cutelemonlili commited on
Commit
91ef6df
·
verified ·
1 Parent(s): edcf9b7

Add files using upload-large-folder tool

Browse files
Files changed (44) hide show
  1. .gitattributes +1 -0
  2. README.md +66 -0
  3. adapter_config.json +34 -0
  4. adapter_model.safetensors +3 -0
  5. added_tokens.json +24 -0
  6. all_results.json +12 -0
  7. checkpoint-266/README.md +202 -0
  8. checkpoint-266/adapter_config.json +34 -0
  9. checkpoint-266/adapter_model.safetensors +3 -0
  10. checkpoint-266/added_tokens.json +24 -0
  11. checkpoint-266/global_step266/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-266/global_step266/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-266/global_step266/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  14. checkpoint-266/global_step266/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-266/global_step266/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-266/global_step266/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-266/global_step266/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-266/global_step266/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-266/latest +1 -0
  20. checkpoint-266/merges.txt +0 -0
  21. checkpoint-266/rng_state_0.pth +3 -0
  22. checkpoint-266/rng_state_1.pth +3 -0
  23. checkpoint-266/rng_state_2.pth +3 -0
  24. checkpoint-266/rng_state_3.pth +3 -0
  25. checkpoint-266/scheduler.pt +3 -0
  26. checkpoint-266/special_tokens_map.json +31 -0
  27. checkpoint-266/tokenizer.json +3 -0
  28. checkpoint-266/tokenizer_config.json +208 -0
  29. checkpoint-266/trainer_state.json +1903 -0
  30. checkpoint-266/training_args.bin +3 -0
  31. checkpoint-266/vocab.json +0 -0
  32. checkpoint-266/zero_to_fp32.py +760 -0
  33. eval_results.json +7 -0
  34. merges.txt +0 -0
  35. special_tokens_map.json +31 -0
  36. tokenizer.json +3 -0
  37. tokenizer_config.json +208 -0
  38. train_results.json +8 -0
  39. trainer_log.jsonl +268 -0
  40. trainer_state.json +1912 -0
  41. training_args.bin +3 -0
  42. training_eval_loss.png +0 -0
  43. training_loss.png +0 -0
  44. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-32B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - lora
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: MATH_training_response_Qwen2.5_32B
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # MATH_training_response_Qwen2.5_32B
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the MATH_training_response_Qwen2.5_32B dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0296
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 4
46
+ - total_train_batch_size: 4
47
+ - total_eval_batch_size: 4
48
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
+ - lr_scheduler_type: cosine
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 2.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss |
56
+ |:-------------:|:------:|:----:|:---------------:|
57
+ | 0.0258 | 1.5038 | 200 | 0.0297 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - PEFT 0.12.0
63
+ - Transformers 4.46.1
64
+ - Pytorch 2.5.1+cu124
65
+ - Datasets 3.1.0
66
+ - Tokenizers 0.20.3
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-32B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "o_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "k_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6219e9a63ad5f05268ce26d51bacc4012cebe9edc72a7512d663031a71ab59a4
3
+ size 134337704
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.029648179188370705,
4
+ "eval_runtime": 6.4826,
5
+ "eval_samples_per_second": 0.926,
6
+ "eval_steps_per_second": 0.309,
7
+ "total_flos": 673614818967552.0,
8
+ "train_loss": 0.039493271835932604,
9
+ "train_runtime": 2026.6163,
10
+ "train_samples_per_second": 0.522,
11
+ "train_steps_per_second": 0.131
12
+ }
checkpoint-266/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-32B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-266/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-32B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "o_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "k_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-266/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6219e9a63ad5f05268ce26d51bacc4012cebe9edc72a7512d663031a71ab59a4
3
+ size 134337704
checkpoint-266/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-266/global_step266/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b130e5262b172aeddd48022a5dc081acbef2d7631c6bc7287dfe2d653f3f81f
3
+ size 201330416
checkpoint-266/global_step266/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eaeca8e30bdbd76f3da7676f14d7b5f4bf9b40db7aa75cb740993bd7a7e4a5a
3
+ size 201330416
checkpoint-266/global_step266/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d127eb07f96623a39b3913d624a877da068d63f47ec47f7395786ecd3fb52a69
3
+ size 201330416
checkpoint-266/global_step266/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:133bff1007d33c4aad62619eaa9d0b16e6862a5e38b4bd26281b8c5a122b286a
3
+ size 201330416
checkpoint-266/global_step266/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16b58e7ac09bf6383a946bbea6cfa00458f662c2c7fa7a19ae7e1faefe73fb4a
3
+ size 890990
checkpoint-266/global_step266/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b819168dcf9c095b589be291321612e12e7e4031a024866eace73a8e7f895450
3
+ size 890990
checkpoint-266/global_step266/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2276b369a601b00d89276dd1380626387021362527de4bfbaedd3c84797d0a2
3
+ size 890990
checkpoint-266/global_step266/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b384caae261db631be7509bfd26514d4f685dd5ae6b30bef44ac3647300fa9fd
3
+ size 890990
checkpoint-266/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step266
checkpoint-266/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-266/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
3
+ size 15024
checkpoint-266/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
3
+ size 15024
checkpoint-266/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
3
+ size 15024
checkpoint-266/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
3
+ size 15024
checkpoint-266/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4da5bd6a6ee404b7afdcdde78eaa3c48c2bdac694e70095236c413424be5b9
3
+ size 1064
checkpoint-266/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-266/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-266/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-266/trainer_state.json ADDED
@@ -0,0 +1,1903 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 200,
6
+ "global_step": 266,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007518796992481203,
13
+ "grad_norm": 0.08289683091006875,
14
+ "learning_rate": 3.7037037037037037e-06,
15
+ "loss": 0.2087,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.015037593984962405,
20
+ "grad_norm": 0.03030546873337256,
21
+ "learning_rate": 7.4074074074074075e-06,
22
+ "loss": 0.1045,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.022556390977443608,
27
+ "grad_norm": 0.04340875250649354,
28
+ "learning_rate": 1.1111111111111112e-05,
29
+ "loss": 0.1291,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.03007518796992481,
34
+ "grad_norm": 0.04223285184390201,
35
+ "learning_rate": 1.4814814814814815e-05,
36
+ "loss": 0.1263,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.03759398496240601,
41
+ "grad_norm": 0.04894801143939966,
42
+ "learning_rate": 1.8518518518518518e-05,
43
+ "loss": 0.1409,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.045112781954887216,
48
+ "grad_norm": 0.22261274174154347,
49
+ "learning_rate": 2.2222222222222223e-05,
50
+ "loss": 0.2362,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05263157894736842,
55
+ "grad_norm": 0.043978295203653116,
56
+ "learning_rate": 2.5925925925925925e-05,
57
+ "loss": 0.1195,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06015037593984962,
62
+ "grad_norm": 0.04381964595602848,
63
+ "learning_rate": 2.962962962962963e-05,
64
+ "loss": 0.1215,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.06766917293233082,
69
+ "grad_norm": 0.03290036083527209,
70
+ "learning_rate": 3.3333333333333335e-05,
71
+ "loss": 0.0881,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.07518796992481203,
76
+ "grad_norm": 0.03303553719000837,
77
+ "learning_rate": 3.7037037037037037e-05,
78
+ "loss": 0.0923,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.08270676691729323,
83
+ "grad_norm": 0.12832751130733108,
84
+ "learning_rate": 4.074074074074074e-05,
85
+ "loss": 0.218,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.09022556390977443,
90
+ "grad_norm": 0.08479076437214379,
91
+ "learning_rate": 4.4444444444444447e-05,
92
+ "loss": 0.149,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.09774436090225563,
97
+ "grad_norm": 0.13534422076541278,
98
+ "learning_rate": 4.814814814814815e-05,
99
+ "loss": 0.1835,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.10526315789473684,
104
+ "grad_norm": 0.10341781138952844,
105
+ "learning_rate": 5.185185185185185e-05,
106
+ "loss": 0.1573,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.11278195488721804,
111
+ "grad_norm": 0.12256701286625035,
112
+ "learning_rate": 5.555555555555556e-05,
113
+ "loss": 0.1701,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.12030075187969924,
118
+ "grad_norm": 0.05708144315846648,
119
+ "learning_rate": 5.925925925925926e-05,
120
+ "loss": 0.0938,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.12781954887218044,
125
+ "grad_norm": 0.0813311914428683,
126
+ "learning_rate": 6.296296296296296e-05,
127
+ "loss": 0.1221,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.13533834586466165,
132
+ "grad_norm": 0.07670248585638807,
133
+ "learning_rate": 6.666666666666667e-05,
134
+ "loss": 0.1068,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.14285714285714285,
139
+ "grad_norm": 0.12777013083805186,
140
+ "learning_rate": 7.037037037037038e-05,
141
+ "loss": 0.1183,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.15037593984962405,
146
+ "grad_norm": 0.07203864112993859,
147
+ "learning_rate": 7.407407407407407e-05,
148
+ "loss": 0.0941,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.15789473684210525,
153
+ "grad_norm": 0.06622495246697525,
154
+ "learning_rate": 7.777777777777778e-05,
155
+ "loss": 0.0851,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.16541353383458646,
160
+ "grad_norm": 0.05064660711733651,
161
+ "learning_rate": 8.148148148148148e-05,
162
+ "loss": 0.0672,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.17293233082706766,
167
+ "grad_norm": 0.05569880144395339,
168
+ "learning_rate": 8.518518518518518e-05,
169
+ "loss": 0.0692,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.18045112781954886,
174
+ "grad_norm": 0.06341922542018791,
175
+ "learning_rate": 8.888888888888889e-05,
176
+ "loss": 0.0719,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.18796992481203006,
181
+ "grad_norm": 0.09483517480751269,
182
+ "learning_rate": 9.25925925925926e-05,
183
+ "loss": 0.1039,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.19548872180451127,
188
+ "grad_norm": 0.06345422292566975,
189
+ "learning_rate": 9.62962962962963e-05,
190
+ "loss": 0.0642,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.20300751879699247,
195
+ "grad_norm": 0.06565559978972503,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.0806,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.21052631578947367,
202
+ "grad_norm": 0.07234940226716612,
203
+ "learning_rate": 9.999568045802217e-05,
204
+ "loss": 0.0699,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.21804511278195488,
209
+ "grad_norm": 0.09174614011055109,
210
+ "learning_rate": 9.998272257842641e-05,
211
+ "loss": 0.0797,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.22556390977443608,
216
+ "grad_norm": 0.0799372037045221,
217
+ "learning_rate": 9.996112860009688e-05,
218
+ "loss": 0.0599,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.23308270676691728,
223
+ "grad_norm": 0.07650243821697233,
224
+ "learning_rate": 9.993090225407743e-05,
225
+ "loss": 0.0673,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.24060150375939848,
230
+ "grad_norm": 0.07437978624039222,
231
+ "learning_rate": 9.989204876292688e-05,
232
+ "loss": 0.063,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.24812030075187969,
237
+ "grad_norm": 0.05826090837310029,
238
+ "learning_rate": 9.984457483981669e-05,
239
+ "loss": 0.0563,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2556390977443609,
244
+ "grad_norm": 0.046830358894256296,
245
+ "learning_rate": 9.978848868737098e-05,
246
+ "loss": 0.0449,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2631578947368421,
251
+ "grad_norm": 0.059942032653184,
252
+ "learning_rate": 9.972379999624936e-05,
253
+ "loss": 0.0492,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.2706766917293233,
258
+ "grad_norm": 0.04559622889503948,
259
+ "learning_rate": 9.96505199434725e-05,
260
+ "loss": 0.0384,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.2781954887218045,
265
+ "grad_norm": 0.08582556953299057,
266
+ "learning_rate": 9.956866119049095e-05,
267
+ "loss": 0.052,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.2857142857142857,
272
+ "grad_norm": 0.05879365562753825,
273
+ "learning_rate": 9.947823788099753e-05,
274
+ "loss": 0.0499,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.2932330827067669,
279
+ "grad_norm": 0.07725729979493687,
280
+ "learning_rate": 9.937926563848346e-05,
281
+ "loss": 0.0382,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3007518796992481,
286
+ "grad_norm": 0.06791365316815774,
287
+ "learning_rate": 9.927176156353899e-05,
288
+ "loss": 0.0424,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.3082706766917293,
293
+ "grad_norm": 0.06835456363607172,
294
+ "learning_rate": 9.91557442308987e-05,
295
+ "loss": 0.0477,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3157894736842105,
300
+ "grad_norm": 0.06785706541381617,
301
+ "learning_rate": 9.903123368623216e-05,
302
+ "loss": 0.0423,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.3233082706766917,
307
+ "grad_norm": 0.037822284484082716,
308
+ "learning_rate": 9.889825144268029e-05,
309
+ "loss": 0.0373,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.3308270676691729,
314
+ "grad_norm": 0.09335172889811039,
315
+ "learning_rate": 9.875682047713846e-05,
316
+ "loss": 0.0532,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.3383458646616541,
321
+ "grad_norm": 0.03552601591664148,
322
+ "learning_rate": 9.860696522628639e-05,
323
+ "loss": 0.0302,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.3458646616541353,
328
+ "grad_norm": 0.06792399841238587,
329
+ "learning_rate": 9.844871158236591e-05,
330
+ "loss": 0.043,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.3533834586466165,
335
+ "grad_norm": 0.07394708716985816,
336
+ "learning_rate": 9.828208688870735e-05,
337
+ "loss": 0.0414,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.3609022556390977,
342
+ "grad_norm": 0.07644206071621325,
343
+ "learning_rate": 9.810711993500507e-05,
344
+ "loss": 0.0442,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.3684210526315789,
349
+ "grad_norm": 0.04448780324279346,
350
+ "learning_rate": 9.792384095234313e-05,
351
+ "loss": 0.0397,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.37593984962406013,
356
+ "grad_norm": 0.040299146373067786,
357
+ "learning_rate": 9.773228160797188e-05,
358
+ "loss": 0.0294,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.38345864661654133,
363
+ "grad_norm": 0.04600091352431098,
364
+ "learning_rate": 9.753247499983649e-05,
365
+ "loss": 0.0388,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.39097744360902253,
370
+ "grad_norm": 0.05174024689025062,
371
+ "learning_rate": 9.732445565085824e-05,
372
+ "loss": 0.0464,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.39849624060150374,
377
+ "grad_norm": 0.06048290755695799,
378
+ "learning_rate": 9.71082595029695e-05,
379
+ "loss": 0.0441,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.40601503759398494,
384
+ "grad_norm": 0.06909111905381797,
385
+ "learning_rate": 9.688392391090373e-05,
386
+ "loss": 0.0403,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.41353383458646614,
391
+ "grad_norm": 0.10580098842980783,
392
+ "learning_rate": 9.665148763574123e-05,
393
+ "loss": 0.0414,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.42105263157894735,
398
+ "grad_norm": 0.06004492721880413,
399
+ "learning_rate": 9.64109908382119e-05,
400
+ "loss": 0.0348,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.42857142857142855,
405
+ "grad_norm": 0.05616302785838828,
406
+ "learning_rate": 9.616247507175623e-05,
407
+ "loss": 0.0353,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.43609022556390975,
412
+ "grad_norm": 0.04963402332052172,
413
+ "learning_rate": 9.590598327534564e-05,
414
+ "loss": 0.0354,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.44360902255639095,
419
+ "grad_norm": 0.09520890937208057,
420
+ "learning_rate": 9.564155976606339e-05,
421
+ "loss": 0.0436,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.45112781954887216,
426
+ "grad_norm": 0.07317691578763187,
427
+ "learning_rate": 9.536925023144742e-05,
428
+ "loss": 0.0448,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.45864661654135336,
433
+ "grad_norm": 0.0653903652099525,
434
+ "learning_rate": 9.508910172159635e-05,
435
+ "loss": 0.0456,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.46616541353383456,
440
+ "grad_norm": 0.08533000644485912,
441
+ "learning_rate": 9.480116264104011e-05,
442
+ "loss": 0.0417,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.47368421052631576,
447
+ "grad_norm": 0.07477194348090598,
448
+ "learning_rate": 9.450548274037653e-05,
449
+ "loss": 0.0427,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.48120300751879697,
454
+ "grad_norm": 0.040320894825821886,
455
+ "learning_rate": 9.420211310767533e-05,
456
+ "loss": 0.0317,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.48872180451127817,
461
+ "grad_norm": 0.04204333897095501,
462
+ "learning_rate": 9.389110615965102e-05,
463
+ "loss": 0.0308,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.49624060150375937,
468
+ "grad_norm": 0.06435209558835227,
469
+ "learning_rate": 9.35725156326063e-05,
470
+ "loss": 0.0404,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5037593984962406,
475
+ "grad_norm": 0.05292300086818655,
476
+ "learning_rate": 9.324639657314742e-05,
477
+ "loss": 0.0383,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5112781954887218,
482
+ "grad_norm": 0.0533359959006372,
483
+ "learning_rate": 9.291280532867302e-05,
484
+ "loss": 0.0419,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.518796992481203,
489
+ "grad_norm": 0.0421677134855151,
490
+ "learning_rate": 9.257179953763845e-05,
491
+ "loss": 0.0301,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5263157894736842,
496
+ "grad_norm": 0.047396091527240565,
497
+ "learning_rate": 9.222343811959693e-05,
498
+ "loss": 0.0355,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.5338345864661654,
503
+ "grad_norm": 0.05055865206409256,
504
+ "learning_rate": 9.186778126501916e-05,
505
+ "loss": 0.0379,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.5413533834586466,
510
+ "grad_norm": 0.03922328494549794,
511
+ "learning_rate": 9.150489042489367e-05,
512
+ "loss": 0.03,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.5488721804511278,
517
+ "grad_norm": 0.08580904921861318,
518
+ "learning_rate": 9.113482830010918e-05,
519
+ "loss": 0.038,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.556390977443609,
524
+ "grad_norm": 0.04615991149700515,
525
+ "learning_rate": 9.075765883062093e-05,
526
+ "loss": 0.0321,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.5639097744360902,
