--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ea258833f53-4c8a-4b1a-9abf-59da4fa11e18 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B-Instruct bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - format: custom path: lavita/ChatDoctor-HealthCareMagic-100k type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: '{'''':torch.cuda.current_device()}' do_eval: true early_stopping_patience: 1 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: true hub_model_id: cwaud/ea258833f53-4c8a-4b1a-9abf-59da4fa11e18 hub_repo: stevemonite hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB 1: 70GiB 2: 70GiB 3: 70GiB max_steps: 888 micro_batch_size: 1 mlflow_experiment_name: lavita/ChatDoctor-HealthCareMagic-100k model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: null wandb_mode: online wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: 153c7d6f warmup_raio: 0.03 warmup_ratio: 0.04 weight_decay: 0.01 xformers_attention: null ```

# ea258833f53-4c8a-4b1a-9abf-59da4fa11e18 This model is a fine-tuned version of [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 35 - training_steps: 888 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0904 | 0.0003 | 1 | 3.2887 | | 2.6898 | 0.0071 | 25 | 2.7006 | | 2.5132 | 0.0143 | 50 | 2.5567 | | 2.4234 | 0.0214 | 75 | 2.4513 | | 2.5322 | 0.0285 | 100 | 2.4194 | | 2.2951 | 0.0357 | 125 | 2.3581 | | 2.331 | 0.0428 | 150 | 2.3471 | | 2.2978 | 0.0499 | 175 | 2.3032 | | 2.1733 | 0.0571 | 200 | 2.2889 | | 2.194 | 0.0642 | 225 | 2.2525 | | 2.3849 | 0.0714 | 250 | 2.2398 | | 2.0697 | 0.0785 | 275 | 2.2127 | | 2.5496 | 0.0856 | 300 | 2.2259 | | 2.0852 | 0.0928 | 325 | 2.1999 | | 2.2164 | 0.0999 | 350 | 2.2020 | | 2.2373 | 0.1070 | 375 | 2.1708 | | 2.2789 | 0.1142 | 400 | 2.1725 | | 2.1254 | 0.1213 | 425 | 2.1471 | | 2.11 | 0.1284 | 450 | 2.1469 | | 2.0535 | 0.1356 | 475 | 2.1419 | | 2.1039 | 0.1427 | 500 | 2.1362 | | 1.9734 | 0.1498 | 525 | 2.1290 | | 2.0061 | 0.1570 | 550 | 2.1158 | | 2.1663 | 0.1641 | 575 | 2.1151 | | 2.1725 | 0.1713 | 600 | 2.1112 | | 2.2051 | 0.1784 | 625 | 2.1108 | | 2.0556 | 0.1855 | 650 | 2.1073 | | 1.9651 | 0.1927 | 675 | 2.1079 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1