"""Preprocessor for codegen-350M-mono-gptj.""" import csv import json from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import torch import triton_python_backend_utils as pb_utils from torch.nn.utils.rnn import pad_sequence from transformers import AutoTokenizer END_ID = 50256 class TritonPythonModel: """Preprocessor for codegen-350M-mono-gptj.""" def initialize(self, args: Dict[str, Any]) -> None: """`initialize` is called only once when the model is being loaded. Implementing `initialize` function is optional. This function allows the model to initialize any state associated with this model. Args : Dict Both keys and values are strings. The dictionary keys and values are: * model_config: A JSON string containing the model configuration * model_instance_kind: A string containing model instance kind * model_instance_device_id: A string containing model instance device ID * model_repository: Model repository path * model_version: Model version * model_name: Model name """ # Parse model configs self.model_config = model_config = json.loads(args["model_config"]) # Parse model output configs and convert Triton types to numpy types input_names = [ "INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS", ] for input_name in input_names: setattr( self, input_name.lower() + "_dtype", pb_utils.triton_string_to_numpy( pb_utils.get_output_config_by_name(model_config, input_name)[ "data_type" ] ), ) cur_folder = Path(__file__).parent cache_dir = cur_folder / ".cache" self.tokenizer = AutoTokenizer.from_pretrained( "Salesforce/codegen-350M-mono", cache_dir=cache_dir ) def execute( self, requests: List["pb_utils.InferenceRequest"] ) -> List["pb_utils.InferenceResponse"]: """Preprocess the requests. `execute` must be implemented in every Python model. `execute` function receives a list of pb_utils.InferenceRequest as the only argument. This function is called when an inference is requested for this model. Depending on the batching configuration (e.g. Dynamic Batching) used, `requests` may contain multiple requests. Every Python model, must create one pb_utils.InferenceResponse for every pb_utils.InferenceRequest in `requests`. If there is an error, you can set the error argument when creating a pb_utils.InferenceResponse. Args: requests: A list of pb_utils.InferenceRequest Returns: A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests` """ responses = [] # Every Python backend must iterate over everyone of the requests # and create a pb_utils.InferenceResponse for each of them. for request in requests: # Get input tensors query = pb_utils.get_input_tensor_by_name(request, "QUERY").as_numpy() request_output_len = pb_utils.get_input_tensor_by_name( request, "REQUEST_OUTPUT_LEN" ).as_numpy() bad_words_dict = pb_utils.get_input_tensor_by_name( request, "BAD_WORDS_DICT" ).as_numpy() stop_words_dict = pb_utils.get_input_tensor_by_name( request, "STOP_WORDS_DICT" ).as_numpy() # Preprocessing input data. input_id, request_input_len = self._create_request(query) bad_words = self._create_word_list(bad_words_dict) stop_words = self._create_word_list(stop_words_dict) # Create output tensors. You need pb_utils.Tensor # objects to create pb_utils.InferenceResponse. input_id_tensor = pb_utils.Tensor( "INPUT_ID", np.array(input_id).astype(self.input_id_dtype) ) request_input_len_tensor = pb_utils.Tensor( "REQUEST_INPUT_LEN", np.array(request_input_len).astype(self.request_input_len_dtype), ) request_output_len_tensor = pb_utils.Tensor( "REQUEST_OUTPUT_LEN", request_output_len ) bad_words_ids_tensor = pb_utils.Tensor("BAD_WORDS_IDS", bad_words) stop_words_ids_tensor = pb_utils.Tensor("STOP_WORDS_IDS", stop_words) # Create InferenceResponse. You can set an error here in case # there was a problem with handling this inference request. # Below is an example of how you can set errors in inference # response: # # pb_utils.InferenceResponse( # output_tensors=..., TritonError("An error occurred")) inference_response = pb_utils.InferenceResponse( output_tensors=[ input_id_tensor, bad_words_ids_tensor, stop_words_ids_tensor, request_input_len_tensor, request_output_len_tensor, ] ) responses.append(inference_response) # You should return a list of pb_utils.InferenceResponse. Length # of this list must match the length of `requests` list. return responses def finalize(self) -> None: """Unload the model. `finalize` is called only once when the model is being unloaded. Implementing `finalize` function is optional. This function allows the model to perform any necessary clean ups before exit. """ print("Cleaning up...") def _create_request(self, query: np.ndarray) -> Tuple[torch.Tensor, torch.Tensor]: """Encode the requests as model's inputs. Args: - query: batch string (2D numpy array) """ start_ids = [ torch.IntTensor(self.tokenizer.encode(s[0].decode())) for s in query ] start_lengths = torch.IntTensor([[len(ids)] for ids in start_ids]) start_ids = pad_sequence(start_ids, batch_first=True, padding_value=END_ID) return start_ids, start_lengths def _create_word_list(self, word_dict: np.ndarray) -> np.ndarray: """Encode the word list.""" flat_ids = [] offsets = [] for word_dict_item in word_dict: item_flat_ids = [] item_offsets = [] words = list(csv.reader([word_dict_item[0].decode()]))[0] for word in words: ids = self._encode(word) if len(ids) == 0: continue item_flat_ids += ids item_offsets.append(len(ids)) flat_ids.append(np.array(item_flat_ids)) offsets.append(np.cumsum(np.array(item_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) def _encode(self, sentence: str) -> List[int]: """Encode sentences into tokens.""" sentence = sentence.decode() if isinstance(sentence, bytes) else sentence return self.tokenizer.encode(sentence)