531
+ "grad_norm": 0.21688152384611062,
532
+ "learning_rate": 9.037344718440322e-05,
533
+ "loss": 0.0369,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.5714285714285714,
538
+ "grad_norm": 0.06709856743156827,
539
+ "learning_rate": 8.99822597461894e-05,
540
+ "loss": 0.0429,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.5789473684210527,
545
+ "grad_norm": 0.07300506123989278,
546
+ "learning_rate": 8.958416410600187e-05,
547
+ "loss": 0.0351,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.5864661654135338,
552
+ "grad_norm": 0.08415403445437179,
553
+ "learning_rate": 8.917922904747384e-05,
554
+ "loss": 0.0425,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.5939849624060151,
559
+ "grad_norm": 0.043734956942212244,
560
+ "learning_rate": 8.876752453596462e-05,
561
+ "loss": 0.0322,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6015037593984962,
566
+ "grad_norm": 0.11340147288766998,
567
+ "learning_rate": 8.834912170647101e-05,
568
+ "loss": 0.0446,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6090225563909775,
573
+ "grad_norm": 0.061288991507609664,
574
+ "learning_rate": 8.792409285133642e-05,
575
+ "loss": 0.0424,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6165413533834586,
580
+ "grad_norm": 0.043805649893633086,
581
+ "learning_rate": 8.749251140776016e-05,
582
+ "loss": 0.0342,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.6240601503759399,
587
+ "grad_norm": 0.05953059965877648,
588
+ "learning_rate": 8.705445194510868e-05,
589
+ "loss": 0.0321,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.631578947368421,
594
+ "grad_norm": 0.07945205955271631,
595
+ "learning_rate": 8.66099901520315e-05,
596
+ "loss": 0.0371,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.6390977443609023,
601
+ "grad_norm": 0.04453806753518928,
602
+ "learning_rate": 8.615920282338355e-05,
603
+ "loss": 0.0349,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.6466165413533834,
608
+ "grad_norm": 0.05196927124976879,
609
+ "learning_rate": 8.570216784695637e-05,
610
+ "loss": 0.0287,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.6541353383458647,
615
+ "grad_norm": 0.08901603801098872,
616
+ "learning_rate": 8.52389641900206e-05,
617
+ "loss": 0.0379,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.6616541353383458,
622
+ "grad_norm": 0.04173009472070016,
623
+ "learning_rate": 8.476967188568188e-05,
624
+ "loss": 0.0264,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.6691729323308271,
629
+ "grad_norm": 0.06191267416598679,
630
+ "learning_rate": 8.429437201905254e-05,
631
+ "loss": 0.028,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.6766917293233082,
636
+ "grad_norm": 0.05938205491417802,
637
+ "learning_rate": 8.381314671324159e-05,
638
+ "loss": 0.0353,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.6842105263157895,
643
+ "grad_norm": 0.06594155945203996,
644
+ "learning_rate": 8.332607911516545e-05,
645
+ "loss": 0.0423,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.6917293233082706,
650
+ "grad_norm": 0.03727901580427709,
651
+ "learning_rate": 8.283325338118153e-05,
652
+ "loss": 0.0288,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.6992481203007519,
657
+ "grad_norm": 0.039506792129091334,
658
+ "learning_rate": 8.233475466254765e-05,
659
+ "loss": 0.0319,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.706766917293233,
664
+ "grad_norm": 0.10114676138905467,
665
+ "learning_rate": 8.183066909070947e-05,
666
+ "loss": 0.0413,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.7142857142857143,
671
+ "grad_norm": 0.0519720254987392,
672
+ "learning_rate": 8.132108376241849e-05,
673
+ "loss": 0.0319,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.7218045112781954,
678
+ "grad_norm": 0.06828535688055823,
679
+ "learning_rate": 8.08060867246834e-05,
680
+ "loss": 0.0415,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.7293233082706767,
685
+ "grad_norm": 0.04423778552147402,
686
+ "learning_rate": 8.028576695955711e-05,
687
+ "loss": 0.0307,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.7368421052631579,
692
+ "grad_norm": 0.04301708267503238,
693
+ "learning_rate": 7.97602143687623e-05,
694
+ "loss": 0.0292,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.7443609022556391,
699
+ "grad_norm": 0.07557692217243188,
700
+ "learning_rate": 7.922951975815811e-05,
701
+ "loss": 0.0304,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.7518796992481203,
706
+ "grad_norm": 0.061041885279450855,
707
+ "learning_rate": 7.869377482205042e-05,
708
+ "loss": 0.0318,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.7593984962406015,
713
+ "grad_norm": 0.040342152719196084,
714
+ "learning_rate": 7.815307212734888e-05,
715
+ "loss": 0.027,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.7669172932330827,
720
+ "grad_norm": 0.07790755826343725,
721
+ "learning_rate": 7.760750509757298e-05,
722
+ "loss": 0.0339,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.7744360902255639,
727
+ "grad_norm": 0.05210408795431101,
728
+ "learning_rate": 7.705716799671019e-05,
729
+ "loss": 0.0228,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.7819548872180451,
734
+ "grad_norm": 0.08000736959421384,
735
+ "learning_rate": 7.650215591292888e-05,
736
+ "loss": 0.0357,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.7894736842105263,
741
+ "grad_norm": 0.05843028390975531,
742
+ "learning_rate": 7.594256474214882e-05,
743
+ "loss": 0.0285,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.7969924812030075,
748
+ "grad_norm": 0.13537509841914472,
749
+ "learning_rate": 7.537849117147212e-05,
750
+ "loss": 0.0359,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.8045112781954887,
755
+ "grad_norm": 0.08230566866298178,
756
+ "learning_rate": 7.481003266247744e-05,
757
+ "loss": 0.0367,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.8120300751879699,
762
+ "grad_norm": 0.09678557492723187,
763
+ "learning_rate": 7.423728743438048e-05,
764
+ "loss": 0.0358,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.8195488721804511,
769
+ "grad_norm": 0.049541914871144996,
770
+ "learning_rate": 7.366035444706347e-05,
771
+ "loss": 0.0329,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.8270676691729323,
776
+ "grad_norm": 0.08823757922929092,
777
+ "learning_rate": 7.307933338397667e-05,
778
+ "loss": 0.0364,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.8345864661654135,
783
+ "grad_norm": 0.044744299992948704,
784
+ "learning_rate": 7.249432463491498e-05,
785
+ "loss": 0.0328,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.8421052631578947,
790
+ "grad_norm": 0.03814585189064516,
791
+ "learning_rate": 7.190542927867234e-05,
792
+ "loss": 0.0242,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.849624060150376,
797
+ "grad_norm": 0.03553642928460275,
798
+ "learning_rate": 7.131274906557725e-05,
799
+ "loss": 0.0277,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.8571428571428571,
804
+ "grad_norm": 0.044176381361140944,
805
+ "learning_rate": 7.071638639991207e-05,
806
+ "loss": 0.0282,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.8646616541353384,
811
+ "grad_norm": 0.04113727259330019,
812
+ "learning_rate": 7.011644432221958e-05,
813
+ "loss": 0.0311,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.8721804511278195,
818
+ "grad_norm": 0.060773829286428965,
819
+ "learning_rate": 6.95130264914993e-05,
820
+ "loss": 0.0414,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.8796992481203008,
825
+ "grad_norm": 0.05757846085257315,
826
+ "learning_rate": 6.890623716729724e-05,
827
+ "loss": 0.0279,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.8872180451127819,
832
+ "grad_norm": 0.08428255259620104,
833
+ "learning_rate": 6.82961811916917e-05,
834
+ "loss": 0.0298,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.8947368421052632,
839
+ "grad_norm": 0.04529601746123181,
840
+ "learning_rate": 6.768296397117848e-05,
841
+ "loss": 0.0263,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.9022556390977443,
846
+ "grad_norm": 0.0559976345746786,
847
+ "learning_rate": 6.706669145845863e-05,
848
+ "loss": 0.0331,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.9097744360902256,
853
+ "grad_norm": 0.046985300077111235,
854
+ "learning_rate": 6.644747013413168e-05,
855
+ "loss": 0.0323,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.9172932330827067,
860
+ "grad_norm": 0.06973194335422163,
861
+ "learning_rate": 6.582540698829781e-05,
862
+ "loss": 0.0356,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.924812030075188,
867
+ "grad_norm": 0.0550307651636393,
868
+ "learning_rate": 6.520060950207185e-05,
869
+ "loss": 0.0374,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.9323308270676691,
874
+ "grad_norm": 0.04136098377224926,
875
+ "learning_rate": 6.457318562901256e-05,
876
+ "loss": 0.0281,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.9398496240601504,
881
+ "grad_norm": 0.04471839673788357,
882
+ "learning_rate": 6.394324377647028e-05,
883
+ "loss": 0.0344,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.9473684210526315,
888
+ "grad_norm": 0.04057335071418551,
889
+ "learning_rate": 6.331089278685599e-05,
890
+ "loss": 0.0289,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.9548872180451128,
895
+ "grad_norm": 0.036632585834280834,
896
+ "learning_rate": 6.26762419188355e-05,
897
+ "loss": 0.0254,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.9624060150375939,
902
+ "grad_norm": 0.05253467833143005,
903
+ "learning_rate": 6.203940082845144e-05,
904
+ "loss": 0.0423,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.9699248120300752,
909
+ "grad_norm": 0.05828434847478486,
910
+ "learning_rate": 6.140047955017671e-05,
911
+ "loss": 0.0331,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.9774436090225563,
916
+ "grad_norm": 0.052528332979290625,
917
+ "learning_rate": 6.075958847790262e-05,
918
+ "loss": 0.0344,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.9849624060150376,
923
+ "grad_norm": 0.039125799054480936,
924
+ "learning_rate": 6.011683834586473e-05,
925
+ "loss": 0.0264,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.9924812030075187,
930
+ "grad_norm": 0.03707157930189228,
931
+ "learning_rate": 5.947234020951015e-05,
932
+ "loss": 0.0237,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.0,
937
+ "grad_norm": 0.054189982183542575,
938
+ "learning_rate": 5.882620542630901e-05,
939
+ "loss": 0.0317,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.0075187969924813,
944
+ "grad_norm": 0.04357846265860899,
945
+ "learning_rate": 5.8178545636514145e-05,
946
+ "loss": 0.0268,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.0150375939849625,
951
+ "grad_norm": 0.056012933476124856,
952
+ "learning_rate": 5.752947274387147e-05,
953
+ "loss": 0.0223,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.0225563909774436,
958
+ "grad_norm": 0.049689439936320044,
959
+ "learning_rate": 5.687909889628529e-05,
960
+ "loss": 0.0304,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.0300751879699248,
965
+ "grad_norm": 0.04830994322048754,
966
+ "learning_rate": 5.622753646644102e-05,
967
+ "loss": 0.0278,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.037593984962406,
972
+ "grad_norm": 0.04418639970975713,
973
+ "learning_rate": 5.557489803238933e-05,
974
+ "loss": 0.0259,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.045112781954887,
979
+ "grad_norm": 0.042738363591787835,
980
+ "learning_rate": 5.492129635809473e-05,
981
+ "loss": 0.0198,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.0526315789473684,
986
+ "grad_norm": 0.03885713180148723,
987
+ "learning_rate": 5.426684437395196e-05,
988
+ "loss": 0.0191,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.0601503759398496,
993
+ "grad_norm": 0.04951650926676435,
994
+ "learning_rate": 5.361165515727374e-05,
995
+ "loss": 0.0214,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.0676691729323309,
1000
+ "grad_norm": 0.059968470212708236,
1001
+ "learning_rate": 5.295584191275308e-05,
1002
+ "loss": 0.0243,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.0751879699248121,
1007
+ "grad_norm": 0.0676386940224187,
1008
+ "learning_rate": 5.229951795290353e-05,
1009
+ "loss": 0.029,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.0827067669172932,
1014
+ "grad_norm": 0.04250436122379926,
1015
+ "learning_rate": 5.164279667848094e-05,
1016
+ "loss": 0.0204,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.0902255639097744,
1021
+ "grad_norm": 0.04124846102938738,
1022
+ "learning_rate": 5.0985791558889785e-05,
1023
+ "loss": 0.0209,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.0977443609022557,
1028
+ "grad_norm": 0.05914558229310168,
1029
+ "learning_rate": 5.032861611257783e-05,
1030
+ "loss": 0.0285,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.1052631578947367,
1035
+ "grad_norm": 0.0465029543723527,
1036
+ "learning_rate": 4.967138388742218e-05,
1037
+ "loss": 0.0204,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.112781954887218,
1042
+ "grad_norm": 0.06469458945659604,
1043
+ "learning_rate": 4.901420844111021e-05,
1044
+ "loss": 0.0314,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.1203007518796992,
1049
+ "grad_norm": 0.06440915952496404,
1050
+ "learning_rate": 4.835720332151907e-05,
1051
+ "loss": 0.0281,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.1278195488721805,
1056
+ "grad_norm": 0.0571757163158284,
1057
+ "learning_rate": 4.770048204709648e-05,
1058
+ "loss": 0.0248,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.1353383458646618,
1063
+ "grad_norm": 0.05910301690921271,
1064
+ "learning_rate": 4.7044158087246926e-05,
1065
+ "loss": 0.0311,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.1428571428571428,
1070
+ "grad_norm": 0.04613839631194596,
1071
+ "learning_rate": 4.6388344842726264e-05,
1072
+ "loss": 0.0218,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.150375939849624,
1077
+ "grad_norm": 0.05741866552084954,
1078
+ "learning_rate": 4.5733155626048036e-05,
1079
+ "loss": 0.0271,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.1578947368421053,
1084
+ "grad_norm": 0.04682544810113655,
1085
+ "learning_rate": 4.507870364190527e-05,
1086
+ "loss": 0.0264,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.1654135338345863,
1091
+ "grad_norm": 0.06282838577083374,
1092
+ "learning_rate": 4.4425101967610674e-05,
1093
+ "loss": 0.024,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.1729323308270676,
1098
+ "grad_norm": 0.05388737782363021,
1099
+ "learning_rate": 4.377246353355899e-05,
1100
+ "loss": 0.0271,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.1804511278195489,
1105
+ "grad_norm": 0.05086578069156835,
1106
+ "learning_rate": 4.312090110371473e-05,
1107
+ "loss": 0.0278,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.1879699248120301,
1112
+ "grad_norm": 0.05863572980738164,
1113
+ "learning_rate": 4.247052725612852e-05,
1114
+ "loss": 0.0292,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.1954887218045114,
1119
+ "grad_norm": 0.04227523648124146,
1120
+ "learning_rate": 4.1821454363485866e-05,
1121
+ "loss": 0.0234,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.2030075187969924,
1126
+ "grad_norm": 0.04268704545270105,
1127
+ "learning_rate": 4.1173794573690996e-05,
1128
+ "loss": 0.0206,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.2105263157894737,
1133
+ "grad_norm": 0.04778787432486908,
1134
+ "learning_rate": 4.052765979048986e-05,
1135
+ "loss": 0.0227,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.218045112781955,
1140
+ "grad_norm": 0.0459311125342993,
1141
+ "learning_rate": 3.988316165413528e-05,
1142
+ "loss": 0.0205,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.225563909774436,
1147
+ "grad_norm": 0.05603215690118315,
1148
+ "learning_rate": 3.924041152209739e-05,
1149
+ "loss": 0.029,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.2330827067669172,
1154
+ "grad_norm": 0.060179119443112154,
1155
+ "learning_rate": 3.859952044982329e-05,
1156
+ "loss": 0.0271,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.2406015037593985,
1161
+ "grad_norm": 0.04740279415347567,
1162
+ "learning_rate": 3.7960599171548574e-05,
1163
+ "loss": 0.0213,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.2481203007518797,
1168
+ "grad_norm": 0.052482110362426594,
1169
+ "learning_rate": 3.732375808116451e-05,
1170
+ "loss": 0.0258,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.255639097744361,
1175
+ "grad_norm": 0.04835120393099329,
1176
+ "learning_rate": 3.668910721314402e-05,
1177
+ "loss": 0.0229,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.263157894736842,
1182
+ "grad_norm": 0.08311507045185516,
1183
+ "learning_rate": 3.605675622352973e-05,
1184
+ "loss": 0.0265,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.2706766917293233,
1189
+ "grad_norm": 0.053563077833150494,
1190
+ "learning_rate": 3.542681437098745e-05,
1191
+ "loss": 0.0256,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.2781954887218046,
1196
+ "grad_norm": 0.05567682482783888,
1197
+ "learning_rate": 3.479939049792817e-05,
1198
+ "loss": 0.0213,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.2857142857142856,
1203
+ "grad_norm": 0.054588031712222006,
1204
+ "learning_rate": 3.417459301170219e-05,
1205
+ "loss": 0.0266,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.2932330827067668,
1210
+ "grad_norm": 0.07694344232267265,
1211
+ "learning_rate": 3.355252986586832e-05,
1212
+ "loss": 0.0193,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.300751879699248,
1217
+ "grad_norm": 0.05943952613035603,
1218
+ "learning_rate": 3.293330854154136e-05,
1219
+ "loss": 0.0258,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.3082706766917294,
1224
+ "grad_norm": 0.038766556860819104,
1225
+ "learning_rate": 3.2317036028821523e-05,
1226
+ "loss": 0.0159,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.3157894736842106,
1231
+ "grad_norm": 0.05092188135687549,
1232
+ "learning_rate": 3.1703818808308324e-05,
1233
+ "loss": 0.0215,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.3233082706766917,
1238
+ "grad_norm": 0.04779789780883562,
1239
+ "learning_rate": 3.109376283270277e-05,
1240
+ "loss": 0.0268,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.330827067669173,
1245
+ "grad_norm": 0.04433720319245774,
1246
+ "learning_rate": 3.0486973508500727e-05,
1247
+ "loss": 0.0238,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.3383458646616542,
1252
+ "grad_norm": 0.049878475563895956,
1253
+ "learning_rate": 2.988355567778043e-05,
1254
+ "loss": 0.0259,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.3458646616541352,
1259
+ "grad_norm": 0.05962755604807658,
1260
+ "learning_rate": 2.9283613600087933e-05,
1261
+ "loss": 0.025,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.3533834586466165,
1266
+ "grad_norm": 0.04955718527923681,
1267
+ "learning_rate": 2.8687250934422772e-05,
1268
+ "loss": 0.0194,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.3609022556390977,
1273
+ "grad_norm": 0.03676456890831394,
1274
+ "learning_rate": 2.8094570721327662e-05,
1275
+ "loss": 0.0189,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.368421052631579,
1280
+ "grad_norm": 0.04868946152583533,
1281
+ "learning_rate": 2.750567536508504e-05,
1282
+ "loss": 0.0243,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.3759398496240602,
1287
+ "grad_norm": 0.0555305400721802,
1288
+ "learning_rate": 2.6920666616023327e-05,
1289
+ "loss": 0.0257,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.3834586466165413,
1294
+ "grad_norm": 0.04963192556183434,
1295
+ "learning_rate": 2.6339645552936536e-05,
1296
+ "loss": 0.0275,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.3909774436090225,
1301
+ "grad_norm": 0.05542091349920839,
1302
