cuongdz01 commited on
Commit
edfb1c7
·
1 Parent(s): e7fe4a3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd-c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd-c
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7152
21
+ - Answer: {'precision': 0.7134894091415831, 'recall': 0.7911001236093943, 'f1': 0.7502930832356389, 'number': 809}
22
+ - Header: {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119}
23
+ - Question: {'precision': 0.7805309734513274, 'recall': 0.828169014084507, 'f1': 0.8036446469248291, 'number': 1065}
24
+ - Overall Precision: 0.7245
25
+ - Overall Recall: 0.7837
26
+ - Overall F1: 0.7530
27
+ - Overall Accuracy: 0.8069
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7835 | 1.0 | 10 | 1.5696 | {'precision': 0.02753303964757709, 'recall': 0.030902348578491966, 'f1': 0.029120559114735003, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23644444444444446, 'recall': 0.24976525821596243, 'f1': 0.24292237442922376, 'number': 1065} | 0.1431 | 0.1460 | 0.1446 | 0.4162 |
60
+ | 1.4134 | 2.0 | 20 | 1.2167 | {'precision': 0.15942028985507245, 'recall': 0.13597033374536466, 'f1': 0.1467645096731154, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42325227963525835, 'recall': 0.5230046948356808, 'f1': 0.4678706425871483, 'number': 1065} | 0.3322 | 0.3347 | 0.3334 | 0.5768 |
61
+ | 1.0829 | 3.0 | 30 | 0.9351 | {'precision': 0.4783599088838269, 'recall': 0.519159456118665, 'f1': 0.4979253112033195, 'number': 809} | {'precision': 0.034482758620689655, 'recall': 0.008403361344537815, 'f1': 0.013513513513513513, 'number': 119} | {'precision': 0.6103896103896104, 'recall': 0.6619718309859155, 'f1': 0.6351351351351351, 'number': 1065} | 0.5461 | 0.5650 | 0.5554 | 0.7105 |
62
+ | 0.8077 | 4.0 | 40 | 0.7702 | {'precision': 0.6122233930453108, 'recall': 0.7181705809641533, 'f1': 0.6609783845278726, 'number': 809} | {'precision': 0.2033898305084746, 'recall': 0.10084033613445378, 'f1': 0.13483146067415733, 'number': 119} | {'precision': 0.6381631037212985, 'recall': 0.7568075117370892, 'f1': 0.6924398625429553, 'number': 1065} | 0.6160 | 0.7020 | 0.6562 | 0.7659 |
63
+ | 0.6407 | 5.0 | 50 | 0.7146 | {'precision': 0.6491978609625668, 'recall': 0.7503090234857849, 'f1': 0.6961009174311926, 'number': 809} | {'precision': 0.2948717948717949, 'recall': 0.19327731092436976, 'f1': 0.233502538071066, 'number': 119} | {'precision': 0.6921221864951769, 'recall': 0.8084507042253521, 'f1': 0.7457773928107406, 'number': 1065} | 0.6606 | 0.7481 | 0.7016 | 0.7869 |
64
+ | 0.5585 | 6.0 | 60 | 0.6995 | {'precision': 0.673866090712743, 'recall': 0.7713226205191595, 'f1': 0.7193083573487031, 'number': 809} | {'precision': 0.3372093023255814, 'recall': 0.24369747899159663, 'f1': 0.2829268292682927, 'number': 119} | {'precision': 0.7374784110535406, 'recall': 0.8018779342723005, 'f1': 0.768331084120558, 'number': 1065} | 0.6945 | 0.7561 | 0.7240 | 0.7948 |
65
+ | 0.4934 | 7.0 | 70 | 0.6852 | {'precision': 0.6681222707423581, 'recall': 0.7564894932014833, 'f1': 0.7095652173913044, 'number': 809} | {'precision': 0.37777777777777777, 'recall': 0.2857142857142857, 'f1': 0.3253588516746411, 'number': 119} | {'precision': 0.7634408602150538, 'recall': 0.8, 'f1': 0.7812929848693261, 'number': 1065} | 0.7059 | 0.7516 | 0.7281 | 0.7979 |
66
+ | 0.4384 | 8.0 | 80 | 0.6731 | {'precision': 0.6920492721164614, 'recall': 0.7639060568603214, 'f1': 0.7262044653349001, 'number': 809} | {'precision': 0.3008130081300813, 'recall': 0.31092436974789917, 'f1': 0.3057851239669422, 'number': 119} | {'precision': 0.7508503401360545, 'recall': 0.8291079812206573, 'f1': 0.788041053101294, 'number': 1065} | 0.7016 | 0.7717 | 0.7350 | 0.8021 |
