File size: 2,500 Bytes
e6a5d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8736b63
 
e6a5d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8736b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a5d7c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3627

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.4755        | 0.04  | 100  | 3.3282          |
| 2.6387        | 0.08  | 200  | 2.5958          |
| 2.2721        | 0.12  | 300  | 2.2052          |
| 2.0763        | 0.16  | 400  | 2.0273          |
| 1.9119        | 0.2   | 500  | 1.9551          |
| 1.8762        | 0.24  | 600  | 1.8490          |
| 1.7392        | 0.28  | 700  | 1.7626          |
| 1.7118        | 0.32  | 800  | 1.6842          |
| 1.6537        | 0.36  | 900  | 1.6401          |
| 1.5602        | 0.4   | 1000 | 1.5688          |
| 1.5637        | 0.44  | 1100 | 1.5510          |
| 1.5511        | 0.48  | 1200 | 1.5247          |
| 1.5012        | 0.52  | 1300 | 1.5329          |
| 1.5139        | 0.56  | 1400 | 1.4959          |
| 1.4862        | 0.6   | 1500 | 1.4633          |
| 1.4317        | 0.64  | 1600 | 1.4430          |
| 1.3776        | 0.68  | 1700 | 1.4082          |
| 1.3999        | 0.72  | 1800 | 1.3872          |
| 1.4649        | 0.76  | 1900 | 1.3948          |
| 1.3576        | 0.8   | 2000 | 1.3961          |
| 1.3753        | 0.84  | 2100 | 1.3774          |
| 1.3945        | 0.88  | 2200 | 1.3509          |
| 1.4045        | 0.92  | 2300 | 1.3592          |
| 1.4095        | 0.96  | 2400 | 1.3476          |
| 1.3412        | 1.0   | 2500 | 1.3627          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2