+ "learning_rate": 2.5762712565619528e-05,
1303
+ "loss": 0.023,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.3984962406015038,
1308
+ "grad_norm": 0.0426183120843919,
1309
+ "learning_rate": 2.5189967337522573e-05,
1310
+ "loss": 0.0206,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.4060150375939848,
1315
+ "grad_norm": 0.05205246245376388,
1316
+ "learning_rate": 2.46215088285279e-05,
1317
+ "loss": 0.0229,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.413533834586466,
1322
+ "grad_norm": 0.04337666332691105,
1323
+ "learning_rate": 2.4057435257851175e-05,
1324
+ "loss": 0.019,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.4210526315789473,
1329
+ "grad_norm": 0.05985729489503263,
1330
+ "learning_rate": 2.349784408707112e-05,
1331
+ "loss": 0.0274,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.4285714285714286,
1336
+ "grad_norm": 0.062032022184375604,
1337
+ "learning_rate": 2.2942832003289823e-05,
1338
+ "loss": 0.0271,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.4360902255639099,
1343
+ "grad_norm": 0.05773389436675615,
1344
+ "learning_rate": 2.2392494902427025e-05,
1345
+ "loss": 0.0263,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.443609022556391,
1350
+ "grad_norm": 0.048522536078850126,
1351
+ "learning_rate": 2.1846927872651137e-05,
1352
+ "loss": 0.0242,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.4511278195488722,
1357
+ "grad_norm": 0.05010560342148772,
1358
+ "learning_rate": 2.1306225177949585e-05,
1359
+ "loss": 0.024,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.4586466165413534,
1364
+ "grad_norm": 0.058011679310299026,
1365
+ "learning_rate": 2.07704802418419e-05,
1366
+ "loss": 0.0301,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.4661654135338344,
1371
+ "grad_norm": 0.052695628737558814,
1372
+ "learning_rate": 2.0239785631237705e-05,
1373
+ "loss": 0.0262,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.4736842105263157,
1378
+ "grad_norm": 0.0397195089948912,
1379
+ "learning_rate": 1.9714233040442915e-05,
1380
+ "loss": 0.0179,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.481203007518797,
1385
+ "grad_norm": 0.05532938780742867,
1386
+ "learning_rate": 1.9193913275316626e-05,
1387
+ "loss": 0.0234,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.4887218045112782,
1392
+ "grad_norm": 0.07349266479809795,
1393
+ "learning_rate": 1.8678916237581522e-05,
1394
+ "loss": 0.0236,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.4962406015037595,
1399
+ "grad_norm": 0.03995824607041351,
1400
+ "learning_rate": 1.816933090929055e-05,
1401
+ "loss": 0.0176,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.5037593984962405,
1406
+ "grad_norm": 0.07166373724308431,
1407
+ "learning_rate": 1.7665245337452368e-05,
1408
+ "loss": 0.0258,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.5037593984962405,
1413
+ "eval_loss": 0.029665347188711166,
1414
+ "eval_runtime": 6.5066,
1415
+ "eval_samples_per_second": 0.922,
1416
+ "eval_steps_per_second": 0.307,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 1.5112781954887218,
1421
+ "grad_norm": 0.048692577901512116,
1422
+ "learning_rate": 1.716674661881848e-05,
1423
+ "loss": 0.0224,
1424
+ "step": 201
1425
+ },
1426
+ {
1427
+ "epoch": 1.518796992481203,
1428
+ "grad_norm": 0.04675059057360818,
1429
+ "learning_rate": 1.667392088483456e-05,
1430
+ "loss": 0.0223,
1431
+ "step": 202
1432
+ },
1433
+ {
1434
+ "epoch": 1.526315789473684,
1435
+ "grad_norm": 0.05459458244813264,
1436
+ "learning_rate": 1.6186853286758397e-05,
1437
+ "loss": 0.0242,
1438
+ "step": 203
1439
+ },
1440
+ {
1441
+ "epoch": 1.5338345864661656,
1442
+ "grad_norm": 0.051543551392068274,
1443
+ "learning_rate": 1.570562798094747e-05,
1444
+ "loss": 0.025,
1445
+ "step": 204
1446
+ },
1447
+ {
1448
+ "epoch": 1.5413533834586466,
1449
+ "grad_norm": 0.14671926401344376,
1450
+ "learning_rate": 1.5230328114318127e-05,
1451
+ "loss": 0.0241,
1452
+ "step": 205
1453
+ },
1454
+ {
1455
+ "epoch": 1.5488721804511278,
1456
+ "grad_norm": 0.058979726559234814,
1457
+ "learning_rate": 1.4761035809979395e-05,
1458
+ "loss": 0.0253,
1459
+ "step": 206
1460
+ },
1461
+ {
1462
+ "epoch": 1.556390977443609,
1463
+ "grad_norm": 0.06494643885270886,
1464
+ "learning_rate": 1.4297832153043656e-05,
1465
+ "loss": 0.0236,
1466
+ "step": 207
1467
+ },
1468
+ {
1469
+ "epoch": 1.5639097744360901,
1470
+ "grad_norm": 0.06627104647345526,
1471
+ "learning_rate": 1.3840797176616466e-05,
1472
+ "loss": 0.0278,
1473
+ "step": 208
1474
+ },
1475
+ {
1476
+ "epoch": 1.5714285714285714,
1477
+ "grad_norm": 0.06190650675134399,
1478
+ "learning_rate": 1.3390009847968504e-05,
1479
+ "loss": 0.0255,
1480
+ "step": 209
1481
+ },
1482
+ {
1483
+ "epoch": 1.5789473684210527,
1484
+ "grad_norm": 0.06250699899282167,
1485
+ "learning_rate": 1.2945548054891321e-05,
1486
+ "loss": 0.0254,
1487
+ "step": 210
1488
+ },
1489
+ {
1490
+ "epoch": 1.5864661654135337,
1491
+ "grad_norm": 0.06214391708977836,
1492
+ "learning_rate": 1.2507488592239847e-05,
1493
+ "loss": 0.0233,
1494
+ "step": 211
1495
+ },
1496
+ {
1497
+ "epoch": 1.5939849624060152,
1498
+ "grad_norm": 0.054608347620115995,
1499
+ "learning_rate": 1.2075907148663579e-05,
1500
+ "loss": 0.024,
1501
+ "step": 212
1502
+ },
1503
+ {
1504
+ "epoch": 1.6015037593984962,
1505
+ "grad_norm": 0.05333683650123989,
1506
+ "learning_rate": 1.1650878293528994e-05,
1507
+ "loss": 0.0261,
1508
+ "step": 213
1509
+ },
1510
+ {
1511
+ "epoch": 1.6090225563909775,
1512
+ "grad_norm": 0.047407562918454,
1513
+ "learning_rate": 1.1232475464035385e-05,
1514
+ "loss": 0.0192,
1515
+ "step": 214
1516
+ },
1517
+ {
1518
+ "epoch": 1.6165413533834587,
1519
+ "grad_norm": 0.06549580580637923,
1520
+ "learning_rate": 1.0820770952526155e-05,
1521
+ "loss": 0.0192,
1522
+ "step": 215
1523
+ },
1524
+ {
1525
+ "epoch": 1.6240601503759398,
1526
+ "grad_norm": 0.0582730317262946,
1527
+ "learning_rate": 1.0415835893998116e-05,
1528
+ "loss": 0.0267,
1529
+ "step": 216
1530
+ },
1531
+ {
1532
+ "epoch": 1.631578947368421,
1533
+ "grad_norm": 0.06724858724013988,
1534
+ "learning_rate": 1.0017740253810609e-05,
1535
+ "loss": 0.0244,
1536
+ "step": 217
1537
+ },
1538
+ {
1539
+ "epoch": 1.6390977443609023,
1540
+ "grad_norm": 0.07353126997097047,
1541
+ "learning_rate": 9.62655281559679e-06,
1542
+ "loss": 0.0265,
1543
+ "step": 218
1544
+ },
1545
+ {
1546
+ "epoch": 1.6466165413533833,
1547
+ "grad_norm": 0.057567868642984674,
1548
+ "learning_rate": 9.242341169379076e-06,
1549
+ "loss": 0.0239,
1550
+ "step": 219
1551
+ },
1552
+ {
1553
+ "epoch": 1.6541353383458648,
1554
+ "grad_norm": 0.06325334373179048,
1555
+ "learning_rate": 8.865171699890834e-06,
1556
+ "loss": 0.023,
1557
+ "step": 220
1558
+ },
1559
+ {
1560
+ "epoch": 1.6616541353383458,
1561
+ "grad_norm": 0.057849806459398294,
1562
+ "learning_rate": 8.49510957510633e-06,
1563
+ "loss": 0.0286,
1564
+ "step": 221
1565
+ },
1566
+ {
1567
+ "epoch": 1.669172932330827,
1568
+ "grad_norm": 0.06257054012996921,
1569
+ "learning_rate": 8.132218734980852e-06,
1570
+ "loss": 0.0205,
1571
+ "step": 222
1572
+ },
1573
+ {
1574
+ "epoch": 1.6766917293233083,
1575
+ "grad_norm": 0.053291552200528655,
1576
+ "learning_rate": 7.776561880403072e-06,
1577
+ "loss": 0.0222,
1578
+ "step": 223
1579
+ },
1580
+ {
1581
+ "epoch": 1.6842105263157894,
1582
+ "grad_norm": 0.055884993872003165,
1583
+ "learning_rate": 7.4282004623615396e-06,
1584
+ "loss": 0.0257,
1585
+ "step": 224
1586
+ },
1587
+ {
1588
+ "epoch": 1.6917293233082706,
1589
+ "grad_norm": 0.04781226703104293,
1590
+ "learning_rate": 7.0871946713269856e-06,
1591
+ "loss": 0.021,
1592
+ "step": 225
1593
+ },
1594
+ {
1595
+ "epoch": 1.699248120300752,
1596
+ "grad_norm": 0.04617454207758738,
1597
+ "learning_rate": 6.753603426852589e-06,
1598
+ "loss": 0.0206,
1599
+ "step": 226
1600
+ },
1601
+ {
1602
+ "epoch": 1.706766917293233,
1603
+ "grad_norm": 0.05934488856386534,
1604
+ "learning_rate": 6.427484367393699e-06,
1605
+ "loss": 0.0221,
1606
+ "step": 227
1607
+ },
1608
+ {
1609
+ "epoch": 1.7142857142857144,
1610
+ "grad_norm": 0.0563063349000768,
1611
+ "learning_rate": 6.108893840348995e-06,
1612
+ "loss": 0.0217,
1613
+ "step": 228
1614
+ },
1615
+ {
1616
+ "epoch": 1.7218045112781954,
1617
+ "grad_norm": 0.058919681414065804,
1618
+ "learning_rate": 5.797886892324694e-06,
1619
+ "loss": 0.0241,
1620
+ "step": 229
1621
+ },
1622
+ {
1623
+ "epoch": 1.7293233082706767,
1624
+ "grad_norm": 0.04652279001651371,
1625
+ "learning_rate": 5.494517259623477e-06,
1626
+ "loss": 0.023,
1627
+ "step": 230
1628
+ },
1629
+ {
1630
+ "epoch": 1.736842105263158,
1631
+ "grad_norm": 0.05206753304811755,
1632
+ "learning_rate": 5.198837358959901e-06,
1633
+ "loss": 0.0247,
1634
+ "step": 231
1635
+ },
1636
+ {
1637
+ "epoch": 1.744360902255639,
1638
+ "grad_norm": 0.05759411719610633,
1639
+ "learning_rate": 4.910898278403669e-06,
1640
+ "loss": 0.0275,
1641
+ "step": 232
1642
+ },
1643
+ {
1644
+ "epoch": 1.7518796992481203,
1645
+ "grad_norm": 0.05493938568305548,
1646
+ "learning_rate": 4.630749768552589e-06,
1647
+ "loss": 0.0236,
1648
+ "step": 233
1649
+ },
1650
+ {
1651
+ "epoch": 1.7593984962406015,
1652
+ "grad_norm": 0.045214515268897214,
1653
+ "learning_rate": 4.358440233936617e-06,
1654
+ "loss": 0.0196,
1655
+ "step": 234
1656
+ },
1657
+ {
1658
+ "epoch": 1.7669172932330826,
1659
+ "grad_norm": 0.08670874372319154,
1660
+ "learning_rate": 4.094016724654359e-06,
1661
+ "loss": 0.0292,
1662
+ "step": 235
1663
+ },
1664
+ {
1665
+ "epoch": 1.774436090225564,
1666
+ "grad_norm": 0.049117351787292686,
1667
+ "learning_rate": 3.837524928243774e-06,
1668
+ "loss": 0.0224,
1669
+ "step": 236
1670
+ },
1671
+ {
1672
+ "epoch": 1.781954887218045,
1673
+ "grad_norm": 0.058397389390063136,
1674
+ "learning_rate": 3.589009161788104e-06,
1675
+ "loss": 0.0278,
1676
+ "step": 237
1677
+ },
1678
+ {
1679
+ "epoch": 1.7894736842105263,
1680
+ "grad_norm": 0.05422155962388968,
1681
+ "learning_rate": 3.3485123642587658e-06,
1682
+ "loss": 0.0243,
1683
+ "step": 238
1684
+ },
1685
+ {
1686
+ "epoch": 1.7969924812030076,
1687
+ "grad_norm": 0.07090059571835504,
1688
+ "learning_rate": 3.116076089096265e-06,
1689
+ "loss": 0.027,
1690
+ "step": 239
1691
+ },
1692
+ {
1693
+ "epoch": 1.8045112781954886,
1694
+ "grad_norm": 0.05963059250846481,
1695
+ "learning_rate": 2.8917404970305097e-06,
1696
+ "loss": 0.0288,
1697
+ "step": 240
1698
+ },
1699
+ {
1700
+ "epoch": 1.8120300751879699,
1701
+ "grad_norm": 0.06946365704174999,
1702
+ "learning_rate": 2.675544349141779e-06,
1703
+ "loss": 0.0259,
1704
+ "step": 241
1705
+ },
1706
+ {
1707
+ "epoch": 1.8195488721804511,
1708
+ "grad_norm": 0.06143740644726876,
1709
+ "learning_rate": 2.4675250001635232e-06,
1710
+ "loss": 0.0247,
1711
+ "step": 242
1712
+ },
1713
+ {
1714
+ "epoch": 1.8270676691729322,
1715
+ "grad_norm": 0.04728168437977354,
1716
+ "learning_rate": 2.2677183920281343e-06,
1717
+ "loss": 0.0193,
1718
+ "step": 243
1719
+ },
1720
+ {
1721
+ "epoch": 1.8345864661654137,
1722
+ "grad_norm": 0.07042127314230426,
1723
+ "learning_rate": 2.076159047656889e-06,
1724
+ "loss": 0.0227,
1725
+ "step": 244
1726
+ },
1727
+ {
1728
+ "epoch": 1.8421052631578947,
1729
+ "grad_norm": 0.05266415047166696,
1730
+ "learning_rate": 1.892880064994934e-06,
1731
+ "loss": 0.0256,
1732
+ "step": 245
1733
+ },
1734
+ {
1735
+ "epoch": 1.849624060150376,
1736
+ "grad_norm": 0.05204878417509025,
1737
+ "learning_rate": 1.7179131112926627e-06,
1738
+ "loss": 0.024,
1739
+ "step": 246
1740
+ },
1741
+ {
1742
+ "epoch": 1.8571428571428572,
1743
+ "grad_norm": 0.04727065912696429,
1744
+ "learning_rate": 1.551288417634106e-06,
1745
+ "loss": 0.0159,
1746
+ "step": 247
1747
+ },
1748
+ {
1749
+ "epoch": 1.8646616541353382,
1750
+ "grad_norm": 0.049637487718030344,
1751
+ "learning_rate": 1.3930347737136196e-06,
1752
+ "loss": 0.0209,
1753
+ "step": 248
1754
+ },
1755
+ {
1756
+ "epoch": 1.8721804511278195,
1757
+ "grad_norm": 0.0505669836884092,
1758
+ "learning_rate": 1.2431795228615372e-06,
1759
+ "loss": 0.0206,
1760
+ "step": 249
1761
+ },
1762
+ {
1763
+ "epoch": 1.8796992481203008,
1764
+ "grad_norm": 0.07557073448805833,
1765
+ "learning_rate": 1.101748557319715e-06,
1766
+ "loss": 0.0315,
1767
+ "step": 250
1768
+ },
1769
+ {
1770
+ "epoch": 1.8872180451127818,
1771
+ "grad_norm": 0.04855407299966349,
1772
+ "learning_rate": 9.687663137678604e-07,
1773
+ "loss": 0.0193,
1774
+ "step": 251
1775
+ },
1776
+ {
1777
+ "epoch": 1.8947368421052633,
1778
+ "grad_norm": 0.05981871688003821,
1779
+ "learning_rate": 8.442557691013043e-07,
1780
+ "loss": 0.0245,
1781
+ "step": 252
1782
+ },
1783
+ {
1784
+ "epoch": 1.9022556390977443,
1785
+ "grad_norm": 0.055297053623164526,
1786
+ "learning_rate": 7.282384364610206e-07,
1787
+ "loss": 0.0242,
1788
+ "step": 253
1789
+ },
1790
+ {
1791
+ "epoch": 1.9097744360902256,
1792
+ "grad_norm": 0.05097924138111233,
1793
+ "learning_rate": 6.207343615165561e-07,
1794
+ "loss": 0.0207,
1795
+ "step": 254
1796
+ },
1797
+ {
1798
+ "epoch": 1.9172932330827068,
1799
+ "grad_norm": 0.05870296620626846,
1800
+ "learning_rate": 5.217621190024779e-07,
1801
+ "loss": 0.0259,
1802
+ "step": 255
1803
+ },
1804
+ {
1805
+ "epoch": 1.9248120300751879,
1806
+ "grad_norm": 0.05289043509456049,
1807
+ "learning_rate": 4.3133880950905205e-07,
1808
+ "loss": 0.0217,
1809
+ "step": 256
1810
+ },
1811
+ {
1812
+ "epoch": 1.9323308270676691,
1813
+ "grad_norm": 0.05040687502136238,
1814
+ "learning_rate": 3.494800565275125e-07,
1815
+ "loss": 0.0226,
1816
+ "step": 257
1817
+ },
1818
+ {
1819
+ "epoch": 1.9398496240601504,
1820
+ "grad_norm": 0.05483598628420617,
1821
+ "learning_rate": 2.762000037506485e-07,
1822
+ "loss": 0.0226,
1823
+ "step": 258
1824
+ },
1825
+ {
1826
+ "epoch": 1.9473684210526314,
1827
+ "grad_norm": 0.052171052589092846,
1828
+ "learning_rate": 2.115113126290258e-07,
1829
+ "loss": 0.0224,
1830
+ "step": 259
1831
+ },
1832
+ {
1833
+ "epoch": 1.954887218045113,
1834
+ "grad_norm": 0.060066029686361856,
1835
+ "learning_rate": 1.554251601833201e-07,
1836
+ "loss": 0.0242,
1837
+ "step": 260
1838
+ },
1839
+ {
1840
+ "epoch": 1.962406015037594,
1841
+ "grad_norm": 0.04560282840465627,
1842
+ "learning_rate": 1.0795123707312283e-07,
1843
+ "loss": 0.0199,
1844
+ "step": 261
1845
+ },
1846
+ {
1847
+ "epoch": 1.9699248120300752,
1848
+ "grad_norm": 0.055943707431487216,
1849
+ "learning_rate": 6.909774592258056e-08,
1850
+ "loss": 0.0218,
1851
+ "step": 262
1852
+ },
1853
+ {
1854
+ "epoch": 1.9774436090225564,
1855
+ "grad_norm": 0.057987573660367824,
1856
+ "learning_rate": 3.8871399903134265e-08,
1857
+ "loss": 0.0242,
1858
+ "step": 263
1859
+ },
1860
+ {
1861
+ "epoch": 1.9849624060150375,
1862
+ "grad_norm": 0.05438020219150765,
1863
+ "learning_rate": 1.7277421573608232e-08,
1864
+ "loss": 0.0278,
1865
+ "step": 264
1866
+ },
1867
+ {
1868
+ "epoch": 1.9924812030075187,
1869
+ "grad_norm": 0.05442881774912085,
1870
+ "learning_rate": 4.319541977831909e-09,
1871
+ "loss": 0.0193,
1872
+ "step": 265
1873
+ },
1874
+ {
1875
+ "epoch": 2.0,
1876
+ "grad_norm": 0.059490023866208885,
1877
+ "learning_rate": 0.0,
1878
+ "loss": 0.0224,
1879
+ "step": 266
1880
+ }
1881
+ ],
1882
+ "logging_steps": 1,
1883
+ "max_steps": 266,
1884
+ "num_input_tokens_seen": 0,
1885
+ "num_train_epochs": 2,
1886
+ "save_steps": 300,
1887
+ "stateful_callbacks": {
1888
+ "TrainerControl": {
1889
+ "args": {
1890
+ "should_epoch_stop": false,
1891
+ "should_evaluate": false,
1892
+ "should_log": false,
1893
+ "should_save": true,
1894
+ "should_training_stop": true
1895
+ },
1896
+ "attributes": {}
1897
+ }
1898
+ },
1899
+ "total_flos": 673614818967552.0,
1900
+ "train_batch_size": 1,
1901
+ "trial_name": null,
1902
+ "trial_params": null
1903
+ }
checkpoint-266/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6847f9e87919055227d9c8018b28017980a14d70646aaf178f757b9a503d6f
3
+ size 7224
checkpoint-266/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-266/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.029648179188370705,
4
+ "eval_runtime": 6.4826,
5
+ "eval_samples_per_second": 0.926,
6
+ "eval_steps_per_second": 0.309
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "total_flos": 673614818967552.0,
4
+ "train_loss": 0.039493271835932604,
5
+ "train_runtime": 2026.6163,
6
+ "train_samples_per_second": 0.522,
7
+ "train_steps_per_second": 0.131
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 266, "loss": 0.2087, "lr": 3.7037037037037037e-06, "epoch": 0.007518796992481203, "percentage": 0.38, "elapsed_time": "0:00:13", "remaining_time": "0:57:45"}
2
+ {"current_steps": 2, "total_steps": 266, "loss": 0.1045, "lr": 7.4074074074074075e-06, "epoch": 0.015037593984962405, "percentage": 0.75, "elapsed_time": "0:00:22", "remaining_time": "0:50:07"}
3
+ {"current_steps": 3, "total_steps": 266, "loss": 0.1291, "lr": 1.1111111111111112e-05, "epoch": 0.022556390977443608, "percentage": 1.13, "elapsed_time": "0:00:30", "remaining_time": "0:44:04"}
4
+ {"current_steps": 4, "total_steps": 266, "loss": 0.1263, "lr": 1.4814814814814815e-05, "epoch": 0.03007518796992481, "percentage": 1.5, "elapsed_time": "0:00:37", "remaining_time": "0:40:59"}
5
+ {"current_steps": 5, "total_steps": 266, "loss": 0.1409, "lr": 1.8518518518518518e-05, "epoch": 0.03759398496240601, "percentage": 1.88, "elapsed_time": "0:00:44", "remaining_time": "0:39:05"}
6
+ {"current_steps": 6, "total_steps": 266, "loss": 0.2362, "lr": 2.2222222222222223e-05, "epoch": 0.045112781954887216, "percentage": 2.26, "elapsed_time": "0:00:52", "remaining_time": "0:37:46"}
7
+ {"current_steps": 7, "total_steps": 266, "loss": 0.1195, "lr": 2.5925925925925925e-05, "epoch": 0.05263157894736842, "percentage": 2.63, "elapsed_time": "0:00:59", "remaining_time": "0:36:49"}
8
+ {"current_steps": 8, "total_steps": 266, "loss": 0.1215, "lr": 2.962962962962963e-05, "epoch": 0.06015037593984962, "percentage": 3.01, "elapsed_time": "0:01:07", "remaining_time": "0:36:05"}
9
+ {"current_steps": 9, "total_steps": 266, "loss": 0.0881, "lr": 3.3333333333333335e-05, "epoch": 0.06766917293233082, "percentage": 3.38, "elapsed_time": "0:01:14", "remaining_time": "0:35:29"}
10
+ {"current_steps": 10, "total_steps": 266, "loss": 0.0923, "lr": 3.7037037037037037e-05, "epoch": 0.07518796992481203, "percentage": 3.76, "elapsed_time": "0:01:22", "remaining_time": "0:34:59"}
11
+ {"current_steps": 11, "total_steps": 266, "loss": 0.218, "lr": 4.074074074074074e-05, "epoch": 0.08270676691729323, "percentage": 4.14, "elapsed_time": "0:01:29", "remaining_time": "0:34:32"}
12
+ {"current_steps": 12, "total_steps": 266, "loss": 0.149, "lr": 4.4444444444444447e-05, "epoch": 0.09022556390977443, "percentage": 4.51, "elapsed_time": "0:01:36", "remaining_time": "0:34:09"}
13
+ {"current_steps": 13, "total_steps": 266, "loss": 0.1835, "lr": 4.814814814814815e-05, "epoch": 0.09774436090225563, "percentage": 4.89, "elapsed_time": "0:01:44", "remaining_time": "0:33:49"}
14
+ {"current_steps": 14, "total_steps": 266, "loss": 0.1573, "lr": 5.185185185185185e-05, "epoch": 0.10526315789473684, "percentage": 5.26, "elapsed_time": "0:01:51", "remaining_time": "0:33:30"}
15
+ {"current_steps": 15, "total_steps": 266, "loss": 0.1701, "lr": 5.555555555555556e-05, "epoch": 0.11278195488721804, "percentage": 5.64, "elapsed_time": "0:01:59", "remaining_time": "0:33:13"}
16
+ {"current_steps": 16, "total_steps": 266, "loss": 0.0938, "lr": 5.925925925925926e-05, "epoch": 0.12030075187969924, "percentage": 6.02, "elapsed_time": "0:02:06", "remaining_time": "0:32:57"}
17
+ {"current_steps": 17, "total_steps": 266, "loss": 0.1221, "lr": 6.296296296296296e-05, "epoch": 0.12781954887218044, "percentage": 6.39, "elapsed_time": "0:02:13", "remaining_time": "0:32:42"}
18