67
+ | 0.3737 | 9.0 | 90 | 0.6766 | {'precision': 0.6993392070484582, 'recall': 0.7849196538936959, 'f1': 0.7396622015142692, 'number': 809} | {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} | {'precision': 0.7890974084003575, 'recall': 0.8291079812206573, 'f1': 0.8086080586080587, 'number': 1065} | 0.7224 | 0.7807 | 0.7504 | 0.8046 |
68
+ | 0.341 | 10.0 | 100 | 0.6950 | {'precision': 0.6888888888888889, 'recall': 0.7663782447466008, 'f1': 0.7255705090696314, 'number': 809} | {'precision': 0.3619047619047619, 'recall': 0.31932773109243695, 'f1': 0.33928571428571425, 'number': 119} | {'precision': 0.7859030837004405, 'recall': 0.8375586854460094, 'f1': 0.8109090909090909, 'number': 1065} | 0.7243 | 0.7777 | 0.7501 | 0.8088 |
69
+ | 0.3178 | 11.0 | 110 | 0.6979 | {'precision': 0.7157534246575342, 'recall': 0.7750309023485785, 'f1': 0.7442136498516321, 'number': 809} | {'precision': 0.375, 'recall': 0.35294117647058826, 'f1': 0.3636363636363636, 'number': 119} | {'precision': 0.7805092186128183, 'recall': 0.8347417840375587, 'f1': 0.8067150635208712, 'number': 1065} | 0.7325 | 0.7817 | 0.7563 | 0.8059 |
70
+ | 0.2998 | 12.0 | 120 | 0.7019 | {'precision': 0.7027624309392265, 'recall': 0.7861557478368356, 'f1': 0.7421236872812136, 'number': 809} | {'precision': 0.32061068702290074, 'recall': 0.35294117647058826, 'f1': 0.336, 'number': 119} | {'precision': 0.7885816235504014, 'recall': 0.8300469483568075, 'f1': 0.808783165599268, 'number': 1065} | 0.7242 | 0.7837 | 0.7528 | 0.8069 |
71
+ | 0.2809 | 13.0 | 130 | 0.7056 | {'precision': 0.7177777777777777, 'recall': 0.7985166872682324, 'f1': 0.7559976594499708, 'number': 809} | {'precision': 0.3565217391304348, 'recall': 0.3445378151260504, 'f1': 0.3504273504273504, 'number': 119} | {'precision': 0.7911504424778761, 'recall': 0.8394366197183099, 'f1': 0.8145785876993167, 'number': 1065} | 0.7371 | 0.7933 | 0.7641 | 0.8097 |
72
+ | 0.2656 | 14.0 | 140 | 0.7117 | {'precision': 0.718609865470852, 'recall': 0.792336217552534, 'f1': 0.7536743092298648, 'number': 809} | {'precision': 0.33884297520661155, 'recall': 0.3445378151260504, 'f1': 0.3416666666666667, 'number': 119} | {'precision': 0.7888198757763976, 'recall': 0.8347417840375587, 'f1': 0.8111313868613138, 'number': 1065} | 0.7341 | 0.7883 | 0.7602 | 0.8098 |
73
+ | 0.2669 | 15.0 | 150 | 0.7152 | {'precision': 0.7134894091415831, 'recall': 0.7911001236093943, 'f1': 0.7502930832356389, 'number': 809} | {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} | {'precision': 0.7805309734513274, 'recall': 0.828169014084507, 'f1': 0.8036446469248291, 'number': 1065} | 0.7245 | 0.7837 | 0.7530 | 0.8069 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.35.2
79
+ - Pytorch 2.1.0+cu121
80
+ - Datasets 2.15.0
81
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1702960215.1565981e5c7c.1077.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e293d6c6eea6264bba44f545ccf1499b08c188b7bda11dd3e731d25b755dbbd0
3
- size 12920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cba28483044600da9a7aa1642c83487724930f0dbfa4b78d6644f56d5b92fc95
3
+ size 14596
preprocessor_config.json CHANGED
@@ -2,6 +2,13 @@
2
  "apply_ocr": true,
3
  "do_resize": true,
4
  "feature_extractor_type": "LayoutLMv2FeatureExtractor",
 
 
 
5
  "resample": 2,
6
- "size": 224
 
 
 
 
7
  }
 
2
  "apply_ocr": true,
3
  "do_resize": true,
4
  "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
  "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
  }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff