File size: 7,747 Bytes
966f777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6635ad
 
966f777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6635ad
 
966f777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""Preprocessor for codegen-350M-mono-gptj."""
import csv
import json
from pathlib import Path
from typing import Any, Dict, List, Tuple

import numpy as np
import torch
import triton_python_backend_utils as pb_utils
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer

END_ID = 50256


class TritonPythonModel:
    """Preprocessor for codegen-350M-mono-gptj."""

    def initialize(self, args: Dict[str, Any]) -> None:
        """`initialize` is called only once when the model is being loaded.

        Implementing `initialize` function is optional. This function allows
        the model to initialize any state associated with this model.

        Args : Dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """
        # Parse model configs
        self.model_config = model_config = json.loads(args["model_config"])

        # Parse model output configs and convert Triton types to numpy types
        input_names = [
            "INPUT_ID",
            "REQUEST_INPUT_LEN",
            "BAD_WORDS_IDS",
            "STOP_WORDS_IDS",
        ]
        for input_name in input_names:
            setattr(
                self,
                input_name.lower() + "_dtype",
                pb_utils.triton_string_to_numpy(
                    pb_utils.get_output_config_by_name(model_config, input_name)[
                        "data_type"
                    ]
                ),
            )

        cur_folder = Path(__file__).parent
        cache_dir = cur_folder / ".cache"
        self.tokenizer = AutoTokenizer.from_pretrained(
            "Salesforce/codegen-350M-mono", cache_dir=cache_dir
        )

    def execute(
        self, requests: List["pb_utils.InferenceRequest"]
    ) -> List["pb_utils.InferenceResponse"]:
        """Preprocess the requests.

        `execute` must be implemented in every Python model. `execute`
        function receives a list of pb_utils.InferenceRequest as the only
        argument. This function is called when an inference is requested
        for this model. Depending on the batching configuration (e.g. Dynamic
        Batching) used, `requests` may contain multiple requests. Every
        Python model, must create one pb_utils.InferenceResponse for every
        pb_utils.InferenceRequest in `requests`. If there is an error, you can
        set the error argument when creating a pb_utils.InferenceResponse.

        Args:
            requests: A list of pb_utils.InferenceRequest
        Returns:
            A list of pb_utils.InferenceResponse. The length of this list must
            be the same as `requests`
        """
        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for request in requests:
            # Get input tensors
            query = pb_utils.get_input_tensor_by_name(request, "QUERY").as_numpy()
            request_output_len = pb_utils.get_input_tensor_by_name(
                request, "REQUEST_OUTPUT_LEN"
            ).as_numpy()

            bad_words_dict = pb_utils.get_input_tensor_by_name(
                request, "BAD_WORDS_DICT"
            ).as_numpy()
            stop_words_dict = pb_utils.get_input_tensor_by_name(
                request, "STOP_WORDS_DICT"
            ).as_numpy()

            # Preprocessing input data.
            input_id, request_input_len = self._create_request(query)
            bad_words = self._create_word_list(bad_words_dict)
            stop_words = self._create_word_list(stop_words_dict)

            # Create output tensors. You need pb_utils.Tensor
            # objects to create pb_utils.InferenceResponse.
            input_id_tensor = pb_utils.Tensor(
                "INPUT_ID", np.array(input_id).astype(self.input_id_dtype)
            )
            request_input_len_tensor = pb_utils.Tensor(
                "REQUEST_INPUT_LEN",
                np.array(request_input_len).astype(self.request_input_len_dtype),
            )
            request_output_len_tensor = pb_utils.Tensor(
                "REQUEST_OUTPUT_LEN", request_output_len
            )
            bad_words_ids_tensor = pb_utils.Tensor("BAD_WORDS_IDS", bad_words)
            stop_words_ids_tensor = pb_utils.Tensor("STOP_WORDS_IDS", stop_words)

            # Create InferenceResponse. You can set an error here in case
            # there was a problem with handling this inference request.
            # Below is an example of how you can set errors in inference
            # response:
            #
            # pb_utils.InferenceResponse(
            #    output_tensors=..., TritonError("An error occurred"))
            inference_response = pb_utils.InferenceResponse(
                output_tensors=[
                    input_id_tensor,
                    bad_words_ids_tensor,
                    stop_words_ids_tensor,
                    request_input_len_tensor,
                    request_output_len_tensor,
                ]
            )
            responses.append(inference_response)

        # You should return a list of pb_utils.InferenceResponse. Length
        # of this list must match the length of `requests` list.
        return responses

    def finalize(self) -> None:
        """Unload the model.

        `finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is optional. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print("Cleaning up...")

    def _create_request(self, query: np.ndarray) -> Tuple[torch.Tensor, torch.Tensor]:
        """Encode the requests as model's inputs.

        Args:
            - query: batch string (2D numpy array)
        """
        start_ids = [
            torch.IntTensor(self.tokenizer.encode(s[0].decode())) for s in query
        ]
        start_lengths = torch.IntTensor([[len(ids)] for ids in start_ids])
        start_ids = pad_sequence(start_ids, batch_first=True, padding_value=END_ID)

        return start_ids, start_lengths

    def _create_word_list(self, word_dict: np.ndarray) -> np.ndarray:
        """Encode the word list."""
        flat_ids = []
        offsets = []
        for word_dict_item in word_dict:
            item_flat_ids = []
            item_offsets = []

            words = list(csv.reader([word_dict_item[0].decode()]))[0]
            for word in words:
                ids = self._encode(word)

                if len(ids) == 0:
                    continue

                item_flat_ids += ids
                item_offsets.append(len(ids))

            flat_ids.append(np.array(item_flat_ids))
            offsets.append(np.cumsum(np.array(item_offsets)))

        pad_to = max(1, max(len(ids) for ids in flat_ids))

        for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
            flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
            offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)

        return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))

    def _encode(self, sentence: str) -> List[int]:
        """Encode sentences into tokens."""
        sentence = sentence.decode() if isinstance(sentence, bytes) else sentence
        return self.tokenizer.encode(sentence)