+ {"current_steps": 18, "total_steps": 266, "loss": 0.1068, "lr": 6.666666666666667e-05, "epoch": 0.13533834586466165, "percentage": 6.77, "elapsed_time": "0:02:21", "remaining_time": "0:32:28"}
19
+ {"current_steps": 19, "total_steps": 266, "loss": 0.1183, "lr": 7.037037037037038e-05, "epoch": 0.14285714285714285, "percentage": 7.14, "elapsed_time": "0:02:28", "remaining_time": "0:32:15"}
20
+ {"current_steps": 20, "total_steps": 266, "loss": 0.0941, "lr": 7.407407407407407e-05, "epoch": 0.15037593984962405, "percentage": 7.52, "elapsed_time": "0:02:36", "remaining_time": "0:32:01"}
21
+ {"current_steps": 21, "total_steps": 266, "loss": 0.0851, "lr": 7.777777777777778e-05, "epoch": 0.15789473684210525, "percentage": 7.89, "elapsed_time": "0:02:43", "remaining_time": "0:31:49"}
22
+ {"current_steps": 22, "total_steps": 266, "loss": 0.0672, "lr": 8.148148148148148e-05, "epoch": 0.16541353383458646, "percentage": 8.27, "elapsed_time": "0:02:51", "remaining_time": "0:31:37"}
23
+ {"current_steps": 23, "total_steps": 266, "loss": 0.0692, "lr": 8.518518518518518e-05, "epoch": 0.17293233082706766, "percentage": 8.65, "elapsed_time": "0:02:58", "remaining_time": "0:31:26"}
24
+ {"current_steps": 24, "total_steps": 266, "loss": 0.0719, "lr": 8.888888888888889e-05, "epoch": 0.18045112781954886, "percentage": 9.02, "elapsed_time": "0:03:05", "remaining_time": "0:31:15"}
25
+ {"current_steps": 25, "total_steps": 266, "loss": 0.1039, "lr": 9.25925925925926e-05, "epoch": 0.18796992481203006, "percentage": 9.4, "elapsed_time": "0:03:13", "remaining_time": "0:31:04"}
26
+ {"current_steps": 26, "total_steps": 266, "loss": 0.0642, "lr": 9.62962962962963e-05, "epoch": 0.19548872180451127, "percentage": 9.77, "elapsed_time": "0:03:20", "remaining_time": "0:30:53"}
27
+ {"current_steps": 27, "total_steps": 266, "loss": 0.0806, "lr": 0.0001, "epoch": 0.20300751879699247, "percentage": 10.15, "elapsed_time": "0:03:28", "remaining_time": "0:30:42"}
28
+ {"current_steps": 28, "total_steps": 266, "loss": 0.0699, "lr": 9.999568045802217e-05, "epoch": 0.21052631578947367, "percentage": 10.53, "elapsed_time": "0:03:35", "remaining_time": "0:30:32"}
29
+ {"current_steps": 29, "total_steps": 266, "loss": 0.0797, "lr": 9.998272257842641e-05, "epoch": 0.21804511278195488, "percentage": 10.9, "elapsed_time": "0:03:42", "remaining_time": "0:30:22"}
30
+ {"current_steps": 30, "total_steps": 266, "loss": 0.0599, "lr": 9.996112860009688e-05, "epoch": 0.22556390977443608, "percentage": 11.28, "elapsed_time": "0:03:50", "remaining_time": "0:30:12"}
31
+ {"current_steps": 31, "total_steps": 266, "loss": 0.0673, "lr": 9.993090225407743e-05, "epoch": 0.23308270676691728, "percentage": 11.65, "elapsed_time": "0:03:57", "remaining_time": "0:30:02"}
32
+ {"current_steps": 32, "total_steps": 266, "loss": 0.063, "lr": 9.989204876292688e-05, "epoch": 0.24060150375939848, "percentage": 12.03, "elapsed_time": "0:04:05", "remaining_time": "0:29:55"}
33
+ {"current_steps": 33, "total_steps": 266, "loss": 0.0563, "lr": 9.984457483981669e-05, "epoch": 0.24812030075187969, "percentage": 12.41, "elapsed_time": "0:04:12", "remaining_time": "0:29:45"}
34
+ {"current_steps": 34, "total_steps": 266, "loss": 0.0449, "lr": 9.978848868737098e-05, "epoch": 0.2556390977443609, "percentage": 12.78, "elapsed_time": "0:04:20", "remaining_time": "0:29:36"}
35
+ {"current_steps": 35, "total_steps": 266, "loss": 0.0492, "lr": 9.972379999624936e-05, "epoch": 0.2631578947368421, "percentage": 13.16, "elapsed_time": "0:04:27", "remaining_time": "0:29:26"}
36
+ {"current_steps": 36, "total_steps": 266, "loss": 0.0384, "lr": 9.96505199434725e-05, "epoch": 0.2706766917293233, "percentage": 13.53, "elapsed_time": "0:04:35", "remaining_time": "0:29:17"}
37
+ {"current_steps": 37, "total_steps": 266, "loss": 0.052, "lr": 9.956866119049095e-05, "epoch": 0.2781954887218045, "percentage": 13.91, "elapsed_time": "0:04:42", "remaining_time": "0:29:08"}
38
+ {"current_steps": 38, "total_steps": 266, "loss": 0.0499, "lr": 9.947823788099753e-05, "epoch": 0.2857142857142857, "percentage": 14.29, "elapsed_time": "0:04:49", "remaining_time": "0:28:59"}
39
+ {"current_steps": 39, "total_steps": 266, "loss": 0.0382, "lr": 9.937926563848346e-05, "epoch": 0.2932330827067669, "percentage": 14.66, "elapsed_time": "0:04:57", "remaining_time": "0:28:52"}
40
+ {"current_steps": 40, "total_steps": 266, "loss": 0.0424, "lr": 9.927176156353899e-05, "epoch": 0.3007518796992481, "percentage": 15.04, "elapsed_time": "0:05:05", "remaining_time": "0:28:43"}
41
+ {"current_steps": 41, "total_steps": 266, "loss": 0.0477, "lr": 9.91557442308987e-05, "epoch": 0.3082706766917293, "percentage": 15.41, "elapsed_time": "0:05:12", "remaining_time": "0:28:34"}
42
+ {"current_steps": 42, "total_steps": 266, "loss": 0.0423, "lr": 9.903123368623216e-05, "epoch": 0.3157894736842105, "percentage": 15.79, "elapsed_time": "0:05:19", "remaining_time": "0:28:25"}
43
+ {"current_steps": 43, "total_steps": 266, "loss": 0.0373, "lr": 9.889825144268029e-05, "epoch": 0.3233082706766917, "percentage": 16.17, "elapsed_time": "0:05:27", "remaining_time": "0:28:17"}
44
+ {"current_steps": 44, "total_steps": 266, "loss": 0.0532, "lr": 9.875682047713846e-05, "epoch": 0.3308270676691729, "percentage": 16.54, "elapsed_time": "0:05:34", "remaining_time": "0:28:08"}
45
+ {"current_steps": 45, "total_steps": 266, "loss": 0.0302, "lr": 9.860696522628639e-05, "epoch": 0.3383458646616541, "percentage": 16.92, "elapsed_time": "0:05:42", "remaining_time": "0:28:00"}
46
+ {"current_steps": 46, "total_steps": 266, "loss": 0.043, "lr": 9.844871158236591e-05, "epoch": 0.3458646616541353, "percentage": 17.29, "elapsed_time": "0:05:49", "remaining_time": "0:27:51"}
47
+ {"current_steps": 47, "total_steps": 266, "loss": 0.0414, "lr": 9.828208688870735e-05, "epoch": 0.3533834586466165, "percentage": 17.67, "elapsed_time": "0:05:56", "remaining_time": "0:27:43"}
48
+ {"current_steps": 48, "total_steps": 266, "loss": 0.0442, "lr": 9.810711993500507e-05, "epoch": 0.3609022556390977, "percentage": 18.05, "elapsed_time": "0:06:04", "remaining_time": "0:27:34"}
49
+ {"current_steps": 49, "total_steps": 266, "loss": 0.0397, "lr": 9.792384095234313e-05, "epoch": 0.3684210526315789, "percentage": 18.42, "elapsed_time": "0:06:11", "remaining_time": "0:27:26"}
50
+ {"current_steps": 50, "total_steps": 266, "loss": 0.0294, "lr": 9.773228160797188e-05, "epoch": 0.37593984962406013, "percentage": 18.8, "elapsed_time": "0:06:19", "remaining_time": "0:27:18"}
51
+ {"current_steps": 51, "total_steps": 266, "loss": 0.0388, "lr": 9.753247499983649e-05, "epoch": 0.38345864661654133, "percentage": 19.17, "elapsed_time": "0:06:26", "remaining_time": "0:27:09"}
52
+ {"current_steps": 52, "total_steps": 266, "loss": 0.0464, "lr": 9.732445565085824e-05, "epoch": 0.39097744360902253, "percentage": 19.55, "elapsed_time": "0:06:33", "remaining_time": "0:27:01"}
53
+ {"current_steps": 53, "total_steps": 266, "loss": 0.0441, "lr": 9.71082595029695e-05, "epoch": 0.39849624060150374, "percentage": 19.92, "elapsed_time": "0:06:41", "remaining_time": "0:26:53"}
54
+ {"current_steps": 54, "total_steps": 266, "loss": 0.0403, "lr": 9.688392391090373e-05, "epoch": 0.40601503759398494, "percentage": 20.3, "elapsed_time": "0:06:48", "remaining_time": "0:26:45"}
55
+ {"current_steps": 55, "total_steps": 266, "loss": 0.0414, "lr": 9.665148763574123e-05, "epoch": 0.41353383458646614, "percentage": 20.68, "elapsed_time": "0:06:56", "remaining_time": "0:26:36"}
56
+ {"current_steps": 56, "total_steps": 266, "loss": 0.0348, "lr": 9.64109908382119e-05, "epoch": 0.42105263157894735, "percentage": 21.05, "elapsed_time": "0:07:03", "remaining_time": "0:26:28"}
57
+ {"current_steps": 57, "total_steps": 266, "loss": 0.0353, "lr": 9.616247507175623e-05, "epoch": 0.42857142857142855, "percentage": 21.43, "elapsed_time": "0:07:11", "remaining_time": "0:26:20"}
58
+ {"current_steps": 58, "total_steps": 266, "loss": 0.0354, "lr": 9.590598327534564e-05, "epoch": 0.43609022556390975, "percentage": 21.8, "elapsed_time": "0:07:18", "remaining_time": "0:26:12"}
59
+ {"current_steps": 59, "total_steps": 266, "loss": 0.0436, "lr": 9.564155976606339e-05, "epoch": 0.44360902255639095, "percentage": 22.18, "elapsed_time": "0:07:25", "remaining_time": "0:26:04"}
60
+ {"current_steps": 60, "total_steps": 266, "loss": 0.0448, "lr": 9.536925023144742e-05, "epoch": 0.45112781954887216, "percentage": 22.56, "elapsed_time": "0:07:33", "remaining_time": "0:25:56"}
61
+ {"current_steps": 61, "total_steps": 266, "loss": 0.0456, "lr": 9.508910172159635e-05, "epoch": 0.45864661654135336, "percentage": 22.93, "elapsed_time": "0:07:40", "remaining_time": "0:25:48"}
62
+ {"current_steps": 62, "total_steps": 266, "loss": 0.0417, "lr": 9.480116264104011e-05, "epoch": 0.46616541353383456, "percentage": 23.31, "elapsed_time": "0:07:48", "remaining_time": "0:25:40"}
63
+ {"current_steps": 63, "total_steps": 266, "loss": 0.0427, "lr": 9.450548274037653e-05, "epoch": 0.47368421052631576, "percentage": 23.68, "elapsed_time": "0:07:55", "remaining_time": "0:25:32"}
64
+ {"current_steps": 64, "total_steps": 266, "loss": 0.0317, "lr": 9.420211310767533e-05, "epoch": 0.48120300751879697, "percentage": 24.06, "elapsed_time": "0:08:02", "remaining_time": "0:25:24"}
65
+ {"current_steps": 65, "total_steps": 266, "loss": 0.0308, "lr": 9.389110615965102e-05, "epoch": 0.48872180451127817, "percentage": 24.44, "elapsed_time": "0:08:10", "remaining_time": "0:25:16"}
66
+ {"current_steps": 66, "total_steps": 266, "loss": 0.0404, "lr": 9.35725156326063e-05, "epoch": 0.49624060150375937, "percentage": 24.81, "elapsed_time": "0:08:17", "remaining_time": "0:25:08"}
67
+ {"current_steps": 67, "total_steps": 266, "loss": 0.0383, "lr": 9.324639657314742e-05, "epoch": 0.5037593984962406, "percentage": 25.19, "elapsed_time": "0:08:25", "remaining_time": "0:25:00"}
68
+ {"current_steps": 68, "total_steps": 266, "loss": 0.0419, "lr": 9.291280532867302e-05, "epoch": 0.5112781954887218, "percentage": 25.56, "elapsed_time": "0:08:32", "remaining_time": "0:24:52"}
69
+ {"current_steps": 69, "total_steps": 266, "loss": 0.0301, "lr": 9.257179953763845e-05, "epoch": 0.518796992481203, "percentage": 25.94, "elapsed_time": "0:08:39", "remaining_time": "0:24:44"}
70
+ {"current_steps": 70, "total_steps": 266, "loss": 0.0355, "lr": 9.222343811959693e-05, "epoch": 0.5263157894736842, "percentage": 26.32, "elapsed_time": "0:08:47", "remaining_time": "0:24:36"}
71
+ {"current_steps": 71, "total_steps": 266, "loss": 0.0379, "lr": 9.186778126501916e-05, "epoch": 0.5338345864661654, "percentage": 26.69, "elapsed_time": "0:08:54", "remaining_time": "0:24:28"}
72
+ {"current_steps": 72, "total_steps": 266, "loss": 0.03, "lr": 9.150489042489367e-05, "epoch": 0.5413533834586466, "percentage": 27.07, "elapsed_time": "0:09:02", "remaining_time": "0:24:20"}
73
+ {"current_steps": 73, "total_steps": 266, "loss": 0.038, "lr": 9.113482830010918e-05, "epoch": 0.5488721804511278, "percentage": 27.44, "elapsed_time": "0:09:09", "remaining_time": "0:24:12"}
74
+ {"current_steps": 74, "total_steps": 266, "loss": 0.0321, "lr": 9.075765883062093e-05, "epoch": 0.556390977443609, "percentage": 27.82, "elapsed_time": "0:09:16", "remaining_time": "0:24:05"}
75
+ {"current_steps": 75, "total_steps": 266, "loss": 0.0369, "lr": 9.037344718440322e-05, "epoch": 0.5639097744360902, "percentage": 28.2, "elapsed_time": "0:09:24", "remaining_time": "0:23:57"}
76
+ {"current_steps": 76, "total_steps": 266, "loss": 0.0429, "lr": 8.99822597461894e-05, "epoch": 0.5714285714285714, "percentage": 28.57, "elapsed_time": "0:09:31", "remaining_time": "0:23:49"}
77
+ {"current_steps": 77, "total_steps": 266, "loss": 0.0351, "lr": 8.958416410600187e-05, "epoch": 0.5789473684210527, "percentage": 28.95, "elapsed_time": "0:09:39", "remaining_time": "0:23:41"}
78
+ {"current_steps": 78, "total_steps": 266, "loss": 0.0425, "lr": 8.917922904747384e-05, "epoch": 0.5864661654135338, "percentage": 29.32, "elapsed_time": "0:09:46", "remaining_time": "0:23:33"}
79
+ {"current_steps": 79, "total_steps": 266, "loss": 0.0322, "lr": 8.876752453596462e-05, "epoch": 0.5939849624060151, "percentage": 29.7, "elapsed_time": "0:09:53", "remaining_time": "0:23:25"}
80
+ {"current_steps": 80, "total_steps": 266, "loss": 0.0446, "lr": 8.834912170647101e-05, "epoch": 0.6015037593984962, "percentage": 30.08, "elapsed_time": "0:10:01", "remaining_time": "0:23:18"}
81
+ {"current_steps": 81, "total_steps": 266, "loss": 0.0424, "lr": 8.792409285133642e-05, "epoch": 0.6090225563909775, "percentage": 30.45, "elapsed_time": "0:10:08", "remaining_time": "0:23:10"}
82
+ {"current_steps": 82, "total_steps": 266, "loss": 0.0342, "lr": 8.749251140776016e-05, "epoch": 0.6165413533834586, "percentage": 30.83, "elapsed_time": "0:10:16", "remaining_time": "0:23:02"}
83
+ {"current_steps": 83, "total_steps": 266, "loss": 0.0321, "lr": 8.705445194510868e-05, "epoch": 0.6240601503759399, "percentage": 31.2, "elapsed_time": "0:10:23", "remaining_time": "0:22:54"}
84
+ {"current_steps": 84, "total_steps": 266, "loss": 0.0371, "lr": 8.66099901520315e-05, "epoch": 0.631578947368421, "percentage": 31.58, "elapsed_time": "0:10:30", "remaining_time": "0:22:47"}
85
+ {"current_steps": 85, "total_steps": 266, "loss": 0.0349, "lr": 8.615920282338355e-05, "epoch": 0.6390977443609023, "percentage": 31.95, "elapsed_time": "0:10:38", "remaining_time": "0:22:39"}
86
+ {"current_steps": 86, "total_steps": 266, "loss": 0.0287, "lr": 8.570216784695637e-05, "epoch": 0.6466165413533834, "percentage": 32.33, "elapsed_time": "0:10:45", "remaining_time": "0:22:31"}
87
+ {"current_steps": 87, "total_steps": 266, "loss": 0.0379, "lr": 8.52389641900206e-05, "epoch": 0.6541353383458647, "percentage": 32.71, "elapsed_time": "0:10:53", "remaining_time": "0:22:23"}
88
+ {"current_steps": 88, "total_steps": 266, "loss": 0.0264, "lr": 8.476967188568188e-05, "epoch": 0.6616541353383458, "percentage": 33.08, "elapsed_time": "0:11:00", "remaining_time": "0:22:16"}
89
+ {"current_steps": 89, "total_steps": 266, "loss": 0.028, "lr": 8.429437201905254e-05, "epoch": 0.6691729323308271, "percentage": 33.46, "elapsed_time": "0:11:08", "remaining_time": "0:22:08"}
90
+ {"current_steps": 90, "total_steps": 266, "loss": 0.0353, "lr": 8.381314671324159e-05, "epoch": 0.6766917293233082, "percentage": 33.83, "elapsed_time": "0:11:15", "remaining_time": "0:22:00"}
91
+ {"current_steps": 91, "total_steps": 266, "loss": 0.0423, "lr": 8.332607911516545e-05, "epoch": 0.6842105263157895, "percentage": 34.21, "elapsed_time": "0:11:22", "remaining_time": "0:21:53"}
92
+ {"current_steps": 92, "total_steps": 266, "loss": 0.0288, "lr": 8.283325338118153e-05, "epoch": 0.6917293233082706, "percentage": 34.59, "elapsed_time": "0:11:30", "remaining_time": "0:21:45"}
93
+ {"current_steps": 93, "total_steps": 266, "loss": 0.0319, "lr": 8.233475466254765e-05, "epoch": 0.6992481203007519, "percentage": 34.96, "elapsed_time": "0:11:37", "remaining_time": "0:21:37"}
94
+ {"current_steps": 94, "total_steps": 266, "loss": 0.0413, "lr": 8.183066909070947e-05, "epoch": 0.706766917293233, "percentage": 35.34, "elapsed_time": "0:11:45", "remaining_time": "0:21:30"}
95
+ {"current_steps": 95, "total_steps": 266, "loss": 0.0319, "lr": 8.132108376241849e-05, "epoch": 0.7142857142857143, "percentage": 35.71, "elapsed_time": "0:11:52", "remaining_time": "0:21:22"}
96
+ {"current_steps": 96, "total_steps": 266, "loss": 0.0415, "lr": 8.08060867246834e-05, "epoch": 0.7218045112781954, "percentage": 36.09, "elapsed_time": "0:11:59", "remaining_time": "0:21:14"}
97
+ {"current_steps": 97, "total_steps": 266, "loss": 0.0307, "lr": 8.028576695955711e-05, "epoch": 0.7293233082706767, "percentage": 36.47, "elapsed_time": "0:12:07", "remaining_time": "0:21:07"}
98
+ {"current_steps": 98, "total_steps": 266, "loss": 0.0292, "lr": 7.97602143687623e-05, "epoch": 0.7368421052631579, "percentage": 36.84, "elapsed_time": "0:12:14", "remaining_time": "0:20:59"}
99
+ {"current_steps": 99, "total_steps": 266, "loss": 0.0304, "lr": 7.922951975815811e-05, "epoch": 0.7443609022556391, "percentage": 37.22, "elapsed_time": "0:12:22", "remaining_time": "0:20:51"}
100
+ {"current_steps": 100, "total_steps": 266, "loss": 0.0318, "lr": 7.869377482205042e-05, "epoch": 0.7518796992481203, "percentage": 37.59, "elapsed_time": "0:12:29", "remaining_time": "0:20:44"}
101
+ {"current_steps": 101, "total_steps": 266, "loss": 0.027, "lr": 7.815307212734888e-05, "epoch": 0.7593984962406015, "percentage": 37.97, "elapsed_time": "0:12:36", "remaining_time": "0:20:36"}
102
+ {"current_steps": 102, "total_steps": 266, "loss": 0.0339, "lr": 7.760750509757298e-05, "epoch": 0.7669172932330827, "percentage": 38.35, "elapsed_time": "0:12:44", "remaining_time": "0:20:28"}
103
+ {"current_steps": 103, "total_steps": 266, "loss": 0.0228, "lr": 7.705716799671019e-05, "epoch": 0.7744360902255639, "percentage": 38.72, "elapsed_time": "0:12:51", "remaining_time": "0:20:21"}
104
+ {"current_steps": 104, "total_steps": 266, "loss": 0.0357, "lr": 7.650215591292888e-05, "epoch": 0.7819548872180451, "percentage": 39.1, "elapsed_time": "0:12:59", "remaining_time": "0:20:13"}
105
+ {"current_steps": 105, "total_steps": 266, "loss": 0.0285, "lr": 7.594256474214882e-05, "epoch": 0.7894736842105263, "percentage": 39.47, "elapsed_time": "0:13:06", "remaining_time": "0:20:06"}
106
+ {"current_steps": 106, "total_steps": 266, "loss": 0.0359, "lr": 7.537849117147212e-05, "epoch": 0.7969924812030075, "percentage": 39.85, "elapsed_time": "0:13:13", "remaining_time": "0:19:58"}
107
+ {"current_steps": 107, "total_steps": 266, "loss": 0.0367, "lr": 7.481003266247744e-05, "epoch": 0.8045112781954887, "percentage": 40.23, "elapsed_time": "0:13:21", "remaining_time": "0:19:50"}
108
+ {"current_steps": 108, "total_steps": 266, "loss": 0.0358, "lr": 7.423728743438048e-05, "epoch": 0.8120300751879699, "percentage": 40.6, "elapsed_time": "0:13:28", "remaining_time": "0:19:43"}
109
+ {"current_steps": 109, "total_steps": 266, "loss": 0.0329, "lr": 7.366035444706347e-05, "epoch": 0.8195488721804511, "percentage": 40.98, "elapsed_time": "0:13:36", "remaining_time": "0:19:35"}
110
+ {"current_steps": 110, "total_steps": 266, "loss": 0.0364, "lr": 7.307933338397667e-05, "epoch": 0.8270676691729323, "percentage": 41.35, "elapsed_time": "0:13:43", "remaining_time": "0:19:28"}
111
+ {"current_steps": 111, "total_steps": 266, "loss": 0.0328, "lr": 7.249432463491498e-05, "epoch": 0.8345864661654135, "percentage": 41.73, "elapsed_time": "0:13:51", "remaining_time": "0:19:20"}
112
+ {"current_steps": 112, "total_steps": 266, "loss": 0.0242, "lr": 7.190542927867234e-05, "epoch": 0.8421052631578947, "percentage": 42.11, "elapsed_time": "0:13:58", "remaining_time": "0:19:12"}
113
+ {"current_steps": 113, "total_steps": 266, "loss": 0.0277, "lr": 7.131274906557725e-05, "epoch": 0.849624060150376, "percentage": 42.48, "elapsed_time": "0:14:05", "remaining_time": "0:19:05"}
114
+ {"current_steps": 114, "total_steps": 266, "loss": 0.0282, "lr": 7.071638639991207e-05, "epoch": 0.8571428571428571, "percentage": 42.86, "elapsed_time": "0:14:13", "remaining_time": "0:18:57"}
115
+ {"current_steps": 115, "total_steps": 266, "loss": 0.0311, "lr": 7.011644432221958e-05, "epoch": 0.8646616541353384, "percentage": 43.23, "elapsed_time": "0:14:20", "remaining_time": "0:18:50"}
116
+ {"current_steps": 116, "total_steps": 266, "loss": 0.0414, "lr": 6.95130264914993e-05, "epoch": 0.8721804511278195, "percentage": 43.61, "elapsed_time": "0:14:28", "remaining_time": "0:18:42"}
117
+ {"current_steps": 117, "total_steps": 266, "loss": 0.0279, "lr": 6.890623716729724e-05, "epoch": 0.8796992481203008, "percentage": 43.98, "elapsed_time": "0:14:35", "remaining_time": "0:18:34"}
118
+ {"current_steps": 118, "total_steps": 266, "loss": 0.0298, "lr": 6.82961811916917e-05, "epoch": 0.8872180451127819, "percentage": 44.36, "elapsed_time": "0:14:42", "remaining_time": "0:18:27"}
