culteejen commited on
Commit
f7a5649
·
1 Parent(s): 1e1cd85

Upload model to Hugging Face

Browse files
PPO-harcodemap-punish-stagnant.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aeacdf3ee388a494fb936c14525dae9edae2e9b98fd188dfa4e6cd56fa92f8b
3
+ size 150414
PPO-harcodemap-punish-stagnant/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-harcodemap-punish-stagnant/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e0a8ed240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e0a8ed2d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e0a8ed360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e0a8ed3f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6e0a8ed480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6e0a8ed510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e0a8ed5a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e0a8ed630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6e0a8ed6c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e0a8ed750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e0a8ed7e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e0a8ed870>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6e0a8ddb80>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 303104,
47
+ "_total_timesteps": 300000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681924753495221975,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJno6EImqtm/AADIQrahU0KdyCxCoyuIQgAAyEIAAMhCAADIQgAAyELs9/5COXoDwAAAyEKNwF5Cg7ohQifdTUIAAMhCAADIQgAAyEIAAMhClRLzQpis0L8+AIJCRPQrQhUINkIJs6BCAADIQgAAyEIAAMhCAADIQjnS+kIZ9uO/6H4iQpA0AEL75BVCthWRQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.010346666666666726,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyHvVyoTuY8CUhpRSlIwBbJRNLQGMAXSUR0CQTqNO/L1VdX2UKGgGaAloD0MInaBNDp/6ZMCUhpRSlGgVTS0BaBZHQJBTOWqtHQR1fZQoaAZoCWgPQwiSeeQPBqdjwJSGlFKUaBVNLQFoFkdAkFNFDBuXNXV9lChoBmgJaA9DCAoS291D2HzAlIaUUpRoFUs7aBZHQJBW6lHjIaN1fZQoaAZoCWgPQwgcYOY7eLRiwJSGlFKUaBVNLQFoFkdAkFv+ZPVNH3V9lChoBmgJaA9DCEp/L4WHP2PAlIaUUpRoFU0tAWgWR0CQX5rgflp5dX2UKGgGaAloD0MIq1rSUY72Z8CUhpRSlGgVTS0BaBZHQJBkFJI1+Ap1fZQoaAZoCWgPQwgg7BSrBl1kwJSGlFKUaBVNLQFoFkdAkGeRPoFFD3V9lChoBmgJaA