cycloneboy nielsr HF Staff commited on
Commit
cf64cc1
·
verified ·
1 Parent(s): 8cebf91

Add comprehensive model card for CSC-SQL (#1)

Browse files

- Add comprehensive model card for CSC-SQL (316a73fb71716c82144143ee197f7510b8fab841)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +145 -0
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - text-to-sql
7
+ - sql-generation
8
+ - reinforcement-learning
9
+ - qwen
10
+ ---
11
+
12
+ # CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
13
+
14
+ The model presented in the paper [CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning](https://huggingface.co/papers/2505.13271).
15
+
16
+ **Abstract:** Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72% execution accuracy, while the 32B model achieves 73.67%. The code has been open sourced at this https URL.
17
+
18
+ **Code:** The code for CSC-SQL is open-sourced at [https://github.com/CycloneBoy/csc_sql](https://github.com/CycloneBoy/csc_sql).
19
+
20
+ ## Introduction
21
+
22
+ CSC-SQL is a novel method that integrates Self-Consistency and Self-Correction for improved Text-to-SQL generation. It addresses limitations of prior methods by selecting optimal outputs and handling both syntactic and semantic errors. The approach employs Group Relative Policy Optimization (GRPO) to fine-tune SQL generation and revision models, leading to significant enhancements in output quality.
23
+
24
+ ![csc_sql_framework](https://github.com/CycloneBoy/csc_sql/raw/main/data/image/csc_sql_framework.png)
25
+
26
+ ## Main Results
27
+
28
+ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
29
+
30
+ ![csc_sql_result_main](https://github.com/CycloneBoy/csc_sql/raw/main/data/image/csc_sql_result_main.png)
31
+
32
+ ## Models
33
+
34
+ A collection of CSC-SQL models can be found on Hugging Face: [CSC-SQL Hugging Face Collection](https://huggingface.co/collections/cycloneboy/csc-sql-6835c4a52da10c54bbe14f8e).
35
+
36
+ | **Model and Dataset** | HuggingFace |
37
+ |---------------------------------------|--------------------------------------------------------------------------------------------|
38
+ | CscSQL-Merge-Qwen2.5-Coder-3B-Instruct | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-3B-Instruct) |
39
+ | CscSQL-Merge-Qwen2.5-Coder-7B-Instruct | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-7B-Instruct) |
40
+ | CscSQL-Grpo-Qwen2.5-Coder-3B-Instruct | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-3B-Instruct) |
41
+ | CscSQL-Grpo-XiYanSQL-QwenCoder-3B-2502 | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-3B-2502) |
42
+ | CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct) |
43
+ | CscSQL-Grpo-XiYanSQL-QwenCoder-7B-2502 | [🤗 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-7B-2502) |
44
+
45
+ ## Dataset
46
+
47
+ The BIRD training and development datasets used can be found here: [BIRD Train Dataset](https://huggingface.co/datasets/cycloneboy/bird_train).
48
+
49
+ ## Quickstart
50
+
51
+ This section provides instructions on how to use the pre-trained CSC-SQL models.
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
56
+
57
+ model_dir = "cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct" # Or other released models
58
+
59
+ def load_model_tokenizer(model_path):
60
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
61
+ tokenizer.eos_token = "<|im_end|>"
62
+ tokenizer.pad_token = "<|endoftext|>"
63
+ tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
64
+ tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
65
+ tokenizer.padding_side = "left"
66
+
67
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
68
+ return model, tokenizer
69
+
70
+ # Example usage for a natural language question (Text-to-SQL)
71
+ # Make sure your input string ends with "<|im_start|>assistant
72
+ " for generation
73
+ text_list = ["""
74
+ <|im_start|>user
75
+ Your task is to write a SQLite query given a natural language question and a database schema.
76
+ You need to generate the SQL query that answers the question correctly.
77
+
78
+ For example, to find out the names of all the songs, given:
79
+ CREATE TABLE songs (
80
+ song_id INTEGER PRIMARY KEY,
81
+ song_name TEXT
82
+ );
83
+ Question: What are the names of all the songs?
84
+ SQL: SELECT song_name FROM songs
85
+
86
+ To find the artist of the song 'Yesterday', given:
87
+ CREATE TABLE songs (
88
+ song_id INTEGER PRIMARY KEY,
89
+ song_name TEXT,
90
+ artist_id INTEGER
91
+ );
92
+ CREATE TABLE artists (
93
+ artist_id INTEGER PRIMARY KEY,
94
+ artist_name TEXT
95
+ );
96
+ Question: Who is the artist of the song 'Yesterday'?
97
+ SQL: SELECT T2.artist_name FROM songs AS T1 JOIN artists AS T2 ON T1.artist_id = T2.artist_id WHERE T1.song_name = 'Yesterday'
98
+
99
+ Now, answer the following question.
100
+ Question: How many records are there in the table 'songs'?
101
+ SQL:
102
+ <|im_end|>
103
+ <|im_start|>assistant
104
+ """]
105
+
106
+ model, tokenizer = load_model_tokenizer(model_dir)
107
+ inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
108
+ input_ids = inputs["input_ids"]
109
+ attention_mask = inputs["attention_mask"]
110
+ generation_config = GenerationConfig(
111
+ eos_token_id=tokenizer.eos_token_id,
112
+ pad_token_id=tokenizer.pad_token_id,
113
+ temperature=0.1,
114
+ max_new_tokens=512,
115
+ num_return_sequences=1,
116
+ num_beams=1,
117
+ top_p=0.95,
118
+ do_sample=False
119
+ )
120
+ outputs = model.generate(
121
+ inputs= input_ids,
122
+ attention_mask=attention_mask,
123
+ **generation_config.to_dict()
124
+ )
125
+ gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
126
+ print(gen_text[0])
127
+
128
+ # Expected output: SELECT count(*) FROM songs
129
+ ```
130
+
131
+ ## Citation
132
+
133
+ If you find our work useful or helpful for your R&D works, please feel free to cite our paper as below.
134
+
135
+ ```bibtex
136
+ @misc{sheng2025cscsqlcorrectiveselfconsistencytexttosql,
137
+ title={CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning},
138
+ author={Lei Sheng and Shuai-Shuai Xu},
139
+ year={2025},
140
+ eprint={2505.13271},
141
+ archivePrefix={arXiv},
142
+ primaryClass={cs.CL},
143
+ url={https://arxiv.org/abs/2505.13271},
144
+ }
145
+ ```