XV9lChoBmgJaA9DCKEuUigLGzFAlIaUUpRoFU0tAWgWR0CIMwsYl6Z6dX2UKGgGaAloD0MInwCKkcU6gMCUhpRSlGgVS/loFkdAiDvA1vVEu3V9lChoBmgJaA9DCKwCtRg8dkFAlIaUUpRoFU0tAWgWR0CISy6S1Vo6dX2UKGgGaAloD0MIZ5qw/WSiTECUhpRSlGgVTS0BaBZHQIhQwNgBtDV1fZQoaAZoCWgPQwja/wBr1b4YwJSGlFKUaBVNLQFoFkdAiFPOVX3g1nV9lChoBmgJaA9DCEonEkw1t1ZAlIaUUpRoFU0tAWgWR0CIXNdWQwK0dX2UKGgGaAloD0MIatswCoI/LUCUhpRSlGgVTS0BaBZHQIhmOWldkax1fZQoaAZoCWgPQwijBtMwfBJNQJSGlFKUaBVNLQFoFkdAiGnMrupjt3V9lChoBmgJaA9DCG4T7pV5bUVAlIaUUpRoFU0tAWgWR0CIa0j4YaYNdX2UKGgGaAloD0MIje+LS1XazL+UhpRSlGgVTS0BaBZHQIhwXP7el9B1fZQoaAZoCWgPQwiH26FhMV46QJSGlFKUaBVNLQFoFkdAiHzQC8vmHXV9lChoBmgJaA9DCOCEQgQcSi/AlIaUUpRoFU0tAWgWR0CIgg/oJRfndX2UKGgGaAloD0MILO+qB8yJQMCUhpRSlGgVTS0BaBZHQIiEe5nUUfx1fZQoaAZoCWgPQwiQSrGjccw3QJSGlFKUaBVNLQFoFkdAiIxIo3JgcHV9lChoBmgJaA9DCM4Xey++IEtAlIaUUpRoFU0tAWgWR0CImM2WIGhVdX2UKGgGaAloD0MISDFAogkWR0CUhpRSlGgVTS0BaBZHQIidNqQA+6l1fZQoaAZoCWgPQwiVYkfjEPp/wJSGlFKUaBVLQmgWR0CInn7VrhzedX2UKGgGaAloD0MI0F/oEaMdQkCUhpRSlGgVTS0BaBZHQIigMYdhiLF1fZQoaAZoCWgPQwiInL6erzkZwJSGlFKUaBVNLQFoFkdAiKdWWIGhVXV9lChoBmgJaA9DCDigpSvYrk3AlIaUUpRoFU0tAWgWR0CIum163RXwdX2UKGgGaAloD0MIg6RPq+ioUsCUhpRSlGgVTS0BaBZHQIi7yABkqc51fZQoaAZoCWgPQwhxBKkUO143QJSGlFKUaBVNLQFoFkdAiL1Vog3cYnV9lChoBmgJaA9DCCWzeofbEU5AlIaUUpRoFU0tAWgWR0CIxpPk7wKCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fa2f1360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fa2f13f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fa2f1480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fa2f1510>", "_build": "<function ActorCriticPolicy._build at 0x7f32fa2f15a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fa2f1630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fa2f16c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fa2f1750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fa2f17e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fa2f1870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fa2f1900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fa2f1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32fa5df580>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681944654316928986, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACRjzkJE3Ry//wmpQtOrHEIAAMhCAADIQsFA6UECARxCj0itQgAAyEJA2u1CDG2MP0c7vUKb06VCaEFcQgAAyEIAAMhCAADIQsDSqEKLp5dCZjG6QlVyGcAAAMhCn+a0QQAAyEIAAMhCZl1ZQgAAyEIAAMhCAADIQp2HvUIj0JA/AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCi306Qvp1WkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+6VeashWsCUhpRSlIwBbJRNLQGMAXSUR0B04S+rU9ZBdX2UKGgGaAloD0MIRl9BmrHwOUCUhpRSlGgVS1NoFkdAdOqPRArxzHV9lChoBmgJaA9DCCSZ1Tvc+j5AlIaUUpRoFUtPaBZHQHTtQtFrl/91fZQoaAZoCWgPQwjABkSIKydsQJSGlFKUaBVNLQFoFkdAdPBCeVcD83V9lChoBmgJaA9DCL5r0JfezjNAlIaUUpRoFU0oAWgWR0B099xDLKV6dX2UKGgGaAloD0MIfotOllqPScCUhpRSlGgVS2RoFkdAdQpfhddE9nV9lChoBmgJaA9DCD4g0JmUwIHAlIaUUpRoFUvHaBZHQHUQE2DQJHB1fZQoaAZoCWgPQwj2Kcdk8U12QJSGlFKUaBVNLQFoFkdAdSrcAiml7HV9lChoBmgJaA9DCFLWbyZmO3JAlIaUUpRoFU0tAWgWR0B1LpdcB2fTdX2UKGgGaAloD0MIxsIQOT2Re0CUhpRSlGgVTS0BaBZHQHVLxp5/smh1fZQoaAZoCWgPQwjCps6j4hlvQJSGlFKUaBVNLQFoFkdAdVDi3XqZ+nV9lChoBmgJaA9DCC0hH/RsamZAlIaUUpRoFUvhaBZHQHVeiowVTJh1fZQoaAZoCWgPQwh5XFSLiD9WQJSGlFKUaBVL+GgWR0B1zshq0tyxdX2UKGgGaAloD0MIEr9iDRfBL8CUhpRSlGgVS1hoFkdAddgnwG4ZuXV9lChoBmgJaA9DCEbvVMA9H1DAlIaUUpRoFUubaBZHQHXereQ+2Vp1fZQoaAZoCWgPQwgSMpBnF7BwwJSGlFKUaBVLYWgWR0B141FfAsTWdX2UKGgGaAloD0MIQSybOSQQUECUhpRSlGgVTS0BaBZHQHXmeN1hb4d1fZQoaAZoCWgPQwhsPUM4ZmdnQJSGlFKUaBVNLQFoFkdAdepddE9dNXV9lChoBmgJaA9DCOt0IOupX03AlIaUUpRoFUtdaBZHQHXyB0lqrR11fZQoaAZoCWgPQwiIY13cRiFEwJSGlFKUaBVLYmgWR0B19qj1wo9cdX2UKGgGaAloD0MIKv7viAqLUECUhpRSlGgVS0poFkdAdfa0pVjqfXV9lChoBmgJaA9DCOp1i8BYxydAlIaUUpRoFUuhaBZHQHX3FkMCtA91fZQoaAZoCWgPQwjoSgSqf3AgwJSGlFKUaBVLE2gWR0B1+d6Ww/xEdX2UKGgGaAloD0MIQdMSKwMcgMCUhpRSlGgVS2toFkdAdgM/HYHxBnV9lChoBmgJaA9DCA3jbhCttQjAlIaUUpRoFUt3aBZHQHYJyCz1K5F1fZQoaAZoCWgPQwjh7xezJQVDQJSGlFKUaBVL2WgWR0B2EeLwWnCPdX2UKGgGaAloD0MI2sU0070GIkCUhpRSlGgVS1VoFkdAdhJKqn3tbHV9lChoBmgJaA9DCE1LrIxGwWDAlIaUUpRoFU0tAWgWR0B2Hpgtvn8sdX2UKGgGaAloD0MI+uyA64rPVkCUhpRSlGgVS4loFkdAdiYrwOOKfnV9lChoBmgJaA9DCDCBW3fz7DhAlIaUUpRoFU0kAWgWR0B2JyFev6j4dX2UKGgGaAloD0MIHQWIghnjL0CUhpRSlGgVS11oFkdAditCEYfnwHV9lChoBmgJaA9DCDhm2ZPAJj3AlIaUUpRoFUsJaBZHQHYspIg/1QJ1fZQoaAZoCWgPQwhk6xnCEcaAwJSGlFKUaBVLymgWR0B2Lv4i5d4WdX2UKGgGaAloD0MIbywoDApjgcCUhpRSlGgVSz5oFkdAdi8a24NI9XV9lChoBmgJaA9DCHnpJjEI1mTAlIaUUpRoFUtpaBZHQHY2UDuBtk51fZQoaAZoCWgPQwiyvKseMFckwJSGlFKUaBVLVGgWR0B2Os2VE/jbdX2UKGgGaAloD0MIjxfS4aG2ZUCUhpRSlGgVS1xoFkdAdjyT/Q0GeXV9lChoBmgJaA9DCN6wbVFm4xFAlIaUUpRoFUsNaBZHQHY9OhkAggZ1fZQoaAZoCWgPQwgaFM0D2J+IwJSGlFKUaBVLeWgWR0B2Pdx0dRzjdX2UKGgGaAloD0MI5C7CFAXGjMCUhpRSlGgVS3RoFkdAdlIYO2AoX3V9lChoBmgJaA9DCB1znrFvPXjAlIaUUpRoFUvqaBZHQHZbV6NVBD51fZQoaAZoCWgPQwiASpUoeydjwJSGlFKUaBVL52gWR0B2YtBNVR1pdX2UKGgGaAloD0MIk/5eCo+SZkCUhpRSlGgVS6NoFkdAdmoVR1oxpXV9lChoBmgJaA9DCCR9WkX/F2pAlIaUUpRoFU0tAWgWR0B2bKQT238XdX2UKGgGaAloD0MIs9DOaRYwIkCUhpRSlGgVSw5oFkdAdm+oc7yQP3V9lChoBmgJaA9DCG6nrRHBJGNAlIaUUpRoFUtZaBZHQHZ9V+3H7xd1fZQoaAZoCWgPQwgO9buw1dKBQJSGlFKUaBVNLQFoFkdAdpQx//echHV9lChoBmgJaA9DCPD49q5BRyNAlIaUUpRoFUsPaBZHQHaXHrleWv91fZQoaAZoCWgPQwiXOPJAZAEwwJSGlFKUaBVNLQFoFkdAdpxdP+GXX3V9lChoBmgJaA9DCKYr2EY88SBAlIaUUpRoFUunaBZHQHaeMSwnpjd1fZQoaAZoCWgPQwhREaeT7NR9wJSGlFKUaBVLQWgWR0B2pxy/9Hc2dX2UKGgGaAloD0MISDZXzXP8aMCUhpRSlGgVTS0BaBZHQHannnyNGVl1fZQoaAZoCWgPQwgIO8WqwWKNwJSGlFKUaBVLgWgWR0B2qiLQ5WBCdX2UKGgGaAloD0MILbEyGnkNg8CUhpRSlGgVS3doFkdAdq04N7SiNHV9lChoBmgJaA9DCIdT5uYbjThAlIaUUpRoFUsPaBZHQHavtcB2fTV1fZQoaAZoCWgPQwgNxLKZw1p7wJSGlFKUaBVLP2gWR0B2sz3Dej20dX2UKGgGaAloD0MIrkhMUMNjPECUhpRSlGgVSxBoFkdAdrT+PzWf9XV9lChoBmgJaA9DCJ4JTRJLGGBAlIaUUpRoFUtbaBZHQHbAQ+2VmjF1fZQoaAZoCWgPQwhY42w6AkgtQJSGlFKUaBVL4WgWR0B2xIp5NXYEdX2UKGgGaAloD0MIY35uaMqLWECUhpRSlGgVS+9oFkdAdsfBLf1pTXV9lChoBmgJaA9DCJgwmpXtuUnAlIaUUpRoFUviaBZHQHbOfXCj1wp1fZQoaAZoCWgPQwh2qRH6mW4wQJSGlFKUaBVLDGgWR0B20KtEG7jDdX2UKGgGaAloD0MInu+nxkuAZcCUhpRSlGgVS/toFkdAdu/EyLyc1HV9lChoBmgJaA9DCPwYc9eSGXhAlIaUUpRoFU0tAWgWR0B29Bp22XsxdX2UKGgGaAloD0MILQlQU0tGcUCUhpRSlGgVTS0BaBZHQHb8wcPvrnl1fZQoaAZoCWgPQwhZvi7Df5JjQJSGlFKUaBVLFWgWR0B2/xVmz0HydX2UKGgGaAloD0MI2QqaltgZb0CUhpRSlGgVTS0BaBZHQHcDj5ftx+91fZQoaAZoCWgPQwidDfln5qmFwJSGlFKUaBVLPWgWR0B3cVmSQo1DdX2UKGgGaAloD0MIeVvptdlXZMCUhpRSlGgVTS0BaBZHQHeKUWqLjxV1fZQoaAZoCWgPQwhDOdGuAoiDQJSGlFKUaBVNLQFoFkdAd4yr433pOnV9lChoBmgJaA9DCNYcIJjDyoLAlIaUUpRoFUuxaBZHQHeNGcvugHx1fZQoaAZoCWgPQwgLmMCtu/lBQJSGlFKUaBVLEGgWR0B3jnVc2R7rdX2UKGgGaAloD0MIPZl/9E2WOcCUhpRSlGgVSw9oFkdAd47P6sQumXV9lChoBmgJaA9DCHu8kA4PsR9AlIaUUpRoFUvlaBZHQHePgljVhCt1fZQoaAZoCWgPQwj034PXrmxywJSGlFKUaBVLomgWR0B3o19c8kledX2UKGgGaAloD0MIkDLiAlAHf0CUhpRSlGgVTS0BaBZHQHezMkhRqGl1fZQoaAZoCWgPQwjxZ3izBoZ7wJSGlFKUaBVNCwFoFkdAd7RkCFK02XV9lChoBmgJaA9DCDAuVWkL0W5AlIaUUpRoFU0tAWgWR0B3vAYBNmDldX2UKGgGaAloD0MIpaKx9ncLUcCUhpRSlGgVTS0BaBZHQHfXlme18b91fZQoaAZoCWgPQwiUMqmhDUQ+QJSGlFKUaBVNLQFoFkdAd+lTRYzSC3V9lChoBmgJaA9DCLL2d7bH43JAlIaUUpRoFU0tAWgWR0B36qXyAhB7dX2UKGgGaAloD0MICyk/qXbqe0CUhpRSlGgVTS0BaBZHQHfx75dnkDJ1fZQoaAZoCWgPQwjJzAUuTzx4QJSGlFKUaBVNLQFoFkdAeBIVzZHuqnV9lChoBmgJaA9DCNzZVx6kqXvAlIaUUpRoFU0nAWgWR0B4HeP/7zkIdX2UKGgGaAloD0MIZjIcz2eQW0CUhpRSlGgVTS0BaBZHQHggM4o7V8V1fZQoaAZoCWgPQwiEKjV7oNNtQJSGlFKUaBVNLQFoFkdAeCdePq9oOHV9lChoBmgJaA9DCFZFuMkoE4RAlIaUUpRoFU0tAWgWR0B4QrMB6rvLdX2UKGgGaAloD0MIFqdaC7PwJMCUhpRSlGgVSxNoFkdAeEayC4Bmw3V9lChoBmgJaA9DCLYQ5KAEqHZAlIaUUpRoFU0tAWgWR0B4Ueb4Ju2rdX2UKGgGaAloD0MI2safqCxXc0CUhpRSlGgVTS0BaBZHQHhTuB+Wnj11fZQoaAZoCWgPQwjlCu9yUXt4QJSGlFKUaBVNLQFoFkdAeFn5D7ZWaXV9lChoBmgJaA9DCCOfVzx1A37AlIaUUpRoFUupaBZHQHhzSSNfgJl1fZQoaAZoCWgPQwjFc7aA0D5vQJSGlFKUaBVNLQFoFkdAeHWGFSKm9HV9lChoBmgJaA9DCOqVsgxxNn3AlIaUUpRoFUvtaBZHQHh2akZaV2R1fZQoaAZoCWgPQwi7fsFu2LdvwJSGlFKUaBVNJwFoFkdAeHu9QoCuEHV9lChoBmgJaA9DCMHEH0WdJW/AlIaUUpRoFUvpaBZHQHiTN4iX6ZZ1fZQoaAZoCWgPQwhq2sU0ExB/wJSGlFKUaBVL92gWR0B4mN/wy6+WdX2UKGgGaAloD0MIC0J5H6dIhcCUhpRSlGgVTSYBaBZHQHikZYkmhM91fZQoaAZoCWgPQwi4rS08L2UoQJSGlFKUaBVLEGgWR0B4p+RvFWGRdX2UKGgGaAloD0MI3nNgOaLXg0CUhpRSlGgVTS0BaBZHQHivr+98JD51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T15:49:18.947170"}
 
1
+ {"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T15:57:56.142503"}