File size: 2,500 Bytes
e6a5d7c 8736b63 e6a5d7c 8736b63 e6a5d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.4755 | 0.04 | 100 | 3.3282 |
| 2.6387 | 0.08 | 200 | 2.5958 |
| 2.2721 | 0.12 | 300 | 2.2052 |
| 2.0763 | 0.16 | 400 | 2.0273 |
| 1.9119 | 0.2 | 500 | 1.9551 |
| 1.8762 | 0.24 | 600 | 1.8490 |
| 1.7392 | 0.28 | 700 | 1.7626 |
| 1.7118 | 0.32 | 800 | 1.6842 |
| 1.6537 | 0.36 | 900 | 1.6401 |
| 1.5602 | 0.4 | 1000 | 1.5688 |
| 1.5637 | 0.44 | 1100 | 1.5510 |
| 1.5511 | 0.48 | 1200 | 1.5247 |
| 1.5012 | 0.52 | 1300 | 1.5329 |
| 1.5139 | 0.56 | 1400 | 1.4959 |
| 1.4862 | 0.6 | 1500 | 1.4633 |
| 1.4317 | 0.64 | 1600 | 1.4430 |
| 1.3776 | 0.68 | 1700 | 1.4082 |
| 1.3999 | 0.72 | 1800 | 1.3872 |
| 1.4649 | 0.76 | 1900 | 1.3948 |
| 1.3576 | 0.8 | 2000 | 1.3961 |
| 1.3753 | 0.84 | 2100 | 1.3774 |
| 1.3945 | 0.88 | 2200 | 1.3509 |
| 1.4045 | 0.92 | 2300 | 1.3592 |
| 1.4095 | 0.96 | 2400 | 1.3476 |
| 1.3412 | 1.0 | 2500 | 1.3627 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|