9DCNNQo5DkjGfAlIaUUpRoFU0tAWgWR0CQbkaoMrmRdX2UKGgGaAloD0MI+E83UOBSYcCUhpRSlGgVTS0BaBZHQJByGois4kx1fZQoaAZoCWgPQwgtmWN5V9BlwJSGlFKUaBVNLQFoFkdAkHaTeO4oZ3V9lChoBmgJaA9DCF9BmrHobWTAlIaUUpRoFU0tAWgWR0CQeYOkcjqwdX2UKGgGaAloD0MIGR77WSx0Y8CUhpRSlGgVTS0BaBZHQJB9Kdsi0OV1fZQoaAZoCWgPQwjsMZHSbHhkwJSGlFKUaBVNLQFoFkdAkIAVOXVslHV9lChoBmgJaA9DCDqy8stgRmPAlIaUUpRoFU0tAWgWR0CQg+433pOfdX2UKGgGaAloD0MIoijQJ/LWacCUhpRSlGgVTS0BaBZHQJCHGmsNlRR1fZQoaAZoCWgPQwh5AfbRqdJmwJSGlFKUaBVNLQFoFkdAkLQo9kjHGXV9lChoBmgJaA9DCHLAribPpGDAlIaUUpRoFU0tAWgWR0CQtqdz4k/sdX2UKGgGaAloD0MIdJoF2h0wZ8CUhpRSlGgVTS0BaBZHQJC4pdu5z5p1fZQoaAZoCWgPQwgsoFBPn6dgwJSGlFKUaBVNLQFoFkdAkLrAVwgkknV9lChoBmgJaA9DCE8IHXSJcmDAlIaUUpRoFU0tAWgWR0CQvh9P1tfpdX2UKGgGaAloD0MIJO6x9KF8aMCUhpRSlGgVTS0BaBZHQJC/0FhXr+p1fZQoaAZoCWgPQwho0NA/wXF9wJSGlFKUaBVLP2gWR0CQwrmHgxagdX2UKGgGaAloD0MI6DOg3gwgZMCUhpRSlGgVTS0BaBZHQJDDeLl3hXN1fZQoaAZoCWgPQwiBeciUD+VlwJSGlFKUaBVNLQFoFkdAkMZNfXwsoXV9lChoBmgJaA9DCLjkuFM6OGXAlIaUUpRoFU0tAWgWR0CQyqm4iHIqdX2UKGgGaAloD0MIFK5H4XrHVcCUhpRSlGgVS9FoFkdAkM09BOYYznV9lChoBmgJaA9DCIf7yK1JTmPAlIaUUpRoFU0tAWgWR0CQ0M2Cdz4ldX2UKGgGaAloD0MINq0UArnFYcCUhpRSlGgVTS0BaBZHQJDUdb0OEuh1fZQoaAZoCWgPQwgW9rTDXydkwJSGlFKUaBVNLQFoFkdAkNncGC7K73V9lChoBmgJaA9DCBeBsb6BFWHAlIaUUpRoFU0tAWgWR0CQ3IRFI/Z/dX2UKGgGaAloD0MIGXEBaJTVX8CUhpRSlGgVTS0BaBZHQJDgWNWEK3N1fZQoaAZoCWgPQwi54XfTLXJjwJSGlFKUaBVNLQFoFkdAkORJzo2XLXV9lChoBmgJaA9DCPbSFAFOKGfAlIaUUpRoFU0tAWgWR0CQ6cj59E1EdX2UKGgGaAloD0MI1gEQd/WkYsCUhpRSlGgVTS0BaBZHQJDsUgow22p1fZQoaAZoCWgPQwg4vvbMksljwJSGlFKUaBVNLQFoFkdAkPBwc94eLnV9lChoBmgJaA9DCLHh6ZUy/WfAlIaUUpRoFU0tAWgWR0CQ85NkOI69dX2UKGgGaAloD0MIWKzhIncuasCUhpRSlGgVTS0BaBZHQJD2+x5cC5p1fZQoaAZoCWgPQwh/pIgMKwlowJSGlFKUaBVNLQFoFkdAkPkTBdld1XV9lChoBmgJaA9DCE3bv7JSc2LAlIaUUpRoFU0tAWgWR0CQ/IwD/2kBdX2UKGgGaAloD0MI3xltVRL2ZcCUhpRSlGgVTS0BaBZHQJEAWcmShal1fZQoaAZoCWgPQwhjJeZZSfZmwJSGlFKUaBVNLQFoFkdAkQYfx+az/3V9lChoBmgJaA9DCA+1bRiFXmfAlIaUUpRoFU0tAWgWR0CRCHFdLQHBdX2UKGgGaAloD0MI529CIYLCZcCUhpRSlGgVTS0BaBZHQJEMRVQyhzx1fZQoaAZoCWgPQwiNYU7QJtd/wJSGlFKUaBVLZWgWR0CRDYRT0g8sdX2UKGgGaAloD0MIqn8QyRAjYsCUhpRSlGgVTS0BaBZHQJEQAe9zwMJ1fZQoaAZoCWgPQwgF3V7SGKNhwJSGlFKUaBVNLQFoFkdAkTuCtaIN3HV9lChoBmgJaA9DCLvs153u2mTAlIaUUpRoFU0tAWgWR0CRQkh0Qsf8dX2UKGgGaAloD0MIOV/svfgsZ8CUhpRSlGgVTS0BaBZHQJFDqIGhVVB1fZQoaAZoCWgPQwj7PhwkRGxowJSGlFKUaBVNLQFoFkdAkUZxMBZIQXV9lChoBmgJaA9DCEEo7+NoCGPAlIaUUpRoFU0tAWgWR0CRS7tGd7OWdX2UKGgGaAloD0MIeLmI70T0bcCUhpRSlGgVTS0BaBZHQJFSPlEJBxB1fZQoaAZoCWgPQwhpVyHlp41jwJSGlFKUaBVNLQFoFkdAkVOoXKr7wnV9lChoBmgJaA9DCBdGelG7j2TAlIaUUpRoFU0tAWgWR0CRVmZl4C6pdX2UKGgGaAloD0MIX+tSI3TyZsCUhpRSlGgVTS0BaBZHQJFaU2eg+Ql1fZQoaAZoCWgPQwj/d0SFajxowJSGlFKUaBVNLQFoFkdAkV/3+6y0KXV9lChoBmgJaA9DCKHWNO84q2TAlIaUUpRoFU0tAWgWR0CRYP3dsSCfdX2UKGgGaAloD0MIdvwXCILZacCUhpRSlGgVTS0BaBZHQJFjoYuTRpl1fZQoaAZoCWgPQwhSmPc40x1lwJSGlFKUaBVNLQFoFkdAkWg6HTI/7nV9lChoBmgJaA9DCAOZnUXvX2TAlIaUUpRoFU0tAWgWR0CRbUXAdn01dX2UKGgGaAloD0MIpyIVxhZwaMCUhpRSlGgVTS0BaBZHQJFuGTLW7OF1fZQoaAZoCWgPQwhQ4nMn2GRjwJSGlFKUaBVNLQFoFkdAkW/5KBd2PnV9lChoBmgJaA9DCN3PKcjP52nAlIaUUpRoFU0tAWgWR0CRdcKvV3EAdX2UKGgGaAloD0MIj6uRXWkOY8CUhpRSlGgVTS0BaBZHQJF8rLs8gZF1fZQoaAZoCWgPQwgo1NNHYEtlwJSGlFKUaBVNLQFoFkdAkX4grH2h7HV9lChoBmgJaA9DCIs4nWTrtn3AlIaUUpRoFUtIaBZHQJGA+shgVoJ1fZQoaAZoCWgPQwhGtvP91KtkwJSGlFKUaBVNLQFoFkdAkYEmt+1Bt3V9lChoBmgJaA9DCC2Xjc75a2TAlIaUUpRoFU0tAWgWR0CRhjM4LkS3dX2UKGgGaAloD0MIVaGBWLZhZcCUhpRSlGgVTS0BaBZHQJGOXgjyFwl1fZQoaAZoCWgPQwi1/MBVHtBlwJSGlFKUaBVNLQFoFkdAkZEVaSs8xXV9lChoBmgJaA9DCPW9huA4AGXAlIaUUpRoFU0tAWgWR0CRkV2IO6NEdX2UKGgGaAloD0MIgxQ8hdw3aMCUhpRSlGgVTS0BaBZHQJGXPS+g13t1fZQoaAZoCWgPQwjlRSbgV5JnwJSGlFKUaBVNLQFoFkdAkaBT3h4t6HV9lChoBmgJaA9DCOlGWFTEiGXAlIaUUpRoFU0tAWgWR0CRwybnX/YKdX2UKGgGaAloD0MIhh+cTx3pZMCUhpRSlGgVTS0BaBZHQJHDS9Gqgh91fZQoaAZoCWgPQwiwkLkyqHhjwJSGlFKUaBVNLQFoFkdAkcfPOUt7KXV9lChoBmgJaA9DCIF2hxSDM2bAlIaUUpRoFU0tAWgWR0CRzyYISlFddX2UKGgGaAloD0MImDWxwNdMZMCUhpRSlGgVTS0BaBZHQJHRd1ZDArR1fZQoaAZoCWgPQwgEyNCxg55jwJSGlFKUaBVNLQFoFkdAkdGeWGATZnV9lChoBmgJaA9DCHeFPlhGgmnAlIaUUpRoFU0tAWgWR0CR1u91loUSdX2UKGgGaAloD0MIbk26LRGJZcCUhpRSlGgVTS0BaBZHQJHe179hqj91fZQoaAZoCWgPQwjSxDvAE69jwJSGlFKUaBVNLQFoFkdAkeC5j+aScXV9lChoBmgJaA9DCE5+i04Wb2LAlIaUUpRoFU0tAWgWR0CR4NTYdyT7dX2UKGgGaAloD0MICTiEKjXpY8CUhpRSlGgVTS0BaBZHQJHlCOIZZSx1fZQoaAZoCWgPQwj3ViQmKBhnwJSGlFKUaBVNLQFoFkdAkexHMhX8wnV9lChoBmgJaA9DCDSg3oyacGbAlIaUUpRoFU0tAWgWR0CR7u5NGmUGdX2UKGgGaAloD0MIkL3e/fFSa8CUhpRSlGgVTS0BaBZHQJHvHqW1MM91fZQoaAZoCWgPQwhWRE30