"""Postprocessor for codegen-350M-mono-gptj.""" import json from pathlib import Path from typing import Any, Dict, List import numpy as np import triton_python_backend_utils as pb_utils from transformers import AutoTokenizer class TritonPythonModel: """Postprocessor for codegen-350M-mono-gptj.""" def initialize(self, args: Dict[str, Any]) -> None: """`initialize` is called only once when the model is being loaded. Implementing `initialize` function is optional. This function allows the model to initialize any state associated with this model. Args: Both keys and values are strings. The dictionary keys and values are: * model_config: A JSON string containing the model configuration * model_instance_kind: A string containing model instance kind * model_instance_device_id: A string containing model instance device ID * model_repository: Model repository path * model_version: Model version * model_name: Model name """ # Parse model configs self.model_config = model_config = json.loads(args["model_config"]) # Parse model output configs output_config = pb_utils.get_output_config_by_name(model_config, "OUTPUT") # Convert Triton types to numpy types self.output_dtype = pb_utils.triton_string_to_numpy(output_config["data_type"]) # Init a tokenizer for postprocessing. cur_folder = Path(__file__).parent cache_dir = cur_folder / ".cache" self.tokenizer = AutoTokenizer.from_pretrained( "Salesforce/codegen-350M-mono", cache_dir=cache_dir ) def execute( self, requests: List["pb_utils.InferenceRequest"] ) -> List["pb_utils.InferenceResponse"]: """Preprocess the requests. `execute` must be implemented in every Python model. `execute` function receives a list of pb_utils.InferenceRequest as the only argument. This function is called when an inference is requested for this model. Depending on the batching configuration (e.g. Dynamic Batching) used, `requests` may contain multiple requests. Every Python model, must create one pb_utils.InferenceResponse for every pb_utils.InferenceRequest in `requests`. If there is an error, you can set the error argument when creating a pb_utils.InferenceResponse. Args: requests : A list of pb_utils.InferenceRequest Returns: A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests` """ responses = [] # Every Python backend must iterate over everyone of the requests # and create a pb_utils.InferenceResponse for each of them. for request in requests: # Get input tensors tokens_batch = pb_utils.get_input_tensor_by_name( request, "TOKENS_BATCH" ).as_numpy() # Reshape Input # tokens_batch = tokens_batch.reshape([-1, tokens_batch.shape[0]]) # tokens_batch = tokens_batch.T # Postprocessing output data. outputs = self._postprocessing(tokens_batch) # Create output tensors. You need pb_utils.Tensor # objects to create pb_utils.InferenceResponse. output_tensor = pb_utils.Tensor( "OUTPUT", np.array(outputs).astype(self.output_dtype) ) # Create InferenceResponse. You can set an error here in case # there was a problem with handling this inference request. # Below is an example of how you can set errors in inference # response: # # pb_utils.InferenceResponse( # output_tensors=..., TritonError("An error occurred")) inference_response = pb_utils.InferenceResponse( output_tensors=[output_tensor] ) responses.append(inference_response) # You should return a list of pb_utils.InferenceResponse. Length # of this list must match the length of `requests` list. return responses def finalize(self) -> None: """Clean up the model. `finalize` is called only once when the model is being unloaded. Implementing `finalize` function is optional. This function allows the model to perform any necessary clean ups before exit. """ print("Cleaning up...") def _postprocessing(self, tokens_batch: np.ndarray) -> List[bytes]: """Postprocess.""" outputs = [] for beam_tokens in tokens_batch: for tokens in beam_tokens: outputs.append(self.tokenizer.decode(tokens)) return outputs