119
+ {"current_steps": 119, "total_steps": 266, "loss": 0.0263, "lr": 6.768296397117848e-05, "epoch": 0.8947368421052632, "percentage": 44.74, "elapsed_time": "0:14:50", "remaining_time": "0:18:19"}
120
+ {"current_steps": 120, "total_steps": 266, "loss": 0.0331, "lr": 6.706669145845863e-05, "epoch": 0.9022556390977443, "percentage": 45.11, "elapsed_time": "0:14:57", "remaining_time": "0:18:12"}
121
+ {"current_steps": 121, "total_steps": 266, "loss": 0.0323, "lr": 6.644747013413168e-05, "epoch": 0.9097744360902256, "percentage": 45.49, "elapsed_time": "0:15:05", "remaining_time": "0:18:04"}
122
+ {"current_steps": 122, "total_steps": 266, "loss": 0.0356, "lr": 6.582540698829781e-05, "epoch": 0.9172932330827067, "percentage": 45.86, "elapsed_time": "0:15:12", "remaining_time": "0:17:57"}
123
+ {"current_steps": 123, "total_steps": 266, "loss": 0.0374, "lr": 6.520060950207185e-05, "epoch": 0.924812030075188, "percentage": 46.24, "elapsed_time": "0:15:19", "remaining_time": "0:17:49"}
124
+ {"current_steps": 124, "total_steps": 266, "loss": 0.0281, "lr": 6.457318562901256e-05, "epoch": 0.9323308270676691, "percentage": 46.62, "elapsed_time": "0:15:27", "remaining_time": "0:17:42"}
125
+ {"current_steps": 125, "total_steps": 266, "loss": 0.0344, "lr": 6.394324377647028e-05, "epoch": 0.9398496240601504, "percentage": 46.99, "elapsed_time": "0:15:34", "remaining_time": "0:17:34"}
126
+ {"current_steps": 126, "total_steps": 266, "loss": 0.0289, "lr": 6.331089278685599e-05, "epoch": 0.9473684210526315, "percentage": 47.37, "elapsed_time": "0:15:42", "remaining_time": "0:17:26"}
127
+ {"current_steps": 127, "total_steps": 266, "loss": 0.0254, "lr": 6.26762419188355e-05, "epoch": 0.9548872180451128, "percentage": 47.74, "elapsed_time": "0:15:49", "remaining_time": "0:17:19"}
128
+ {"current_steps": 128, "total_steps": 266, "loss": 0.0423, "lr": 6.203940082845144e-05, "epoch": 0.9624060150375939, "percentage": 48.12, "elapsed_time": "0:15:57", "remaining_time": "0:17:11"}
129
+ {"current_steps": 129, "total_steps": 266, "loss": 0.0331, "lr": 6.140047955017671e-05, "epoch": 0.9699248120300752, "percentage": 48.5, "elapsed_time": "0:16:04", "remaining_time": "0:17:04"}
130
+ {"current_steps": 130, "total_steps": 266, "loss": 0.0344, "lr": 6.075958847790262e-05, "epoch": 0.9774436090225563, "percentage": 48.87, "elapsed_time": "0:16:11", "remaining_time": "0:16:56"}
131
+ {"current_steps": 131, "total_steps": 266, "loss": 0.0264, "lr": 6.011683834586473e-05, "epoch": 0.9849624060150376, "percentage": 49.25, "elapsed_time": "0:16:19", "remaining_time": "0:16:49"}
132
+ {"current_steps": 132, "total_steps": 266, "loss": 0.0237, "lr": 5.947234020951015e-05, "epoch": 0.9924812030075187, "percentage": 49.62, "elapsed_time": "0:16:26", "remaining_time": "0:16:41"}
133
+ {"current_steps": 133, "total_steps": 266, "loss": 0.0317, "lr": 5.882620542630901e-05, "epoch": 1.0, "percentage": 50.0, "elapsed_time": "0:16:34", "remaining_time": "0:16:34"}
134
+ {"current_steps": 134, "total_steps": 266, "loss": 0.0268, "lr": 5.8178545636514145e-05, "epoch": 1.0075187969924813, "percentage": 50.38, "elapsed_time": "0:16:41", "remaining_time": "0:16:26"}
135
+ {"current_steps": 135, "total_steps": 266, "loss": 0.0223, "lr": 5.752947274387147e-05, "epoch": 1.0150375939849625, "percentage": 50.75, "elapsed_time": "0:16:48", "remaining_time": "0:16:19"}
136
+ {"current_steps": 136, "total_steps": 266, "loss": 0.0304, "lr": 5.687909889628529e-05, "epoch": 1.0225563909774436, "percentage": 51.13, "elapsed_time": "0:16:56", "remaining_time": "0:16:11"}
137
+ {"current_steps": 137, "total_steps": 266, "loss": 0.0278, "lr": 5.622753646644102e-05, "epoch": 1.0300751879699248, "percentage": 51.5, "elapsed_time": "0:17:03", "remaining_time": "0:16:03"}
138
+ {"current_steps": 138, "total_steps": 266, "loss": 0.0259, "lr": 5.557489803238933e-05, "epoch": 1.037593984962406, "percentage": 51.88, "elapsed_time": "0:17:11", "remaining_time": "0:15:56"}
139
+ {"current_steps": 139, "total_steps": 266, "loss": 0.0198, "lr": 5.492129635809473e-05, "epoch": 1.045112781954887, "percentage": 52.26, "elapsed_time": "0:17:18", "remaining_time": "0:15:48"}
140
+ {"current_steps": 140, "total_steps": 266, "loss": 0.0191, "lr": 5.426684437395196e-05, "epoch": 1.0526315789473684, "percentage": 52.63, "elapsed_time": "0:17:25", "remaining_time": "0:15:41"}
141
+ {"current_steps": 141, "total_steps": 266, "loss": 0.0214, "lr": 5.361165515727374e-05, "epoch": 1.0601503759398496, "percentage": 53.01, "elapsed_time": "0:17:33", "remaining_time": "0:15:33"}
142
+ {"current_steps": 142, "total_steps": 266, "loss": 0.0243, "lr": 5.295584191275308e-05, "epoch": 1.0676691729323309, "percentage": 53.38, "elapsed_time": "0:17:40", "remaining_time": "0:15:26"}
143
+ {"current_steps": 143, "total_steps": 266, "loss": 0.029, "lr": 5.229951795290353e-05, "epoch": 1.0751879699248121, "percentage": 53.76, "elapsed_time": "0:17:48", "remaining_time": "0:15:18"}
144
+ {"current_steps": 144, "total_steps": 266, "loss": 0.0204, "lr": 5.164279667848094e-05, "epoch": 1.0827067669172932, "percentage": 54.14, "elapsed_time": "0:17:55", "remaining_time": "0:15:11"}
145
+ {"current_steps": 145, "total_steps": 266, "loss": 0.0209, "lr": 5.0985791558889785e-05, "epoch": 1.0902255639097744, "percentage": 54.51, "elapsed_time": "0:18:03", "remaining_time": "0:15:03"}
146
+ {"current_steps": 146, "total_steps": 266, "loss": 0.0285, "lr": 5.032861611257783e-05, "epoch": 1.0977443609022557, "percentage": 54.89, "elapsed_time": "0:18:10", "remaining_time": "0:14:56"}
147
+ {"current_steps": 147, "total_steps": 266, "loss": 0.0204, "lr": 4.967138388742218e-05, "epoch": 1.1052631578947367, "percentage": 55.26, "elapsed_time": "0:18:17", "remaining_time": "0:14:48"}
148
+ {"current_steps": 148, "total_steps": 266, "loss": 0.0314, "lr": 4.901420844111021e-05, "epoch": 1.112781954887218, "percentage": 55.64, "elapsed_time": "0:18:25", "remaining_time": "0:14:41"}
149
+ {"current_steps": 149, "total_steps": 266, "loss": 0.0281, "lr": 4.835720332151907e-05, "epoch": 1.1203007518796992, "percentage": 56.02, "elapsed_time": "0:18:32", "remaining_time": "0:14:33"}
150
+ {"current_steps": 150, "total_steps": 266, "loss": 0.0248, "lr": 4.770048204709648e-05, "epoch": 1.1278195488721805, "percentage": 56.39, "elapsed_time": "0:18:40", "remaining_time": "0:14:26"}
151
+ {"current_steps": 151, "total_steps": 266, "loss": 0.0311, "lr": 4.7044158087246926e-05, "epoch": 1.1353383458646618, "percentage": 56.77, "elapsed_time": "0:18:47", "remaining_time": "0:14:18"}
152
+ {"current_steps": 152, "total_steps": 266, "loss": 0.0218, "lr": 4.6388344842726264e-05, "epoch": 1.1428571428571428, "percentage": 57.14, "elapsed_time": "0:18:54", "remaining_time": "0:14:11"}
153
+ {"current_steps": 153, "total_steps": 266, "loss": 0.0271, "lr": 4.5733155626048036e-05, "epoch": 1.150375939849624, "percentage": 57.52, "elapsed_time": "0:19:02", "remaining_time": "0:14:03"}
154
+ {"current_steps": 154, "total_steps": 266, "loss": 0.0264, "lr": 4.507870364190527e-05, "epoch": 1.1578947368421053, "percentage": 57.89, "elapsed_time": "0:19:09", "remaining_time": "0:13:56"}
155
+ {"current_steps": 155, "total_steps": 266, "loss": 0.024, "lr": 4.4425101967610674e-05, "epoch": 1.1654135338345863, "percentage": 58.27, "elapsed_time": "0:19:17", "remaining_time": "0:13:48"}
156
+ {"current_steps": 156, "total_steps": 266, "loss": 0.0271, "lr": 4.377246353355899e-05, "epoch": 1.1729323308270676, "percentage": 58.65, "elapsed_time": "0:19:24", "remaining_time": "0:13:41"}
157
+ {"current_steps": 157, "total_steps": 266, "loss": 0.0278, "lr": 4.312090110371473e-05, "epoch": 1.1804511278195489, "percentage": 59.02, "elapsed_time": "0:19:31", "remaining_time": "0:13:33"}
158
+ {"current_steps": 158, "total_steps": 266, "loss": 0.0292, "lr": 4.247052725612852e-05, "epoch": 1.1879699248120301, "percentage": 59.4, "elapsed_time": "0:19:39", "remaining_time": "0:13:26"}
159
+ {"current_steps": 159, "total_steps": 266, "loss": 0.0234, "lr": 4.1821454363485866e-05, "epoch": 1.1954887218045114, "percentage": 59.77, "elapsed_time": "0:19:47", "remaining_time": "0:13:18"}
160
+ {"current_steps": 160, "total_steps": 266, "loss": 0.0206, "lr": 4.1173794573690996e-05, "epoch": 1.2030075187969924, "percentage": 60.15, "elapsed_time": "0:19:54", "remaining_time": "0:13:11"}
161
+ {"current_steps": 161, "total_steps": 266, "loss": 0.0227, "lr": 4.052765979048986e-05, "epoch": 1.2105263157894737, "percentage": 60.53, "elapsed_time": "0:20:02", "remaining_time": "0:13:04"}
162
+ {"current_steps": 162, "total_steps": 266, "loss": 0.0205, "lr": 3.988316165413528e-05, "epoch": 1.218045112781955, "percentage": 60.9, "elapsed_time": "0:20:09", "remaining_time": "0:12:56"}
163
+ {"current_steps": 163, "total_steps": 266, "loss": 0.029, "lr": 3.924041152209739e-05, "epoch": 1.225563909774436, "percentage": 61.28, "elapsed_time": "0:20:17", "remaining_time": "0:12:49"}
164
+ {"current_steps": 164, "total_steps": 266, "loss": 0.0271, "lr": 3.859952044982329e-05, "epoch": 1.2330827067669172, "percentage": 61.65, "elapsed_time": "0:20:24", "remaining_time": "0:12:41"}
165
+ {"current_steps": 165, "total_steps": 266, "loss": 0.0213, "lr": 3.7960599171548574e-05, "epoch": 1.2406015037593985, "percentage": 62.03, "elapsed_time": "0:20:32", "remaining_time": "0:12:34"}
166
+ {"current_steps": 166, "total_steps": 266, "loss": 0.0258, "lr": 3.732375808116451e-05, "epoch": 1.2481203007518797, "percentage": 62.41, "elapsed_time": "0:20:39", "remaining_time": "0:12:26"}
167
+ {"current_steps": 167, "total_steps": 266, "loss": 0.0229, "lr": 3.668910721314402e-05, "epoch": 1.255639097744361, "percentage": 62.78, "elapsed_time": "0:20:46", "remaining_time": "0:12:19"}
168
+ {"current_steps": 168, "total_steps": 266, "loss": 0.0265, "lr": 3.605675622352973e-05, "epoch": 1.263157894736842, "percentage": 63.16, "elapsed_time": "0:20:54", "remaining_time": "0:12:11"}
169
+ {"current_steps": 169, "total_steps": 266, "loss": 0.0256, "lr": 3.542681437098745e-05, "epoch": 1.2706766917293233, "percentage": 63.53, "elapsed_time": "0:21:01", "remaining_time": "0:12:04"}
170
+ {"current_steps": 170, "total_steps": 266, "loss": 0.0213, "lr": 3.479939049792817e-05, "epoch": 1.2781954887218046, "percentage": 63.91, "elapsed_time": "0:21:09", "remaining_time": "0:11:56"}
171
+ {"current_steps": 171, "total_steps": 266, "loss": 0.0266, "lr": 3.417459301170219e-05, "epoch": 1.2857142857142856, "percentage": 64.29, "elapsed_time": "0:21:16", "remaining_time": "0:11:49"}
172
+ {"current_steps": 172, "total_steps": 266, "loss": 0.0193, "lr": 3.355252986586832e-05, "epoch": 1.2932330827067668, "percentage": 64.66, "elapsed_time": "0:21:23", "remaining_time": "0:11:41"}
173
+ {"current_steps": 173, "total_steps": 266, "loss": 0.0258, "lr": 3.293330854154136e-05, "epoch": 1.300751879699248, "percentage": 65.04, "elapsed_time": "0:21:31", "remaining_time": "0:11:34"}
174
+ {"current_steps": 174, "total_steps": 266, "loss": 0.0159, "lr": 3.2317036028821523e-05, "epoch": 1.3082706766917294, "percentage": 65.41, "elapsed_time": "0:21:38", "remaining_time": "0:11:26"}
175
+ {"current_steps": 175, "total_steps": 266, "loss": 0.0215, "lr": 3.1703818808308324e-05, "epoch": 1.3157894736842106, "percentage": 65.79, "elapsed_time": "0:21:46", "remaining_time": "0:11:19"}
176
+ {"current_steps": 176, "total_steps": 266, "loss": 0.0268, "lr": 3.109376283270277e-05, "epoch": 1.3233082706766917, "percentage": 66.17, "elapsed_time": "0:21:53", "remaining_time": "0:11:11"}
177
+ {"current_steps": 177, "total_steps": 266, "loss": 0.0238, "lr": 3.0486973508500727e-05, "epoch": 1.330827067669173, "percentage": 66.54, "elapsed_time": "0:22:00", "remaining_time": "0:11:04"}
178
+ {"current_steps": 178, "total_steps": 266, "loss": 0.0259, "lr": 2.988355567778043e-05, "epoch": 1.3383458646616542, "percentage": 66.92, "elapsed_time": "0:22:08", "remaining_time": "0:10:56"}
179
+ {"current_steps": 179, "total_steps": 266, "loss": 0.025, "lr": 2.9283613600087933e-05, "epoch": 1.3458646616541352, "percentage": 67.29, "elapsed_time": "0:22:15", "remaining_time": "0:10:49"}
180
+ {"current_steps": 180, "total_steps": 266, "loss": 0.0194, "lr": 2.8687250934422772e-05, "epoch": 1.3533834586466165, "percentage": 67.67, "elapsed_time": "0:22:23", "remaining_time": "0:10:41"}
181
+ {"current_steps": 181, "total_steps": 266, "loss": 0.0189, "lr": 2.8094570721327662e-05, "epoch": 1.3609022556390977, "percentage": 68.05, "elapsed_time": "0:22:30", "remaining_time": "0:10:34"}
182
+ {"current_steps": 182, "total_steps": 266, "loss": 0.0243, "lr": 2.750567536508504e-05, "epoch": 1.368421052631579, "percentage": 68.42, "elapsed_time": "0:22:38", "remaining_time": "0:10:26"}
183
+ {"current_steps": 183, "total_steps": 266, "loss": 0.0257, "lr": 2.6920666616023327e-05, "epoch": 1.3759398496240602, "percentage": 68.8, "elapsed_time": "0:22:45", "remaining_time": "0:10:19"}
184
+ {"current_steps": 184, "total_steps": 266, "loss": 0.0275, "lr": 2.6339645552936536e-05, "epoch": 1.3834586466165413, "percentage": 69.17, "elapsed_time": "0:22:52", "remaining_time": "0:10:11"}
185
+ {"current_steps": 185, "total_steps": 266, "loss": 0.023, "lr": 2.5762712565619528e-05, "epoch": 1.3909774436090225, "percentage": 69.55, "elapsed_time": "0:23:00", "remaining_time": "0:10:04"}
186
+ {"current_steps": 186, "total_steps": 266, "loss": 0.0206, "lr": 2.5189967337522573e-05, "epoch": 1.3984962406015038, "percentage": 69.92, "elapsed_time": "0:23:07", "remaining_time": "0:09:56"}
187
+ {"current_steps": 187, "total_steps": 266, "loss": 0.0229, "lr": 2.46215088285279e-05, "epoch": 1.4060150375939848, "percentage": 70.3, "elapsed_time": "0:23:15", "remaining_time": "0:09:49"}
188
+ {"current_steps": 188, "total_steps": 266, "loss": 0.019, "lr": 2.4057435257851175e-05, "epoch": 1.413533834586466, "percentage": 70.68, "elapsed_time": "0:23:22", "remaining_time": "0:09:41"}
189
+ {"current_steps": 189, "total_steps": 266, "loss": 0.0274, "lr": 2.349784408707112e-05, "epoch": 1.4210526315789473, "percentage": 71.05, "elapsed_time": "0:23:29", "remaining_time": "0:09:34"}
190
+ {"current_steps": 190, "total_steps": 266, "loss": 0.0271, "lr": 2.2942832003289823e-05, "epoch": 1.4285714285714286, "percentage": 71.43, "elapsed_time": "0:23:37", "remaining_time": "0:09:26"}
191
+ {"current_steps": 191, "total_steps": 266, "loss": 0.0263, "lr": 2.2392494902427025e-05, "epoch": 1.4360902255639099, "percentage": 71.8, "elapsed_time": "0:23:44", "remaining_time": "0:09:19"}
192
+ {"current_steps": 192, "total_steps": 266, "loss": 0.0242, "lr": 2.1846927872651137e-05, "epoch": 1.443609022556391, "percentage": 72.18, "elapsed_time": "0:23:52", "remaining_time": "0:09:12"}
193
+ {"current_steps": 193, "total_steps": 266, "loss": 0.024, "lr": 2.1306225177949585e-05, "epoch": 1.4511278195488722, "percentage": 72.56, "elapsed_time": "0:23:59", "remaining_time": "0:09:04"}
194
+ {"current_steps": 194, "total_steps": 266, "loss": 0.0301, "lr": 2.07704802418419e-05, "epoch": 1.4586466165413534, "percentage": 72.93, "elapsed_time": "0:24:07", "remaining_time": "0:08:57"}
195
+ {"current_steps": 195, "total_steps": 266, "loss": 0.0262, "lr": 2.0239785631237705e-05, "epoch": 1.4661654135338344, "percentage": 73.31, "elapsed_time": "0:24:14", "remaining_time": "0:08:49"}
196
+ {"current_steps": 196, "total_steps": 266, "loss": 0.0179, "lr": 1.9714233040442915e-05, "epoch": 1.4736842105263157, "percentage": 73.68, "elapsed_time": "0:24:21", "remaining_time": "0:08:42"}
197
+ {"current_steps": 197, "total_steps": 266, "loss": 0.0234, "lr": 1.9193913275316626e-05, "epoch": 1.481203007518797, "percentage": 74.06, "elapsed_time": "0:24:29", "remaining_time": "0:08:34"}
198
+ {"current_steps": 198, "total_steps": 266, "loss": 0.0236, "lr": 1.8678916237581522e-05, "epoch": 1.4887218045112782, "percentage": 74.44, "elapsed_time": "0:24:36", "remaining_time": "0:08:27"}
199
+ {"current_steps": 199, "total_steps": 266, "loss": 0.0176, "lr": 1.816933090929055e-05, "epoch": 1.4962406015037595, "percentage": 74.81, "elapsed_time": "0:24:44", "remaining_time": "0:08:19"}
200
+ {"current_steps": 200, "total_steps": 266, "loss": 0.0258, "lr": 1.7665245337452368e-05, "epoch": 1.5037593984962405, "percentage": 75.19, "elapsed_time": "0:24:51", "remaining_time": "0:08:12"}
201
+ {"current_steps": 200, "total_steps": 266, "eval_loss": 0.029665347188711166, "epoch": 1.5037593984962405, "percentage": 75.19, "elapsed_time": "0:24:58", "remaining_time": "0:08:14"}
202
+ {"current_steps": 201, "total_steps": 266, "loss": 0.0224, "lr": 1.716674661881848e-05, "epoch": 1.5112781954887218, "percentage": 75.56, "elapsed_time": "0:25:05", "remaining_time": "0:08:06"}
203
+ {"current_steps": 202, "total_steps": 266, "loss": 0.0223, "lr": 1.667392088483456e-05, "epoch": 1.518796992481203, "percentage": 75.94, "elapsed_time": "0:25:12", "remaining_time": "0:07:59"}
204
+ {"current_steps": 203, "total_steps": 266, "loss": 0.0242, "lr": 1.6186853286758397e-05, "epoch": 1.526315789473684, "percentage": 76.32, "elapsed_time": "0:25:20", "remaining_time": "0:07:51"}
205
+ {"current_steps": 204, "total_steps": 266, "loss": 0.025, "lr": 1.570562798094747e-05, "epoch": 1.5338345864661656, "percentage": 76.69, "elapsed_time": "0:25:27", "remaining_time": "0:07:44"}
206
+ {"current_steps": 205, "total_steps": 266, "loss": 0.0241, "lr": 1.5230328114318127e-05, "epoch": 1.5413533834586466, "percentage": 77.07, "elapsed_time": "0:25:34", "remaining_time": "0:07:36"}
207
+ {"current_steps": 206, "total_steps": 266, "loss": 0.0253, "lr": 1.4761035809979395e-05, "epoch": 1.5488721804511278, "percentage": 77.44, "elapsed_time": "0:25:42", "remaining_time": "0:07:29"}
208
+ {"current_steps": 207, "total_steps": 266, "loss": 0.0236, "lr": 1.4297832153043656e-05, "epoch": 1.556390977443609, "percentage": 77.82, "elapsed_time": "0:25:49", "remaining_time": "0:07:21"}
209
+ {"current_steps": 208, "total_steps": 266, "loss": 0.0278, "lr": 1.3840797176616466e-05, "epoch": 1.5639097744360901, "percentage": 78.2, "elapsed_time": "0:25:57", "remaining_time": "0:07:14"}
210
+ {"current_steps": 209, "total_steps": 266, "loss": 0.0255, "lr": 1.3390009847968504e-05, "epoch": 1.5714285714285714, "percentage": 78.57, "elapsed_time": "0:26:04", "remaining_time": "0:07:06"}
211
+ {"current_steps": 210, "total_steps": 266, "loss": 0.0254, "lr": 1.2945548054891321e-05, "epoch": 1.5789473684210527, "percentage": 78.95, "elapsed_time": "0:26:12", "remaining_time": "0:06:59"}
212
+ {"current_steps": 211, "total_steps": 266, "loss": 0.0233, "lr": 1.2507488592239847e-05, "epoch": 1.5864661654135337, "percentage": 79.32, "elapsed_time": "0:26:19", "remaining_time": "0:06:51"}
213
+ {"current_steps": 212, "total_steps": 266, "loss": 0.024, "lr": 1.2075907148663579e-05, "epoch": 1.5939849624060152, "percentage": 79.7, "elapsed_time": "0:26:26", "remaining_time": "0:06:44"}
214
+ {"current_steps": 213, "total_steps": 266, "loss": 0.0261, "lr": 1.1650878293528994e-05, "epoch": 1.6015037593984962, "percentage": 80.08, "elapsed_time": "0:26:34", "remaining_time": "0:06:36"}
215
+ {"current_steps": 214, "total_steps": 266, "loss": 0.0192, "lr": 1.1232475464035385e-05, "epoch": 1.6090225563909775, "percentage": 80.45, "elapsed_time": "0:26:41", "remaining_time": "0:06:29"}
216
+ {"current_steps": 215, "total_steps": 266, "loss": 0.0192, "lr": 1.0820770952526155e-05, "epoch": 1.6165413533834587, "percentage": 80.83, "elapsed_time": "0:26:49", "remaining_time": "0:06:21"}
217
+ {"current_steps": 216, "total_steps": 266, "loss": 0.0267, "lr": 1.0415835893998116e-05, "epoch": 1.6240601503759398, "percentage": 81.2, "elapsed_time": "0:26:56", "remaining_time": "0:06:14"}
218