+dRowJSGlFKUaBVNLQFoFkdAkfTYRNATqXV9lChoBmgJaA9DCINPc/KibGjAlIaUUpRoFU0tAWgWR0CR/Q2Qnx8VdX2UKGgGaAloD0MIc56xL9kLZsCUhpRSlGgVTS0BaBZHQJH/2fNA1Nx1fZQoaAZoCWgPQwhCs+veCv5jwJSGlFKUaBVNLQFoFkdAkgAkJSiudXV9lChoBmgJaA9DCAADQYCMlmrAlIaUUpRoFU0tAWgWR0CSBkFlkH2RdX2UKGgGaAloD0MIuf5dnzkYZMCUhpRSlGgVTS0BaBZHQJIPQlUp/gB1fZQoaAZoCWgPQwhKXTKOEaJnwJSGlFKUaBVNLQFoFkdAkhG51JUYK3V9lChoBmgJaA9DCAlx5eydKGbAlIaUUpRoFU0tAWgWR0CSEgMW43FUdX2UKGgGaAloD0MIKsQj8fJwZsCUhpRSlGgVTS0BaBZHQJIXgvqTr3V1fZQoaAZoCWgPQwhnKy/5H3JkwJSGlFKUaBVNLQFoFkdAkh1DAaef7XV9lChoBmgJaA9DCEq3JXJBbWbAlIaUUpRoFU0tAWgWR0CSH4+8XenAdX2UKGgGaAloD0MI2cwhqYVeZsCUhpRSlGgVTS0BaBZHQJIfquMdcSp1fZQoaAZoCWgPQwgFMjuLXvtowJSGlFKUaBVNLQFoFkdAkiQkWEbo83VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 990,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.5,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-harcodemap-punish-stagnant/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0d71ffc4b5b0d13afe603d8776541e5a7f8ca2382917581d0c0ea53ad2e2ee
3
+ size 90105
PPO-harcodemap-punish-stagnant/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3c998595a32519ccd85551986d62abd0e1379564acb3fb432e456725959c8e7
3
+ size 44417
PPO-harcodemap-punish-stagnant/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-harcodemap-punish-stagnant/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-harcodemap-punish-stagnant
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-harcodemap-punish-stagnant
16
+ type: RoombaAToB-harcodemap-punish-stagnant
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -219.76 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **RoombaAToB-harcodemap-punish-stagnant**
25
+ This is a trained model of a **PPO** agent playing **RoombaAToB-harcodemap-punish-stagnant**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e0a8ed240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e0a8ed2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e0a8ed360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e0a8ed3f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6e0a8ed480>", "forward": "<function ActorCriticPolicy.forward at 