File size: 2,744 Bytes
7201a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---

library_name: transformers
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224_11092024
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base-patch4-window7-224_11092024



This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 0.5135

- Accuracy: 0.8337



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| 1.0366        | 1.0   | 400  | 0.9471          | 0.72     |

| 0.8257        | 2.0   | 800  | 0.7889          | 0.7538   |

| 0.7119        | 3.0   | 1200 | 0.7232          | 0.7775   |

| 0.6969        | 4.0   | 1600 | 0.6739          | 0.7837   |

| 0.6487        | 5.0   | 2000 | 0.6371          | 0.7863   |

| 0.5956        | 6.0   | 2400 | 0.6198          | 0.7887   |

| 0.5604        | 7.0   | 2800 | 0.5941          | 0.8025   |

| 0.5732        | 8.0   | 3200 | 0.5867          | 0.795    |

| 0.5578        | 9.0   | 3600 | 0.5705          | 0.8025   |

| 0.5449        | 10.0  | 4000 | 0.5575          | 0.8113   |

| 0.5419        | 11.0  | 4400 | 0.5505          | 0.8213   |

| 0.5086        | 12.0  | 4800 | 0.5385          | 0.8213   |

| 0.4929        | 13.0  | 5200 | 0.5340          | 0.8213   |

| 0.4701        | 14.0  | 5600 | 0.5297          | 0.8187   |

| 0.4803        | 15.0  | 6000 | 0.5240          | 0.8225   |

| 0.4988        | 16.0  | 6400 | 0.5197          | 0.83     |

| 0.4842        | 17.0  | 6800 | 0.5165          | 0.8313   |

| 0.4917        | 18.0  | 7200 | 0.5148          | 0.8313   |

| 0.4734        | 19.0  | 7600 | 0.5140          | 0.8325   |

| 0.4714        | 20.0  | 8000 | 0.5135          | 0.8337   |





### Framework versions



- Transformers 4.45.2

- Pytorch 2.4.1+cpu

- Datasets 3.0.1

- Tokenizers 0.20.1