+ {"current_steps": 217, "total_steps": 266, "loss": 0.0244, "lr": 1.0017740253810609e-05, "epoch": 1.631578947368421, "percentage": 81.58, "elapsed_time": "0:27:03", "remaining_time": "0:06:06"}
219
+ {"current_steps": 218, "total_steps": 266, "loss": 0.0265, "lr": 9.62655281559679e-06, "epoch": 1.6390977443609023, "percentage": 81.95, "elapsed_time": "0:27:11", "remaining_time": "0:05:59"}
220
+ {"current_steps": 219, "total_steps": 266, "loss": 0.0239, "lr": 9.242341169379076e-06, "epoch": 1.6466165413533833, "percentage": 82.33, "elapsed_time": "0:27:18", "remaining_time": "0:05:51"}
221
+ {"current_steps": 220, "total_steps": 266, "loss": 0.023, "lr": 8.865171699890834e-06, "epoch": 1.6541353383458648, "percentage": 82.71, "elapsed_time": "0:27:26", "remaining_time": "0:05:44"}
222
+ {"current_steps": 221, "total_steps": 266, "loss": 0.0286, "lr": 8.49510957510633e-06, "epoch": 1.6616541353383458, "percentage": 83.08, "elapsed_time": "0:27:33", "remaining_time": "0:05:36"}
223
+ {"current_steps": 222, "total_steps": 266, "loss": 0.0205, "lr": 8.132218734980852e-06, "epoch": 1.669172932330827, "percentage": 83.46, "elapsed_time": "0:27:41", "remaining_time": "0:05:29"}
224
+ {"current_steps": 223, "total_steps": 266, "loss": 0.0222, "lr": 7.776561880403072e-06, "epoch": 1.6766917293233083, "percentage": 83.83, "elapsed_time": "0:27:48", "remaining_time": "0:05:21"}
225
+ {"current_steps": 224, "total_steps": 266, "loss": 0.0257, "lr": 7.4282004623615396e-06, "epoch": 1.6842105263157894, "percentage": 84.21, "elapsed_time": "0:27:55", "remaining_time": "0:05:14"}
226
+ {"current_steps": 225, "total_steps": 266, "loss": 0.021, "lr": 7.0871946713269856e-06, "epoch": 1.6917293233082706, "percentage": 84.59, "elapsed_time": "0:28:03", "remaining_time": "0:05:06"}
227
+ {"current_steps": 226, "total_steps": 266, "loss": 0.0206, "lr": 6.753603426852589e-06, "epoch": 1.699248120300752, "percentage": 84.96, "elapsed_time": "0:28:10", "remaining_time": "0:04:59"}
228
+ {"current_steps": 227, "total_steps": 266, "loss": 0.0221, "lr": 6.427484367393699e-06, "epoch": 1.706766917293233, "percentage": 85.34, "elapsed_time": "0:28:18", "remaining_time": "0:04:51"}
229
+ {"current_steps": 228, "total_steps": 266, "loss": 0.0217, "lr": 6.108893840348995e-06, "epoch": 1.7142857142857144, "percentage": 85.71, "elapsed_time": "0:28:25", "remaining_time": "0:04:44"}
230
+ {"current_steps": 229, "total_steps": 266, "loss": 0.0241, "lr": 5.797886892324694e-06, "epoch": 1.7218045112781954, "percentage": 86.09, "elapsed_time": "0:28:32", "remaining_time": "0:04:36"}
231
+ {"current_steps": 230, "total_steps": 266, "loss": 0.023, "lr": 5.494517259623477e-06, "epoch": 1.7293233082706767, "percentage": 86.47, "elapsed_time": "0:28:40", "remaining_time": "0:04:29"}
232
+ {"current_steps": 231, "total_steps": 266, "loss": 0.0247, "lr": 5.198837358959901e-06, "epoch": 1.736842105263158, "percentage": 86.84, "elapsed_time": "0:28:47", "remaining_time": "0:04:21"}
233
+ {"current_steps": 232, "total_steps": 266, "loss": 0.0275, "lr": 4.910898278403669e-06, "epoch": 1.744360902255639, "percentage": 87.22, "elapsed_time": "0:28:55", "remaining_time": "0:04:14"}
234
+ {"current_steps": 233, "total_steps": 266, "loss": 0.0236, "lr": 4.630749768552589e-06, "epoch": 1.7518796992481203, "percentage": 87.59, "elapsed_time": "0:29:02", "remaining_time": "0:04:06"}
235
+ {"current_steps": 234, "total_steps": 266, "loss": 0.0196, "lr": 4.358440233936617e-06, "epoch": 1.7593984962406015, "percentage": 87.97, "elapsed_time": "0:29:09", "remaining_time": "0:03:59"}
236
+ {"current_steps": 235, "total_steps": 266, "loss": 0.0292, "lr": 4.094016724654359e-06, "epoch": 1.7669172932330826, "percentage": 88.35, "elapsed_time": "0:29:17", "remaining_time": "0:03:51"}
237
+ {"current_steps": 236, "total_steps": 266, "loss": 0.0224, "lr": 3.837524928243774e-06, "epoch": 1.774436090225564, "percentage": 88.72, "elapsed_time": "0:29:24", "remaining_time": "0:03:44"}
238
+ {"current_steps": 237, "total_steps": 266, "loss": 0.0278, "lr": 3.589009161788104e-06, "epoch": 1.781954887218045, "percentage": 89.1, "elapsed_time": "0:29:32", "remaining_time": "0:03:36"}
239
+ {"current_steps": 238, "total_steps": 266, "loss": 0.0243, "lr": 3.3485123642587658e-06, "epoch": 1.7894736842105263, "percentage": 89.47, "elapsed_time": "0:29:39", "remaining_time": "0:03:29"}
240
+ {"current_steps": 239, "total_steps": 266, "loss": 0.027, "lr": 3.116076089096265e-06, "epoch": 1.7969924812030076, "percentage": 89.85, "elapsed_time": "0:29:46", "remaining_time": "0:03:21"}
241
+ {"current_steps": 240, "total_steps": 266, "loss": 0.0288, "lr": 2.8917404970305097e-06, "epoch": 1.8045112781954886, "percentage": 90.23, "elapsed_time": "0:29:54", "remaining_time": "0:03:14"}
242
+ {"current_steps": 241, "total_steps": 266, "loss": 0.0259, "lr": 2.675544349141779e-06, "epoch": 1.8120300751879699, "percentage": 90.6, "elapsed_time": "0:30:01", "remaining_time": "0:03:06"}
243
+ {"current_steps": 242, "total_steps": 266, "loss": 0.0247, "lr": 2.4675250001635232e-06, "epoch": 1.8195488721804511, "percentage": 90.98, "elapsed_time": "0:30:09", "remaining_time": "0:02:59"}
244
+ {"current_steps": 243, "total_steps": 266, "loss": 0.0193, "lr": 2.2677183920281343e-06, "epoch": 1.8270676691729322, "percentage": 91.35, "elapsed_time": "0:30:16", "remaining_time": "0:02:51"}
245
+ {"current_steps": 244, "total_steps": 266, "loss": 0.0227, "lr": 2.076159047656889e-06, "epoch": 1.8345864661654137, "percentage": 91.73, "elapsed_time": "0:30:23", "remaining_time": "0:02:44"}
246
+ {"current_steps": 245, "total_steps": 266, "loss": 0.0256, "lr": 1.892880064994934e-06, "epoch": 1.8421052631578947, "percentage": 92.11, "elapsed_time": "0:30:31", "remaining_time": "0:02:36"}
247
+ {"current_steps": 246, "total_steps": 266, "loss": 0.024, "lr": 1.7179131112926627e-06, "epoch": 1.849624060150376, "percentage": 92.48, "elapsed_time": "0:30:38", "remaining_time": "0:02:29"}
248
+ {"current_steps": 247, "total_steps": 266, "loss": 0.0159, "lr": 1.551288417634106e-06, "epoch": 1.8571428571428572, "percentage": 92.86, "elapsed_time": "0:30:46", "remaining_time": "0:02:22"}
249
+ {"current_steps": 248, "total_steps": 266, "loss": 0.0209, "lr": 1.3930347737136196e-06, "epoch": 1.8646616541353382, "percentage": 93.23, "elapsed_time": "0:30:53", "remaining_time": "0:02:14"}
250
+ {"current_steps": 249, "total_steps": 266, "loss": 0.0206, "lr": 1.2431795228615372e-06, "epoch": 1.8721804511278195, "percentage": 93.61, "elapsed_time": "0:31:00", "remaining_time": "0:02:07"}
251
+ {"current_steps": 250, "total_steps": 266, "loss": 0.0315, "lr": 1.101748557319715e-06, "epoch": 1.8796992481203008, "percentage": 93.98, "elapsed_time": "0:31:08", "remaining_time": "0:01:59"}
252
+ {"current_steps": 251, "total_steps": 266, "loss": 0.0193, "lr": 9.687663137678604e-07, "epoch": 1.8872180451127818, "percentage": 94.36, "elapsed_time": "0:31:15", "remaining_time": "0:01:52"}
253
+ {"current_steps": 252, "total_steps": 266, "loss": 0.0245, "lr": 8.442557691013043e-07, "epoch": 1.8947368421052633, "percentage": 94.74, "elapsed_time": "0:31:23", "remaining_time": "0:01:44"}
254
+ {"current_steps": 253, "total_steps": 266, "loss": 0.0242, "lr": 7.282384364610206e-07, "epoch": 1.9022556390977443, "percentage": 95.11, "elapsed_time": "0:31:30", "remaining_time": "0:01:37"}
255
+ {"current_steps": 254, "total_steps": 266, "loss": 0.0207, "lr": 6.207343615165561e-07, "epoch": 1.9097744360902256, "percentage": 95.49, "elapsed_time": "0:31:37", "remaining_time": "0:01:29"}
256
+ {"current_steps": 255, "total_steps": 266, "loss": 0.0259, "lr": 5.217621190024779e-07, "epoch": 1.9172932330827068, "percentage": 95.86, "elapsed_time": "0:31:45", "remaining_time": "0:01:22"}
257
+ {"current_steps": 256, "total_steps": 266, "loss": 0.0217, "lr": 4.3133880950905205e-07, "epoch": 1.9248120300751879, "percentage": 96.24, "elapsed_time": "0:31:52", "remaining_time": "0:01:14"}
258
+ {"current_steps": 257, "total_steps": 266, "loss": 0.0226, "lr": 3.494800565275125e-07, "epoch": 1.9323308270676691, "percentage": 96.62, "elapsed_time": "0:32:00", "remaining_time": "0:01:07"}
259
+ {"current_steps": 258, "total_steps": 266, "loss": 0.0226, "lr": 2.762000037506485e-07, "epoch": 1.9398496240601504, "percentage": 96.99, "elapsed_time": "0:32:07", "remaining_time": "0:00:59"}
260
+ {"current_steps": 259, "total_steps": 266, "loss": 0.0224, "lr": 2.115113126290258e-07, "epoch": 1.9473684210526314, "percentage": 97.37, "elapsed_time": "0:32:14", "remaining_time": "0:00:52"}
261
+ {"current_steps": 260, "total_steps": 266, "loss": 0.0242, "lr": 1.554251601833201e-07, "epoch": 1.954887218045113, "percentage": 97.74, "elapsed_time": "0:32:22", "remaining_time": "0:00:44"}
262
+ {"current_steps": 261, "total_steps": 266, "loss": 0.0199, "lr": 1.0795123707312283e-07, "epoch": 1.962406015037594, "percentage": 98.12, "elapsed_time": "0:32:29", "remaining_time": "0:00:37"}
263
+ {"current_steps": 262, "total_steps": 266, "loss": 0.0218, "lr": 6.909774592258056e-08, "epoch": 1.9699248120300752, "percentage": 98.5, "elapsed_time": "0:32:37", "remaining_time": "0:00:29"}
264
+ {"current_steps": 263, "total_steps": 266, "loss": 0.0242, "lr": 3.8871399903134265e-08, "epoch": 1.9774436090225564, "percentage": 98.87, "elapsed_time": "0:32:44", "remaining_time": "0:00:22"}
265
+ {"current_steps": 264, "total_steps": 266, "loss": 0.0278, "lr": 1.7277421573608232e-08, "epoch": 1.9849624060150375, "percentage": 99.25, "elapsed_time": "0:32:52", "remaining_time": "0:00:14"}
266
+ {"current_steps": 265, "total_steps": 266, "loss": 0.0193, "lr": 4.319541977831909e-09, "epoch": 1.9924812030075187, "percentage": 99.62, "elapsed_time": "0:32:59", "remaining_time": "0:00:07"}
267
+ {"current_steps": 266, "total_steps": 266, "loss": 0.0224, "lr": 0.0, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "0:33:06", "remaining_time": "0:00:00"}
268
+ {"current_steps": 266, "total_steps": 266, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "0:33:46", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1912 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 200,
6
+ "global_step": 266,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007518796992481203,
13
+ "grad_norm": 0.08289683091006875,
14
+ "learning_rate": 3.7037037037037037e-06,
15
+ "loss": 0.2087,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.015037593984962405,
20
+ "grad_norm": 0.03030546873337256,
21
+ "learning_rate": 7.4074074074074075e-06,
22
+ "loss": 0.1045,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.022556390977443608,
27
+ "grad_norm": 0.04340875250649354,
28
+ "learning_rate": 1.1111111111111112e-05,
29
+ "loss": 0.1291,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.03007518796992481,
34
+ "grad_norm": 0.04223285184390201,
35
+ "learning_rate": 1.4814814814814815e-05,
36
+ "loss": 0.1263,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.03759398496240601,
41
+ "grad_norm": 0.04894801143939966,
42
+ "learning_rate": 1.8518518518518518e-05,
43
+ "loss": 0.1409,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.045112781954887216,
48
+ "grad_norm": 0.22261274174154347,
49
+ "learning_rate": 2.2222222222222223e-05,
50
+ "loss": 0.2362,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05263157894736842,
55
+ "grad_norm": 0.043978295203653116,
56
+ "learning_rate": 2.5925925925925925e-05,
57
+ "loss": 0.1195,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06015037593984962,
62
+ "grad_norm": 0.04381964595602848,
63
+ "learning_rate": 2.962962962962963e-05,
64
+ "loss": 0.1215,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.06766917293233082,
69
+ "grad_norm": 0.03290036083527209,
70
+ "learning_rate": 3.3333333333333335e-05,
71
+ "loss": 0.0881,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.07518796992481203,
76
+ "grad_norm": 0.03303553719000837,
77
+ "learning_rate": 3.7037037037037037e-05,
78
+ "loss": 0.0923,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.08270676691729323,
83
+ "grad_norm": 0.12832751130733108,
84
+ "learning_rate": 4.074074074074074e-05,
85
+ "loss": 0.218,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.09022556390977443,
90
+ "grad_norm": 0.08479076437214379,
91
+ "learning_rate": 4.4444444444444447e-05,
92
+ "loss": 0.149,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.09774436090225563,
97
+ "grad_norm": 0.13534422076541278,
98
+ "learning_rate": 4.814814814814815e-05,
99
+ "loss": 0.1835,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.10526315789473684,
104
+ "grad_norm": 0.10341781138952844,
105
+ "learning_rate": 5.185185185185185e-05,
106
+ "loss": 0.1573,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.11278195488721804,
111
+ "grad_norm": 0.12256701286625035,
112
+ "learning_rate": 5.555555555555556e-05,
113
+ "loss": 0.1701,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.12030075187969924,
118
+ "grad_norm": 0.05708144315846648,
119
+ "learning_rate": 5.925925925925926e-05,
120
+ "loss": 0.0938,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.12781954887218044,
125
+ "grad_norm": 0.0813311914428683,
126
+ "learning_rate": 6.296296296296296e-05,
127
+ "loss": 0.1221,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.13533834586466165,
132
+ "grad_norm": 0.07670248585638807,
133
+ "learning_rate": 6.666666666666667e-05,
134
+ "loss": 0.1068,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.14285714285714285,
139
+ "grad_norm": 0.12777013083805186,
140
+ "learning_rate": 7.037037037037038e-05,
141
+ "loss": 0.1183,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.15037593984962405,
146
+ "grad_norm": 0.07203864112993859,
147
+ "learning_rate": 7.407407407407407e-05,
148
+ "loss": 0.0941,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.15789473684210525,
153
+ "grad_norm": 0.06622495246697525,
154
+ "learning_rate": 7.777777777777778e-05,
155
+ "loss": 0.0851,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.16541353383458646,
160
+ "grad_norm": 0.05064660711733651,
161
+ "learning_rate": 8.148148148148148e-05,
162
+ "loss": 0.0672,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.17293233082706766,
167
+ "grad_norm": 0.05569880144395339,
168
+ "learning_rate": 8.518518518518518e-05,
169
+ "loss": 0.0692,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.18045112781954886,
174
+ "grad_norm": 0.06341922542018791,
175
+ "learning_rate": 8.888888888888889e-05,
176
+ "loss": 0.0719,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.18796992481203006,
181
+ "grad_norm": 0.09483517480751269,
182
+ "learning_rate": 9.25925925925926e-05,
183
+ "loss": 0.1039,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.19548872180451127,
188
+ "grad_norm": 0.06345422292566975,
189
+ "learning_rate": 9.62962962962963e-05,
190
+ "loss": 0.0642,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.20300751879699247,
195
+ "grad_norm": 0.06565559978972503,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.0806,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.21052631578947367,
202
+ "grad_norm": 0.07234940226716612,
203
+ "learning_rate": 9.999568045802217e-05,
204
+ "loss": 0.0699,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.21804511278195488,
209
+ "grad_norm": 0.09174614011055109,
210
+ "learning_rate": 9.998272257842641e-05,
211
+ "loss": 0.0797,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.22556390977443608,
216
+ "grad_norm": 0.0799372037045221,
217
+ "learning_rate": 9.996112860009688e-05,
218
+ "loss": 0.0599,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.23308270676691728,
223
+ "grad_norm": 0.07650243821697233,
224
+ "learning_rate": 9.993090225407743e-05,
225
+ "loss": 0.0673,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.24060150375939848,
230
+ "grad_norm": 0.07437978624039222,
231
+ "learning_rate": 9.989204876292688e-05,
232
+ "loss": 0.063,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.24812030075187969,
237
+ "grad_norm": 0.05826090837310029,
238
+ "learning_rate": 9.984457483981669e-05,
239
+ "loss": 0.0563,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2556390977443609,
244
+ "grad_norm": 0.046830358894256296,
245
+ "learning_rate": 9.978848868737098e-05,
246
+ "loss": 0.0449,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2631578947368421,
251
+ "grad_norm": 0.059942032653184,
252
+ "learning_rate": 9.972379999624936e-05,
253
+ "loss": 0.0492,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.2706766917293233,
258
+ "grad_norm": 0.04559622889503948,
259
+ "learning_rate": 9.96505199434725e-05,
260
+ "loss": 0.0384,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.2781954887218045,
265
+ "grad_norm": 0.08582556953299057,
266
+ "learning_rate": 9.956866119049095e-05,
267
+ "loss": 0.052,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.2857142857142857,
272
+ "grad_norm": 0.05879365562753825,
273
+ "learning_rate": 9.947823788099753e-05,
274
+ "loss": 0.0499,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.2932330827067669,
279
+ "grad_norm": 0.07725729979493687,
280
+ "learning_rate": 9.937926563848346e-05,
281
+ "loss": 0.0382,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3007518796992481,
286
+ "grad_norm": 0.06791365316815774,
287
+ "learning_rate": 9.927176156353899e-05,
288
+ "loss": 0.0424,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.3082706766917293,
293
+ "grad_norm": 0.06835456363607172,
294
+ "learning_rate": 9.91557442308987e-05,
295
+ "loss": 0.0477,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3157894736842105,
300
+ "grad_norm": 0.06785706541381617,
301
+ "learning_rate": 9.903123368623216e-05,
302
+ "loss": 0.0423,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.3233082706766917,
307
+ "grad_norm": 0.037822284484082716,
308
+ "learning_rate": 9.889825144268029e-05,
309
+ "loss": 0.0373,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.3308270676691729,
314
+ "grad_norm": 0.09335172889811039,
315
+ "learning_rate": 9.875682047713846e-05,
316
+ "loss": 0.0532,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.3383458646616541,
321
+ "grad_norm": 0.03552601591664148,
322
+ "learning_rate": 9.860696522628639e-05,
323
+ "loss": 0.0302,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.3458646616541353,
328
+ "grad_norm": 0.06792399841238587,
329
+ "learning_rate": 9.844871158236591e-05,
330
+ "loss": 0.043,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.3533834586466165,
335
+ "grad_norm": 0.07394708716985816,
336
+ "learning_rate": 9.828208688870735e-05,
337
+ "loss": 0.0414,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.3609022556390977,
342
+ "grad_norm": 0.07644206071621325,
343
+ "learning_rate": 9.810711993500507e-05,
344
+ "loss": 0.0442,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.3684210526315789,
349
+ "grad_norm": 0.04448780324279346,
350
+ "learning_rate": 9.792384095234313e-05,
351
+ "loss": 0.0397,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.37593984962406013,
356
+ "grad_norm": 0.040299146373067786,
357
+ "learning_rate": 9.773228160797188e-05,
358
+ "loss": 0.0294,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.38345864661654133,
363
+ "grad_norm": 0.04600091352431098,
364
+ "learning_rate": 9.753247499983649e-05,
365
+ "loss": 0.0388,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.39097744360902253,
370
+ "grad_norm": 0.05174024689025062,
371
+ "learning_rate": 9.732445565085824e-05,
372
+ "loss": 0.0464,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.39849624060150374,
377
+ "grad_norm": 0.06048290755695799,
378
+ "learning_rate": 9.71082595029695e-05,
379
+ "loss": 0.0441,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.40601503759398494,
384
+ "grad_norm": 0.06909111905381797,
385
+ "learning_rate": 9.688392391090373e-05,
386
+ "loss": 0.0403,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.41353383458646614,
391
+ "grad_norm": 0.10580098842980783,
392
+ "learning_rate": 9.665148763574123e-05,
393
+ "loss": 0.0414,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.42105263157894735,
398
+ "grad_norm": 0.06004492721880413,
399
+ "learning_rate": 9.64109908382119e-05,
400
+ "loss": 0.0348,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.42857142857142855,
405
+ "grad_norm": 0.05616302785838828,
406
+ "learning_rate": 9.616247507175623e-05,
407
+ "loss": 0.0353,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.43609022556390975,
412
+ "grad_norm": 0.04963402332052172,
413
+ "learning_rate": 9.590598327534564e-05,
414
+ "loss": 0.0354,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.44360902255639095,
419
+ "grad_norm": 0.09520890937208057,
420
+ "learning_rate": 9.564155976606339e-05,
421
+ "loss": 0.0436,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.45112781954887216,
426
+ "grad_norm": 0.07317691578763187,
427
+ "learning_rate": 9.536925023144742e-05,
428
+ "loss": 0.0448,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.45864661654135336,
433
+ "grad_norm": 0.0653903652099525,
434
+ "learning_rate": 9.508910172159635e-05,
435
+ "loss": 0.0456,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.46616541353383456,
440
+ "grad_norm": 0.08533000644485912,
441
+ "learning_rate": 9.480116264104011e-05,
442
+ "loss": 0.0417,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.47368421052631576,
447
+ "grad_norm": 0.07477194348090598,
448
+ "learning_rate": 9.450548274037653e-05,
449
+ "loss": 0.0427,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.48120300751879697,
454
+ "grad_norm": 0.040320894825821886,
455
+ "learning_rate": 9.420211310767533e-05,
456
+ "loss": 0.0317,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.48872180451127817,
461
+ "grad_norm": 0.04204333897095501,
462
+ "learning_rate": 9.389110615965102e-05,
463
+ "loss": 0.0308,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.49624060150375937,
468
+ "grad_norm": 0.06435209558835227,
469
+ "learning_rate": 9.35725156326063e-05,
470
+ "loss": 0.0404,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5037593984962406,
475
+ "grad_norm": 0.05292300086818655,
476
+ "learning_rate": 9.324639657314742e-05,
477
+ "loss": 0.0383,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5112781954887218,
482
+ "grad_norm": 0.0533359959006372,
483
+ "learning_rate": 9.291280532867302e-05,
484
+ "loss": 0.0419,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.518796992481203,
489
+ "grad_norm": 0.0421677134855151,
490
+ "learning_rate": 9.257179953763845e-05,
491
+ "loss": 0.0301,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5263157894736842,
496
+ "grad_norm": 0.047396091527240565,
497
+ "learning_rate": 9.222343811959693e-05,
498
+ "loss": 0.0355,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.5338345864661654,
503
+ "grad_norm": 0.05055865206409256,
504
+ "learning_rate": 9.186778126501916e-05,
505
+ "loss": 0.0379,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.5413533834586466,
510
+ "grad_norm": 0.03922328494549794,
511
+ "learning_rate": 9.150489042489367e-05,
512
+ "loss": 0.03,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.5488721804511278,
517
+ "grad_norm": 0.08580904921861318,
518
+ "learning_rate": 9.113482830010918e-05,
519
+ "loss": 0.038,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.556390977443609,
524
+ "grad_norm": 0.04615991149700515,
525
+ "learning_rate": 9.075765883062093e-05,
526
+ "loss": 0.0321,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.5639097744360902,
531
+ "grad_norm": 0.21688152384611062,
532
+ "learning_rate": 9.037344718440322e-05,
533
+ "loss": 0.0369,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.5714285714285714,
538
+ "grad_norm": 0.06709856743156827,
539
+ "learning_rate": 8.99822597461894e-05,
540
+ "loss": 0.0429,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.5789473684210527,
545
+ "grad_norm": 0.07300506123989278,
546
+ "learning_rate": 8.958416410600187e-05,
547
+ "loss": 0.0351,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.5864661654135338,
552
+ "grad_norm": 0.08415403445437179,
553
+ "learning_rate": 8.917922904747384e-05,
554
+ "loss": 0.0425,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.5939849624060151,
559
+ "grad_norm": 0.043734956942212244,
560
+ "learning_rate": 8.876752453596462e-05,
561
+ "loss": 0.0322,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6015037593984962,
566
+ "grad_norm": 0.11340147288766998,
567
+ "learning_rate": 8.834912170647101e-05,
568
+ "loss": 0.0446,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6090225563909775,
573
+ "grad_norm": 0.061288991507609664,
574
+ "learning_rate": 8.792409285133642e-05,
575
+ "loss": 0.0424,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6165413533834586,
580
+ "grad_norm": 0.043805649893633086,
581
+ "learning_rate": 8.749251140776016e-05,
582
+ "loss": 0.0342,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.6240601503759399,
587
+ "grad_norm": 0.05953059965877648,
588
+ "learning_rate": 8.705445194510868e-05,
589
+ "loss": 0.0321,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.631578947368421,
594
+ "grad_norm": 0.07945205955271631,
595
+ "learning_rate": 8.66099901520315e-05,
596
+ "loss": 0.0371,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.6390977443609023,
601
+ "grad_norm": 0.04453806753518928,
602
+ "learning_rate": 8.615920282338355e-05,
603
+ "loss": 0.0349,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.6466165413533834,
608
+ "grad_norm": 0.05196927124976879,
609
+ "learning_rate": 8.570216784695637e-05,
610
+ "loss": 0.0287,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.6541353383458647,
615
+ "grad_norm": 0.08901603801098872,
616
+ "learning_rate": 8.52389641900206e-05,
617
+ "loss": 0.0379,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.6616541353383458,
622
+ "grad_norm": 0.04173009472070016,
623
+ "learning_rate": 8.476967188568188e-05,
624
+ "loss": 0.0264,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.6691729323308271,
629
+ "grad_norm": 0.06191267416598679,
630
+ "learning_rate": 8.429437201905254e-05,
631
+ "loss": 0.028,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.6766917293233082,
636
+ "grad_norm": 0.05938205491417802,
637
+ "learning_rate": 8.381314671324159e-05,
638
+ "loss": 0.0353,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.6842105263157895,
643
+ "grad_norm": 0.06594155945203996,
644
+ "learning_rate": 8.332607911516545e-05,
645
+ "loss": 0.0423,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.6917293233082706,
650
+ "grad_norm": 0.03727901580427709,
651
+ "learning_rate": 8.283325338118153e-05,
652
+ "loss": 0.0288,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.6992481203007519,
657
+ "grad_norm": 0.039506792129091334,
658
+ "learning_rate": 8.233475466254765e-05,
659
+ "loss": 0.0319,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.706766917293233,
664
+ "grad_norm": 0.10114676138905467,
665
+ "learning_rate": 8.183066909070947e-05,
666
+ "loss": 0.0413,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.7142857142857143,
671
+ "grad_norm": 0.0519720254987392,
672
+ "learning_rate": 8.132108376241849e-05,
673
+ "loss": 0.0319,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.7218045112781954,
678
+ "grad_norm": 0.06828535688055823,
679
+ "learning_rate": 8.08060867246834e-05,
680
+ "loss": 0.0415,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.7293233082706767,
685
+ "grad_norm": 0.04423778552147402,
686
+ "learning_rate": 8.028576695955711e-05,
687
+ "loss": 0.0307,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.7368421052631579,
692
+ "grad_norm": 0.04301708267503238,
693
+ "learning_rate": 7.97602143687623e-05,
694
+ "loss": 0.0292,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.7443609022556391,
699
+ "grad_norm": 0.07557692217243188,
700
+ "learning_rate": 7.922951975815811e-05,
701
+ "loss": 0.0304,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.7518796992481203,
706
+ "grad_norm": 0.061041885279450855,
707
+ "learning_rate": 7.869377482205042e-05,
708
+ "loss": 0.0318,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.7593984962406015,
713
+ "grad_norm": 0.040342152719196084,
714
+ "learning_rate": 7.815307212734888e-05,
715
+ "loss": 0.027,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.7669172932330827,
720
+ "grad_norm": 0.07790755826343725,
721
+ "learning_rate": 7.760750509757298e-05,
722
+ "loss": 0.0339,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.7744360902255639,
727
+ "grad_norm": 0.05210408795431101,
728
+ "learning_rate": 7.705716799671019e-05,
729
+ "loss": 0.0228,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.7819548872180451,
734
+ "grad_norm": 0.08000736959421384,
735
+ "learning_rate": 7.650215591292888e-05,
736
+ "loss": 0.0357,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.7894736842105263,
741
+ "grad_norm": 0.05843028390975531,
742
+ "learning_rate": 7.594256474214882e-05,
743
+ "loss": 0.0285,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.7969924812030075,
748
+ "grad_norm": 0.13537509841914472,
749
+ "learning_rate": 7.537849117147212e-05,
750
+ "loss": 0.0359,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.8045112781954887,
755
+ "grad_norm": 0.08230566866298178,
756
+ "learning_rate": 7.481003266247744e-05,
757
+ "loss": 0.0367,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.8120300751879699,
762
+ "grad_norm": 0.09678557492723187,
763
+ "learning_rate": 7.423728743438048e-05,
764
+ "loss": 0.0358,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.8195488721804511,
769
+ "grad_norm": 0.049541914871144996,
770
+ "learning_rate": 7.366035444706347e-05,
771
+ "loss": 0.0329,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.8270676691729323,
776
+ "grad_norm": 0.08823757922929092,
777
+ "learning_rate": 7.307933338397667e-05,
778
+ "loss": 0.0364,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.8345864661654135,
783
+ "grad_norm": 0.044744299992948704,
784
+ "learning_rate": 7.249432463491498e-05,
785
+ "loss": 0.0328,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.8421052631578947,
790
+ "grad_norm": 0.03814585189064516,
791
+ "learning_rate": 7.190542927867234e-05,
792
+ "loss": 0.0242,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.849624060150376,
797
+ "grad_norm": 0.03553642928460275,
798
+ "learning_rate": 7.131274906557725e-05,
799
+ "loss": 0.0277,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.8571428571428571,
804
+ "grad_norm": 0.044176381361140944,
805
+ "learning_rate": 7.071638639991207e-05,
806
+ "loss": 0.0282,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.8646616541353384,
811
+ "grad_norm": 0.04113727259330019,
812
+ "learning_rate": 7.011644432221958e-05,
813
+ "loss": 0.0311,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.8721804511278195,
818
+ "grad_norm": 0.060773829286428965,
819
+ "learning_rate": 6.95130264914993e-05,
820
+ "loss": 0.0414,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.8796992481203008,
825
+ "grad_norm": 0.05757846085257315,
826
+ "learning_rate": 6.890623716729724e-05,
827
+ "loss": 0.0279,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.8872180451127819,
832
+ "grad_norm": 0.08428255259620104,
833
+ "learning_rate": 6.82961811916917e-05,
834
+ "loss": 0.0298,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.8947368421052632,
839
+ "grad_norm": 0.04529601746123181,
840
+ "learning_rate": 6.768296397117848e-05,
841
+ "loss": 0.0263,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.9022556390977443,
846
+ "grad_norm": 0.0559976345746786,
847
+ "learning_rate": 6.706669145845863e-05,
848
+ "loss": 0.0331,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.9097744360902256,
853
+ "grad_norm": 0.046985300077111235,
854
+ "learning_rate": 6.644747013413168e-05,
855
+ "loss": 0.0323,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.9172932330827067,
860
+ "grad_norm": 0.06973194335422163,
861
+ "learning_rate": 6.582540698829781e-05,
862
+ "loss": 0.0356,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.924812030075188,
867
+ "grad_norm": 0.0550307651636393,
868
+ "learning_rate": 6.520060950207185e-05,
869
+ "loss": 0.0374,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.9323308270676691,
874
+ "grad_norm": 0.04136098377224926,
875
+ "learning_rate": 6.457318562901256e-05,
876
+ "loss": 0.0281,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.9398496240601504,
881
+ "grad_norm": 0.04471839673788357,
882
+ "learning_rate": 6.394324377647028e-05,
883
+ "loss": 0.0344,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.9473684210526315,
888
+ "grad_norm": 0.04057335071418551,
889
+ "learning_rate": 6.331089278685599e-05,
890
+ "loss": 0.0289,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.9548872180451128,
895
+ "grad_norm": 0.036632585834280834,
896
+ "learning_rate": 6.26762419188355e-05,
897
+ "loss": 0.0254,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.9624060150375939,
902
+ "grad_norm": 0.05253467833143005,
903
+ "learning_rate": 6.203940082845144e-05,
904
+ "loss": 0.0423,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.9699248120300752,
909
+ "grad_norm": 0.05828434847478486,
910
+ "learning_rate": 6.140047955017671e-05,
911
+ "loss": 0.0331,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.9774436090225563,
916
+ "grad_norm": 0.052528332979290625,
917
+ "learning_rate": 6.075958847790262e-05,
918
+ "loss": 0.0344,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.9849624060150376,
923
+ "grad_norm": 0.039125799054480936,
924
+ "learning_rate": 6.011683834586473e-05,
925
+ "loss": 0.0264,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.9924812030075187,
930
+ "grad_norm": 0.03707157930189228,
931
+ "learning_rate": 5.947234020951015e-05,
932
+ "loss": 0.0237,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.0,
937
+ "grad_norm": 0.054189982183542575,
938
+ "learning_rate": 5.882620542630901e-05,
939
+ "loss": 0.0317,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.0075187969924813,
944
+ "grad_norm": 0.04357846265860899,
945
+ "learning_rate": 5.8178545636514145e-05,
946
+ "loss": 0.0268,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.0150375939849625,
951
+ "grad_norm": 0.056012933476124856,
952
+ "learning_rate": 5.752947274387147e-05,
953
+ "loss": 0.0223,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.0225563909774436,
958
+ "grad_norm": 0.049689439936320044,
959
+ "learning_rate": 5.687909889628529e-05,
960
+ "loss": 0.0304,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.0300751879699248,
965
+ "grad_norm": 0.04830994322048754,
966
+ "learning_rate": 5.622753646644102e-05,
967
+ "loss": 0.0278,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.037593984962406,
972
+ "grad_norm": 0.04418639970975713,
973
+ "learning_rate": 5.557489803238933e-05,
974
+ "loss": 0.0259,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.045112781954887,
979
+ "grad_norm": 0.042738363591787835,
980
+ "learning_rate": 5.492129635809473e-05,
981
+ "loss": 0.0198,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.0526315789473684,
986
+ "grad_norm": 0.03885713180148723,
987
+ "learning_rate": 5.426684437395196e-05,
988
+ "loss": 0.0191,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.0601503759398496,
993
+ "grad_norm": 0.04951650926676435,
994
+ "learning_rate": 5.361165515727374e-05,
995
+ "loss": 0.0214,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.0676691729323309,
1000
+ "grad_norm": 0.059968470212708236,
1001
+ "learning_rate": 5.295584191275308e-05,
1002
+ "loss": 0.0243,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.0751879699248121,
1007
+ "grad_norm": 0.0676386940224187,
1008
+ "learning_rate": 5.229951795290353e-05,
1009
+ "loss": 0.029,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.0827067669172932,
1014
+ "grad_norm": 0.04250436122379926,
1015
+ "learning_rate": 5.164279667848094e-05,
1016
+ "loss": 0.0204,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.0902255639097744,
1021
+ "grad_norm": 0.04124846102938738,
1022
+ "learning_rate": 5.0985791558889785e-05,
1023
+ "loss": 0.0209,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.0977443609022557,
1028
+ "grad_norm": 0.05914558229310168,
1029
+ "learning_rate": 5.032861611257783e-05,
1030
+ "loss": 0.0285,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.1052631578947367,
1035
+ "grad_norm": 0.0465029543723527,
1036
+ "learning_rate": 4.967138388742218e-05,
1037
+ "loss": 0.0204,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.112781954887218,
1042
+ "grad_norm": 0.06469458945659604,
1043
+ "learning_rate": 4.901420844111021e-05,
1044
+ "loss": 0.0314,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.1203007518796992,
1049
+ "grad_norm": 0.06440915952496404,
1050
+ "learning_rate": 4.835720332151907e-05,
1051
+ "loss": 0.0281,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.1278195488721805,
1056
+ "grad_norm": 0.0571757163158284,
1057
+ "learning_rate": 4.770048204709648e-05,
1058
+ "loss": 0.0248,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.1353383458646618,
1063
+ "grad_norm": 0.05910301690921271,
1064
+ "learning_rate": 4.7044158087246926e-05,
1065
+ "loss": 0.0311,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.1428571428571428,
1070
+ "grad_norm": 0.04613839631194596,
1071
+ "learning_rate": 4.6388344842726264e-05,
1072
+ "loss": 0.0218,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.150375939849624,
1077
+ "grad_norm": 0.05741866552084954,
1078
+ "learning_rate": 4.5733155626048036e-05,
1079
+ "loss": 0.0271,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.1578947368421053,
1084
+ "grad_norm": 0.04682544810113655,
1085
+ "learning_rate": 4.507870364190527e-05,
1086
+ "loss": 0.0264,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.1654135338345863,
1091
+ "grad_norm": 0.06282838577083374,
1092
+ "learning_rate": 4.4425101967610674e-05,
1093
+ "loss": 0.024,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.1729323308270676,
1098
+ "grad_norm": 0.05388737782363021,
1099
+ "learning_rate": 4.377246353355899e-05,
1100
+ "loss": 0.0271,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.1804511278195489,
1105
+ "grad_norm": 0.05086578069156835,
1106
+ "learning_rate": 4.312090110371473e-05,
1107
+ "loss": 0.0278,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.1879699248120301,
1112
+ "grad_norm": 0.05863572980738164,
1113
+ "learning_rate": 4.247052725612852e-05,
1114
+ "loss": 0.0292,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.1954887218045114,
1119
+ "grad_norm": 0.04227523648124146,
1120
+ "learning_rate": 4.1821454363485866e-05,
1121
+ "loss": 0.0234,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.2030075187969924,
1126
+ "grad_norm": 0.04268704545270105,
1127
+ "learning_rate": 4.1173794573690996e-05,
1128
+ "loss": 0.0206,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.2105263157894737,
1133
+ "grad_norm": 0.04778787432486908,
1134
+ "learning_rate": 4.052765979048986e-05,
1135
+ "loss": 0.0227,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.218045112781955,
1140
+ "grad_norm": 0.0459311125342993,
1141
+ "learning_rate": 3.988316165413528e-05,
1142
+ "loss": 0.0205,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.225563909774436,
1147
+ "grad_norm": 0.05603215690118315,
1148
+ "learning_rate": 3.924041152209739e-05,
1149
+ "loss": 0.029,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.2330827067669172,
1154
+ "grad_norm": 0.060179119443112154,
1155
+ "learning_rate": 3.859952044982329e-05,
1156
+ "loss": 0.0271,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.2406015037593985,
1161
+ "grad_norm": 0.04740279415347567,
1162
+ "learning_rate": 3.7960599171548574e-05,
1163