0x7f6e0a8ed510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e0a8ed5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e0a8ed630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6e0a8ed6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e0a8ed750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e0a8ed7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e0a8ed870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6e0a8ddb80>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681924753495221975, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJno6EImqtm/AADIQrahU0KdyCxCoyuIQgAAyEIAAMhCAADIQgAAyELs9/5COXoDwAAAyEKNwF5Cg7ohQifdTUIAAMhCAADIQgAAyEIAAMhClRLzQpis0L8+AIJCRPQrQhUINkIJs6BCAADIQgAAyEIAAMhCAADIQjnS+kIZ9uO/6H4iQpA0AEL75BVCthWRQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyHvVyoTuY8CUhpRSlIwBbJRNLQGMAXSUR0CQTqNO/L1VdX2UKGgGaAloD0MInaBNDp/6ZMCUhpRSlGgVTS0BaBZHQJBTOWqtHQR1fZQoaAZoCWgPQwiSeeQPBqdjwJSGlFKUaBVNLQFoFkdAkFNFDBuXNXV9lChoBmgJaA9DCAoS291D2HzAlIaUUpRoFUs7aBZHQJBW6lHjIaN1fZQoaAZoCWgPQwgcYOY7eLRiwJSGlFKUaBVNLQFoFkdAkFv+ZPVNH3V9lChoBmgJaA9DCEp/L4WHP2PAlIaUUpRoFU0tAWgWR0CQX5rgflp5dX2UKGgGaAloD0MIq1rSUY72Z8CUhpRSlGgVTS0BaBZHQJBkFJI1+Ap1fZQoaAZoCWgPQwgg7BSrBl1kwJSGlFKUaBVNLQFoFkdAkGeRPoFFD3V9lChoBmgJaA9DCNNQo5DkjGfAlIaUUpRoFU0tAWgWR0CQbkaoMrmRdX2UKGgGaAloD0MI+E83UOBSYcCUhpRSlGgVTS0BaBZHQJByGois4kx1fZQoaAZoCWgPQwgtmWN5V9BlwJSGlFKUaBVNLQFoFkdAkHaTeO4oZ3V9lChoBmgJaA9DCF9BmrHobWTAlIaUUpRoFU0tAWgWR0CQeYOkcjqwdX2UKGgGaAloD0MIGR77WSx0Y8CUhpRSlGgVTS0BaBZHQJB9Kdsi0OV1fZQoaAZoCWgPQwjsMZHSbHhkwJSGlFKUaBVNLQFoFkdAkIAVOXVslHV9lChoBmgJaA9DCDqy8stgRmPAlIaUUpRoFU0tAWgWR0CQg+433pOfdX2UKGgGaAloD0MIoijQJ/LWacCUhpRSlGgVTS0BaBZHQJCHGmsNlRR1fZQoaAZoCWgPQwh5AfbRqdJmwJSGlFKUaBVNLQFoFkdAkLQo9kjHGXV9lChoBmgJaA9DCHLAribPpGDAlIaUUpRoFU0tAWgWR0CQtqdz4k/sdX2UKGgGaAloD0MIdJoF2h0wZ8CUhpRSlGgVTS0BaBZHQJC4pdu5z5p1fZQoaAZoCWgPQwgsoFBPn6dgwJSGlFKUaBVNLQFoFkdAkLrAVwgkknV9lChoBmgJaA9DCE8IHXSJcmDAlIaUUpRoFU0tAWgWR0CQvh9P1tfpdX2UKGgGaAloD0MIJO6x9KF8aMCUhpRSlGgVTS0BaBZHQJC/0FhXr+p1fZQoaAZoCWgPQwho0NA/wXF9wJSGlFKUaBVLP2gWR0CQwrmHgxagdX2UKGgGaAloD0MI6DOg3gwgZMCUhpRSlGgVTS0BaBZHQJDDeLl3hXN1fZQoaAZoCWgPQwiBeciUD+VlwJSGlFKUaBVNLQFoFkdAkMZNfXwsoXV9lChoBmgJaA9DCLjkuFM6OGXAlIaUUpRoFU0tAWgWR0CQyqm4iHIqdX2UKGgGaAloD0MIFK5H4XrHVcCUhpRSlGgVS9FoFkdAkM09BOYYznV9lChoBmgJaA9DCIf7yK1JTmPAlIaUUpRoFU0tAWgWR0CQ0M2Cdz4ldX2UKGgGaAloD0MINq0UArnFYcCUhpRSlGgVTS0BaBZHQJDUdb0OEuh1fZQoaAZoCWgPQwgW9rTDXydkwJSGlFKUaBVNLQFoFkdAkNncGC7K73V9lChoBmgJaA9DCBeBsb6BFWHAlIaUUpRoFU0tAWgWR0CQ3IRFI/Z/dX2UKGgGaAloD0MIGXEBaJTVX8CUhpRSlGgVTS0BaBZHQJDgWNWEK3N1fZQoaAZoCWgPQwi54XfTLXJjwJSGlFKUaBVNLQFoFkdAkORJzo2XLXV9lChoBmgJaA9DCPbSFAFOKGfAlIaUUpRoFU0tAWgWR0CQ6cj59E1EdX2UKGgGaAloD0MI1gEQd/WkYsCUhpRSlGgVTS0BaBZHQJDsUgow22p1fZQoaAZoCWgPQwg4vvbMksljwJSGlFKUaBVNLQFoFkdAkPBwc94eLnV9lChoBmgJaA9DCLHh6ZUy/WfAlIaUUpRoFU0tAWgWR0CQ85NkOI69dX2UKGgGaAloD0MIWKzhIncuasCUhpRSlGgVTS0BaBZHQJD2+x5cC5p1fZQoaAZoCWgPQwh/pIgMKwlowJSGlFKUaBVNLQFoFkdAkPkTBdld1XV9lChoBmgJaA9DCE3bv7JSc2LAlIaUUpRoFU0tAWgWR0CQ/IwD/2kBdX2UKGgGaAloD0MI3xltVRL2ZcCUhpRSlGgVTS0BaBZHQJEAWcmShal1fZQoaAZoCWgPQwhjJeZZSfZmwJSGlFKUaBVNLQFoFkdAkQYfx+az/3V9lChoBmgJaA9DCA+1bRiFXmfAlIaUUpRoFU0tAWgWR0CRCHFdLQHBdX2UKGgGaAloD0MI529CIYLCZcCUhpRSlGgVTS0BaBZHQJEMRVQyhzx1fZQoaAZoCWgPQwiNYU7QJtd/wJSGlFKUaBVLZWgWR0CRDYRT0g8sdX2UKGgGaAloD0MIqn8QyRAjYsCUhpRSlGgVTS0BaBZHQJEQAe9zwMJ1fZQoaAZoCWgPQwgF3V7SGKNhwJSGlFKUaBVNLQFoFkdAkTuCtaIN3HV9lChoBmgJaA9DCLvs153u2mTAlIaUUpRoFU0tAWgWR0CRQkh0Qsf8dX2UKGgGaAloD0MIOV/svfgsZ8CUhpRSlGgVTS0BaBZHQJFDqIGhVVB1fZQoaAZoCWgPQwj7PhwkRGxowJSGlFKUaBVNLQFoFkdAkUZxMBZIQXV9lChoBmgJaA9DCEEo7+NoCGPAlIaUUpRoFU0tAWgWR0CRS7tGd7OWdX2UKGgGaAloD0MIeLmI70T0bcCUhpRSlGgVTS0BaBZHQJFSPlEJBxB1fZQoaAZoCWgPQwhpVyHlp41jwJSGlFKUaBVNLQFoFkdAkVOoXKr7wnV9lChoBmgJaA9DCBdGelG7j2TAlIaUUpRoFU0tAWgWR0CRVmZl4C6pdX2UKGgGaAloD0MIX+tSI3TyZsCUhpRSlGgVTS0BaBZHQJFaU2eg+Ql1fZQoaAZoCWgPQwj/d0SFajxowJSGlFKUaBVNLQFoFkdAkV/3+6y0KXV9lChoBmgJaA9DCKHWNO84q2TAlIaUUpRoFU0tAWgWR0CRYP3dsSCfdX2UKGgGaAloD0MIdvwXCILZacCUhpRSlGgVTS0BaBZHQJFjoYuTRpl1fZQoaAZoCWgPQwhSmPc40x1lwJSGlFKUaBVNLQFoFkdAkWg6HTI/7nV9lChoBmgJaA9DCAOZnUXvX2TAlIaUUpRoFU0tAWgWR0CRbUXAdn01dX2UKGgGaAloD0MIpyIVxhZwaMCUhpRSlGgVTS0BaBZHQJFuGTLW7OF1fZQoaAZoCWgPQwhQ4nMn2GRjwJSGlFKUaBVNLQFoFkdAkW/5KBd2PnV9lChoBmgJaA9DCN3PKcjP52nAlIaUUpRoFU0tAWgWR0CRdcKvV3EAdX2UKGgGaAloD0MIj6uRXWkOY8CUhpRSlGgVTS0BaBZHQJF8rLs8gZF1fZQoaAZoCWgPQwgo1NNHYEtlwJSGlFKUaBVNLQFoFkdAkX4grH2h7HV9lChoBmgJaA9DCIs4nWTrtn3AlIaUUpRoFUtIaBZHQJGA+shgVoJ1fZQoaAZoCWgPQwhGtvP91KtkwJSGlFKUaBVNLQFoFkdAkYEmt+1Bt3V9lChoBmgJaA9DCC2Xjc75a2TAlIaUUpRoFU0tAWgWR0CRhjM4LkS3dX2UKGgGaAloD0MIVaGBWLZhZcCUhpRSlGgVTS0BaBZHQJGOXgjyFwl1fZQoaAZoCWgPQwi1/MBVHtBlwJSGlFKUaBVNLQFoFkdAkZEVaSs8xXV9lChoBmgJaA9DCPW9huA4AGXAlIaUUpRoFU0tAWgWR0CRkV2IO6NEdX2UKGgGaAloD0MIgxQ8hdw3aMCUhpRSlGgVTS0BaBZHQJGXPS+g13t1fZQoaAZoCWgPQwjlRSbgV5JnwJSGlFKUaBVNLQFoFkdAkaBT3h4t6HV9lChoBmgJaA9DCOlGWFTEiGXAlIaUUpRoFU0tAWgWR0CRwybnX/YKdX2UKGgGaAloD0MIhh+cTx3pZMCUhpRSlGgVTS0BaBZHQJHDS9Gqgh91fZQoaAZoCWgPQwiwkLkyqHhjwJSGlFKUaBVNLQFoFkdAkcfPOUt7KXV9lChoBmgJaA9DCIF2hxSDM2bAlIaUUpRoFU0tAWgWR0CRzyYISlFddX2UKGgGaAloD0MImDWxwNdMZMCUhpRSlGgVTS0BaBZHQJHRd1ZDArR1fZQoaAZoCWgPQwgEyNCxg55jwJSGlFKUaBVNLQFoFkdAkdGeWGATZnV9lChoBmgJaA9DCHeFPlhGgmnAlIaUUpRoFU0tAWgWR0CR1u91loUSdX2UKGgGaAloD0MIbk26LRGJZcCUhpRSlGgVTS0BaBZHQJHe179hqj91fZQoaAZoCWgPQwjSxDvAE69jwJSGlFKUaBVNLQFoFkdAkeC5j+aScXV9lChoBmgJaA9DCE5+i04Wb2LAlIaUUpRoFU0tAWgWR0CR4NTYdyT7dX2UKGgGaAloD0MICTiEKjXpY8CUhpRSlGgVTS0BaBZHQJHlCOIZZSx1fZQoaAZoCWgPQwj3ViQmKBhnwJSGlFKUaBVNLQFoFkdAkexHMhX8wnV9lChoBmgJaA9DCDSg3oyacGbAlIaUUpRoFU0tAWgWR0CR7u5NGmUGdX2UKGgGaAloD0MIkL3e/fFSa8CUhpRSlGgVTS0BaBZHQJHvHqW1MM91fZQoaAZoCWgPQwhWRE30+dRowJSGlFKUaBVNLQFoFkdAkfTYRNATqXV9lChoBmgJaA9DCINPc/KibGjAlIaUUpRoFU0tAWgWR0CR/Q2Qnx8VdX2UKGgGaAloD0MIc56xL9kLZsCUhpRSlGgVTS0BaBZHQJH/2fNA1Nx1fZQoaAZoCWgPQwhCs+veCv5jwJSGlFKUaBVNLQFoFkdAkgAkJSiudXV9lChoBmgJaA9DCAADQYCMlmrAlIaUUpRoFU0tAWgWR0CSBkFlkH2RdX2UKGgGaAloD0MIuf5dnzkYZMCUhpRSlGgVTS0BaBZHQJIPQlUp/gB1fZQoaAZoCWgPQwhKXTKOEaJnwJSGlFKUaBVNLQFoFkdAkhG51JUYK3V9lChoBmgJaA9DCAlx5eydKGbAlIaUUpRoFU0tAWgWR0CSEgMW43FUdX2UKGgGaAloD0MIKsQj8fJwZsCUhpRSlGgVTS0BaBZHQJIXgvqTr3V1fZQoaAZoCWgPQwhnKy/5H3JkwJSGlFKUaBVNLQFoFkdAkh1DAaef7XV9lChoBmgJaA9DCEq3JXJBbWbAlIaUUpRoFU0tAWgWR0CSH4+8XenAdX2UKGgGaAloD0MI2cwhqYVeZsCUhpRSlGgVTS0BaBZHQJIfquMdcSp1fZQoaAZoCWgPQwgFMjuLXvtowJSGlFKUaBVNLQFoFkdAkiQkWEbo83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 990, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (168 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -219.75646747099728, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T10:39:03.885755"}