+ "loss": 0.0213,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.2481203007518797,
1168
+ "grad_norm": 0.052482110362426594,
1169
+ "learning_rate": 3.732375808116451e-05,
1170
+ "loss": 0.0258,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.255639097744361,
1175
+ "grad_norm": 0.04835120393099329,
1176
+ "learning_rate": 3.668910721314402e-05,
1177
+ "loss": 0.0229,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.263157894736842,
1182
+ "grad_norm": 0.08311507045185516,
1183
+ "learning_rate": 3.605675622352973e-05,
1184
+ "loss": 0.0265,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.2706766917293233,
1189
+ "grad_norm": 0.053563077833150494,
1190
+ "learning_rate": 3.542681437098745e-05,
1191
+ "loss": 0.0256,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.2781954887218046,
1196
+ "grad_norm": 0.05567682482783888,
1197
+ "learning_rate": 3.479939049792817e-05,
1198
+ "loss": 0.0213,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.2857142857142856,
1203
+ "grad_norm": 0.054588031712222006,
1204
+ "learning_rate": 3.417459301170219e-05,
1205
+ "loss": 0.0266,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.2932330827067668,
1210
+ "grad_norm": 0.07694344232267265,
1211
+ "learning_rate": 3.355252986586832e-05,
1212
+ "loss": 0.0193,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.300751879699248,
1217
+ "grad_norm": 0.05943952613035603,
1218
+ "learning_rate": 3.293330854154136e-05,
1219
+ "loss": 0.0258,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.3082706766917294,
1224
+ "grad_norm": 0.038766556860819104,
1225
+ "learning_rate": 3.2317036028821523e-05,
1226
+ "loss": 0.0159,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.3157894736842106,
1231
+ "grad_norm": 0.05092188135687549,
1232
+ "learning_rate": 3.1703818808308324e-05,
1233
+ "loss": 0.0215,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.3233082706766917,
1238
+ "grad_norm": 0.04779789780883562,
1239
+ "learning_rate": 3.109376283270277e-05,
1240
+ "loss": 0.0268,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.330827067669173,
1245
+ "grad_norm": 0.04433720319245774,
1246
+ "learning_rate": 3.0486973508500727e-05,
1247
+ "loss": 0.0238,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.3383458646616542,
1252
+ "grad_norm": 0.049878475563895956,
1253
+ "learning_rate": 2.988355567778043e-05,
1254
+ "loss": 0.0259,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.3458646616541352,
1259
+ "grad_norm": 0.05962755604807658,
1260
+ "learning_rate": 2.9283613600087933e-05,
1261
+ "loss": 0.025,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.3533834586466165,
1266
+ "grad_norm": 0.04955718527923681,
1267
+ "learning_rate": 2.8687250934422772e-05,
1268
+ "loss": 0.0194,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.3609022556390977,
1273
+ "grad_norm": 0.03676456890831394,
1274
+ "learning_rate": 2.8094570721327662e-05,
1275
+ "loss": 0.0189,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.368421052631579,
1280
+ "grad_norm": 0.04868946152583533,
1281
+ "learning_rate": 2.750567536508504e-05,
1282
+ "loss": 0.0243,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.3759398496240602,
1287
+ "grad_norm": 0.0555305400721802,
1288
+ "learning_rate": 2.6920666616023327e-05,
1289
+ "loss": 0.0257,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.3834586466165413,
1294
+ "grad_norm": 0.04963192556183434,
1295
+ "learning_rate": 2.6339645552936536e-05,
1296
+ "loss": 0.0275,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.3909774436090225,
1301
+ "grad_norm": 0.05542091349920839,
1302
+ "learning_rate": 2.5762712565619528e-05,
1303
+ "loss": 0.023,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.3984962406015038,
1308
+ "grad_norm": 0.0426183120843919,
1309
+ "learning_rate": 2.5189967337522573e-05,
1310
+ "loss": 0.0206,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.4060150375939848,
1315
+ "grad_norm": 0.05205246245376388,
1316
+ "learning_rate": 2.46215088285279e-05,
1317
+ "loss": 0.0229,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.413533834586466,
1322
+ "grad_norm": 0.04337666332691105,
1323
+ "learning_rate": 2.4057435257851175e-05,
1324
+ "loss": 0.019,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.4210526315789473,
1329
+ "grad_norm": 0.05985729489503263,
1330
+ "learning_rate": 2.349784408707112e-05,
1331
+ "loss": 0.0274,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.4285714285714286,
1336
+ "grad_norm": 0.062032022184375604,
1337
+ "learning_rate": 2.2942832003289823e-05,
1338
+ "loss": 0.0271,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.4360902255639099,
1343
+ "grad_norm": 0.05773389436675615,
1344
+ "learning_rate": 2.2392494902427025e-05,
1345
+ "loss": 0.0263,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.443609022556391,
1350
+ "grad_norm": 0.048522536078850126,
1351
+ "learning_rate": 2.1846927872651137e-05,
1352
+ "loss": 0.0242,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.4511278195488722,
1357
+ "grad_norm": 0.05010560342148772,
1358
+ "learning_rate": 2.1306225177949585e-05,
1359
+ "loss": 0.024,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.4586466165413534,
1364
+ "grad_norm": 0.058011679310299026,
1365
+ "learning_rate": 2.07704802418419e-05,
1366
+ "loss": 0.0301,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.4661654135338344,
1371
+ "grad_norm": 0.052695628737558814,
1372
+ "learning_rate": 2.0239785631237705e-05,
1373
+ "loss": 0.0262,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.4736842105263157,
1378
+ "grad_norm": 0.0397195089948912,
1379
+ "learning_rate": 1.9714233040442915e-05,
1380
+ "loss": 0.0179,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.481203007518797,
1385
+ "grad_norm": 0.05532938780742867,
1386
+ "learning_rate": 1.9193913275316626e-05,
1387
+ "loss": 0.0234,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.4887218045112782,
1392
+ "grad_norm": 0.07349266479809795,
1393
+ "learning_rate": 1.8678916237581522e-05,
1394
+ "loss": 0.0236,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.4962406015037595,
1399
+ "grad_norm": 0.03995824607041351,
1400
+ "learning_rate": 1.816933090929055e-05,
1401
+ "loss": 0.0176,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.5037593984962405,
1406
+ "grad_norm": 0.07166373724308431,
1407
+ "learning_rate": 1.7665245337452368e-05,
1408
+ "loss": 0.0258,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.5037593984962405,
1413
+ "eval_loss": 0.029665347188711166,
1414
+ "eval_runtime": 6.5066,
1415
+ "eval_samples_per_second": 0.922,
1416
+ "eval_steps_per_second": 0.307,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 1.5112781954887218,
1421
+ "grad_norm": 0.048692577901512116,
1422
+ "learning_rate": 1.716674661881848e-05,
1423
+ "loss": 0.0224,
1424
+ "step": 201
1425
+ },
1426
+ {
1427
+ "epoch": 1.518796992481203,
1428
+ "grad_norm": 0.04675059057360818,
1429
+ "learning_rate": 1.667392088483456e-05,
1430
+ "loss": 0.0223,
1431
+ "step": 202
1432
+ },
1433
+ {
1434
+ "epoch": 1.526315789473684,
1435
+ "grad_norm": 0.05459458244813264,
1436
+ "learning_rate": 1.6186853286758397e-05,
1437
+ "loss": 0.0242,
1438
+ "step": 203
1439
+ },
1440
+ {
1441
+ "epoch": 1.5338345864661656,
1442
+ "grad_norm": 0.051543551392068274,
1443
+ "learning_rate": 1.570562798094747e-05,
1444
+ "loss": 0.025,
1445
+ "step": 204
1446
+ },
1447
+ {
1448
+ "epoch": 1.5413533834586466,
1449
+ "grad_norm": 0.14671926401344376,
1450
+ "learning_rate": 1.5230328114318127e-05,
1451
+ "loss": 0.0241,
1452
+ "step": 205
1453
+ },
1454
+ {
1455
+ "epoch": 1.5488721804511278,
1456
+ "grad_norm": 0.058979726559234814,
1457
+ "learning_rate": 1.4761035809979395e-05,
1458
+ "loss": 0.0253,
1459
+ "step": 206
1460
+ },
1461
+ {
1462
+ "epoch": 1.556390977443609,
1463
+ "grad_norm": 0.06494643885270886,
1464
+ "learning_rate": 1.4297832153043656e-05,
1465
+ "loss": 0.0236,
1466
+ "step": 207
1467
+ },
1468
+ {
1469
+ "epoch": 1.5639097744360901,
1470
+ "grad_norm": 0.06627104647345526,
1471
+ "learning_rate": 1.3840797176616466e-05,
1472
+ "loss": 0.0278,
1473
+ "step": 208
1474
+ },
1475
+ {
1476
+ "epoch": 1.5714285714285714,
1477
+ "grad_norm": 0.06190650675134399,
1478
+ "learning_rate": 1.3390009847968504e-05,
1479
+ "loss": 0.0255,
1480
+ "step": 209
1481
+ },
1482
+ {
1483
+ "epoch": 1.5789473684210527,
1484
+ "grad_norm": 0.06250699899282167,
1485
+ "learning_rate": 1.2945548054891321e-05,
1486
+ "loss": 0.0254,
1487
+ "step": 210
1488
+ },
1489
+ {
1490
+ "epoch": 1.5864661654135337,
1491
+ "grad_norm": 0.06214391708977836,
1492
+ "learning_rate": 1.2507488592239847e-05,
1493
+ "loss": 0.0233,
1494
+ "step": 211
1495
+ },
1496
+ {
1497
+ "epoch": 1.5939849624060152,
1498
+ "grad_norm": 0.054608347620115995,
1499
+ "learning_rate": 1.2075907148663579e-05,
1500
+ "loss": 0.024,
1501
+ "step": 212
1502
+ },
1503
+ {
1504
+ "epoch": 1.6015037593984962,
1505
+ "grad_norm": 0.05333683650123989,
1506
+ "learning_rate": 1.1650878293528994e-05,
1507
+ "loss": 0.0261,
1508
+ "step": 213
1509
+ },
1510
+ {
1511
+ "epoch": 1.6090225563909775,
1512
+ "grad_norm": 0.047407562918454,
1513
+ "learning_rate": 1.1232475464035385e-05,
1514
+ "loss": 0.0192,
1515
+ "step": 214
1516
+ },
1517
+ {
1518
+ "epoch": 1.6165413533834587,
1519
+ "grad_norm": 0.06549580580637923,
1520
+ "learning_rate": 1.0820770952526155e-05,
1521
+ "loss": 0.0192,
1522
+ "step": 215
1523
+ },
1524
+ {
1525
+ "epoch": 1.6240601503759398,
1526
+ "grad_norm": 0.0582730317262946,
1527
+ "learning_rate": 1.0415835893998116e-05,
1528
+ "loss": 0.0267,
1529
+ "step": 216
1530
+ },
1531
+ {
1532
+ "epoch": 1.631578947368421,
1533
+ "grad_norm": 0.06724858724013988,
1534
+ "learning_rate": 1.0017740253810609e-05,
1535
+ "loss": 0.0244,
1536
+ "step": 217
1537
+ },
1538
+ {
1539
+ "epoch": 1.6390977443609023,
1540
+ "grad_norm": 0.07353126997097047,
1541
+ "learning_rate": 9.62655281559679e-06,
1542
+ "loss": 0.0265,
1543
+ "step": 218
1544
+ },
1545
+ {
1546
+ "epoch": 1.6466165413533833,
1547
+ "grad_norm": 0.057567868642984674,
1548
+ "learning_rate": 9.242341169379076e-06,
1549
+ "loss": 0.0239,
1550
+ "step": 219
1551
+ },
1552
+ {
1553
+ "epoch": 1.6541353383458648,
1554
+ "grad_norm": 0.06325334373179048,
1555
+ "learning_rate": 8.865171699890834e-06,
1556
+ "loss": 0.023,
1557
+ "step": 220
1558
+ },
1559
+ {
1560
+ "epoch": 1.6616541353383458,
1561
+ "grad_norm": 0.057849806459398294,
1562
+ "learning_rate": 8.49510957510633e-06,
1563
+ "loss": 0.0286,
1564
+ "step": 221
1565
+ },
1566
+ {
1567
+ "epoch": 1.669172932330827,
1568
+ "grad_norm": 0.06257054012996921,
1569
+ "learning_rate": 8.132218734980852e-06,
1570
+ "loss": 0.0205,
1571
+ "step": 222
1572
+ },
1573
+ {
1574
+ "epoch": 1.6766917293233083,
1575
+ "grad_norm": 0.053291552200528655,
1576
+ "learning_rate": 7.776561880403072e-06,
1577
+ "loss": 0.0222,
1578
+ "step": 223
1579
+ },
1580
+ {
1581
+ "epoch": 1.6842105263157894,
1582
+ "grad_norm": 0.055884993872003165,
1583
+ "learning_rate": 7.4282004623615396e-06,
1584
+ "loss": 0.0257,
1585
+ "step": 224
1586
+ },
1587
+ {
1588
+ "epoch": 1.6917293233082706,
1589
+ "grad_norm": 0.04781226703104293,
1590
+ "learning_rate": 7.0871946713269856e-06,
1591
+ "loss": 0.021,
1592
+ "step": 225
1593
+ },
1594
+ {
1595
+ "epoch": 1.699248120300752,
1596
+ "grad_norm": 0.04617454207758738,
1597
+ "learning_rate": 6.753603426852589e-06,
1598
+ "loss": 0.0206,
1599
+ "step": 226
1600
+ },
1601
+ {
1602
+ "epoch": 1.706766917293233,
1603
+ "grad_norm": 0.05934488856386534,
1604
+ "learning_rate": 6.427484367393699e-06,
1605
+ "loss": 0.0221,
1606
+ "step": 227
1607
+ },
1608
+ {
1609
+ "epoch": 1.7142857142857144,
1610
+ "grad_norm": 0.0563063349000768,
1611
+ "learning_rate": 6.108893840348995e-06,
1612
+ "loss": 0.0217,
1613
+ "step": 228
1614
+ },
1615
+ {
1616
+ "epoch": 1.7218045112781954,
1617
+ "grad_norm": 0.058919681414065804,
1618
+ "learning_rate": 5.797886892324694e-06,
1619
+ "loss": 0.0241,
1620
+ "step": 229
1621
+ },
1622
+ {
1623
+ "epoch": 1.7293233082706767,
1624
+ "grad_norm": 0.04652279001651371,
1625
+ "learning_rate": 5.494517259623477e-06,
1626
+ "loss": 0.023,
1627
+ "step": 230
1628
+ },
1629
+ {
1630
+ "epoch": 1.736842105263158,
1631
+ "grad_norm": 0.05206753304811755,
1632
+ "learning_rate": 5.198837358959901e-06,
1633
+ "loss": 0.0247,
1634
+ "step": 231
1635
+ },
1636
+ {
1637
+ "epoch": 1.744360902255639,
1638
+ "grad_norm": 0.05759411719610633,
1639
+ "learning_rate": 4.910898278403669e-06,
1640
+ "loss": 0.0275,
1641
+ "step": 232
1642
+ },
1643
+ {
1644
+ "epoch": 1.7518796992481203,
1645
+ "grad_norm": 0.05493938568305548,
1646
+ "learning_rate": 4.630749768552589e-06,
1647
+ "loss": 0.0236,
1648
+ "step": 233
1649
+ },
1650
+ {
1651
+ "epoch": 1.7593984962406015,
1652
+ "grad_norm": 0.045214515268897214,
1653
+ "learning_rate": 4.358440233936617e-06,
1654
+ "loss": 0.0196,
1655
+ "step": 234
1656
+ },
1657
+ {
1658
+ "epoch": 1.7669172932330826,
1659
+ "grad_norm": 0.08670874372319154,
1660
+ "learning_rate": 4.094016724654359e-06,
1661
+ "loss": 0.0292,
1662
+ "step": 235
1663
+ },
1664
+ {
1665
+ "epoch": 1.774436090225564,
1666
+ "grad_norm": 0.049117351787292686,
1667
+ "learning_rate": 3.837524928243774e-06,
1668
+ "loss": 0.0224,
1669
+ "step": 236
1670
+ },
1671
+ {
1672
+ "epoch": 1.781954887218045,
1673
+ "grad_norm": 0.058397389390063136,
1674
+ "learning_rate": 3.589009161788104e-06,
1675
+ "loss": 0.0278,
1676
+ "step": 237
1677
+ },
1678
+ {
1679
+ "epoch": 1.7894736842105263,
1680
+ "grad_norm": 0.05422155962388968,
1681
+ "learning_rate": 3.3485123642587658e-06,
1682
+ "loss": 0.0243,
1683
+ "step": 238
1684
+ },
1685
+ {
1686
+ "epoch": 1.7969924812030076,
1687
+ "grad_norm": 0.07090059571835504,
1688
+ "learning_rate": 3.116076089096265e-06,
1689
+ "loss": 0.027,
1690
+ "step": 239
1691
+ },
1692
+ {
1693
+ "epoch": 1.8045112781954886,
1694
+ "grad_norm": 0.05963059250846481,
1695
+ "learning_rate": 2.8917404970305097e-06,
1696
+ "loss": 0.0288,
1697
+ "step": 240
1698
+ },
1699
+ {
1700
+ "epoch": 1.8120300751879699,
1701
+ "grad_norm": 0.06946365704174999,
1702
+ "learning_rate": 2.675544349141779e-06,
1703
+ "loss": 0.0259,
1704
+ "step": 241
1705
+ },
1706
+ {
1707
+ "epoch": 1.8195488721804511,
1708
+ "grad_norm": 0.06143740644726876,
1709
+ "learning_rate": 2.4675250001635232e-06,
1710
+ "loss": 0.0247,
1711
+ "step": 242
1712
+ },
1713
+ {
1714
+ "epoch": 1.8270676691729322,
1715
+ "grad_norm": 0.04728168437977354,
1716
+ "learning_rate": 2.2677183920281343e-06,
1717
+ "loss": 0.0193,
1718
+ "step": 243
1719
+ },
1720
+ {
1721
+ "epoch": 1.8345864661654137,
1722
+ "grad_norm": 0.07042127314230426,
1723
+ "learning_rate": 2.076159047656889e-06,
1724
+ "loss": 0.0227,
1725
+ "step": 244
1726
+ },
1727
+ {
1728
+ "epoch": 1.8421052631578947,
1729
+ "grad_norm": 0.05266415047166696,
1730
+ "learning_rate": 1.892880064994934e-06,
1731
+ "loss": 0.0256,
1732
+ "step": 245
1733
+ },
1734
+ {
1735
+ "epoch": 1.849624060150376,
1736
+ "grad_norm": 0.05204878417509025,
1737
+ "learning_rate": 1.7179131112926627e-06,
1738
+ "loss": 0.024,
1739
+ "step": 246
1740
+ },
1741
+ {
1742
+ "epoch": 1.8571428571428572,
1743
+ "grad_norm": 0.04727065912696429,
1744
+ "learning_rate": 1.551288417634106e-06,
1745
+ "loss": 0.0159,
1746
+ "step": 247
1747
+ },
1748
+ {
1749
+ "epoch": 1.8646616541353382,
1750
+ "grad_norm": 0.049637487718030344,
1751
+ "learning_rate": 1.3930347737136196e-06,
1752
+ "loss": 0.0209,
1753
+ "step": 248
1754
+ },
1755
+ {
1756
+ "epoch": 1.8721804511278195,
1757
+ "grad_norm": 0.0505669836884092,
1758
+ "learning_rate": 1.2431795228615372e-06,
1759
+ "loss": 0.0206,
1760
+ "step": 249
1761
+ },
1762
+ {
1763
+ "epoch": 1.8796992481203008,
1764
+ "grad_norm": 0.07557073448805833,
1765
+ "learning_rate": 1.101748557319715e-06,
1766
+ "loss": 0.0315,
1767
+ "step": 250
1768
+ },
1769
+ {
1770
+ "epoch": 1.8872180451127818,
1771
+ "grad_norm": 0.04855407299966349,
1772
+ "learning_rate": 9.687663137678604e-07,
1773
+ "loss": 0.0193,
1774
+ "step": 251
1775
+ },
1776
+ {
1777
+ "epoch": 1.8947368421052633,
1778
+ "grad_norm": 0.05981871688003821,
1779
+ "learning_rate": 8.442557691013043e-07,
1780
+ "loss": 0.0245,
1781
+ "step": 252
1782
+ },
1783
+ {
1784
+ "epoch": 1.9022556390977443,
1785
+ "grad_norm": 0.055297053623164526,
1786
+ "learning_rate": 7.282384364610206e-07,
1787
+ "loss": 0.0242,
1788
+ "step": 253
1789
+ },
1790
+ {
1791
+ "epoch": 1.9097744360902256,
1792
+ "grad_norm": 0.05097924138111233,
1793
+ "learning_rate": 6.207343615165561e-07,
1794
+ "loss": 0.0207,
1795
+ "step": 254
1796
+ },
1797
+ {
1798
+ "epoch": 1.9172932330827068,
1799
+ "grad_norm": 0.05870296620626846,
1800
+ "learning_rate": 5.217621190024779e-07,
1801
+ "loss": 0.0259,
1802
+ "step": 255
1803
+ },
1804
+ {
1805
+ "epoch": 1.9248120300751879,
1806
+ "grad_norm": 0.05289043509456049,
1807
+ "learning_rate": 4.3133880950905205e-07,
1808
+ "loss": 0.0217,
1809
+ "step": 256
1810
+ },
1811
+ {
1812
+ "epoch": 1.9323308270676691,
1813
+ "grad_norm": 0.05040687502136238,
1814
+ "learning_rate": 3.494800565275125e-07,
1815
+ "loss": 0.0226,
1816
+ "step": 257
1817
+ },
1818
+ {
1819
+ "epoch": 1.9398496240601504,
1820
+ "grad_norm": 0.05483598628420617,
1821
+ "learning_rate": 2.762000037506485e-07,
1822
+ "loss": 0.0226,
1823
+ "step": 258
1824
+ },
1825
+ {
1826
+ "epoch": 1.9473684210526314,
1827
+ "grad_norm": 0.052171052589092846,
1828
+ "learning_rate": 2.115113126290258e-07,
1829
+ "loss": 0.0224,
1830
+ "step": 259
1831
+ },
1832
+ {
1833
+ "epoch": 1.954887218045113,
1834
+ "grad_norm": 0.060066029686361856,
1835
+ "learning_rate": 1.554251601833201e-07,
1836
+ "loss": 0.0242,
1837
+ "step": 260
1838
+ },
1839
+ {
1840
+ "epoch": 1.962406015037594,
1841
+ "grad_norm": 0.04560282840465627,
1842
+ "learning_rate": 1.0795123707312283e-07,
1843
+ "loss": 0.0199,
1844
+ "step": 261
1845
+ },
1846
+ {
1847
+ "epoch": 1.9699248120300752,
1848
+ "grad_norm": 0.055943707431487216,
1849
+ "learning_rate": 6.909774592258056e-08,
1850
+ "loss": 0.0218,
1851
+ "step": 262
1852
+ },
1853
+ {
1854
+ "epoch": 1.9774436090225564,
1855
+ "grad_norm": 0.057987573660367824,
1856
+ "learning_rate": 3.8871399903134265e-08,
1857
+ "loss": 0.0242,
1858
+ "step": 263
1859
+ },
1860
+ {
1861
+ "epoch": 1.9849624060150375,
1862
+ "grad_norm": 0.05438020219150765,
1863
+ "learning_rate": 1.7277421573608232e-08,
1864
+ "loss": 0.0278,
1865
+ "step": 264
1866
+ },
1867
+ {
1868
+ "epoch": 1.9924812030075187,
1869
+ "grad_norm": 0.05442881774912085,
1870
+ "learning_rate": 4.319541977831909e-09,
1871
+ "loss": 0.0193,
1872
+ "step": 265
1873
+ },
1874
+ {
1875
+ "epoch": 2.0,
1876
+ "grad_norm": 0.059490023866208885,
1877
+ "learning_rate": 0.0,
1878
+ "loss": 0.0224,
1879
+ "step": 266
1880
+ },
1881
+ {
1882
+ "epoch": 2.0,
1883
+ "step": 266,
1884
+ "total_flos": 673614818967552.0,
1885
+ "train_loss": 0.039493271835932604,
1886
+ "train_runtime": 2026.6163,
1887
+ "train_samples_per_second": 0.522,
1888
+ "train_steps_per_second": 0.131
1889
+ }
1890
+ ],
1891
+ "logging_steps": 1,
1892
+ "max_steps": 266,
1893
+ "num_input_tokens_seen": 0,
1894
+ "num_train_epochs": 2,
1895
+ "save_steps": 300,
1896
+ "stateful_callbacks": {
1897
+ "TrainerControl": {
1898
+ "args": {
1899
+ "should_epoch_stop": false,
1900
+ "should_evaluate": false,
1901
+ "should_log": false,
1902
+ "should_save": true,
1903
+ "should_training_stop": true
1904
+ },
1905
+ "attributes": {}
1906
+ }
1907
+ },
1908
+ "total_flos": 673614818967552.0,
1909
+ "train_batch_size": 1,
1910
+ "trial_name": null,
1911
+ "trial_params": null
1912
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6847f9e87919055227d9c8018b28017980a14d70646aaf178f757b9a503d6f
3
+ size 7224
training_eval_loss.png ADDED
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff