cycloneboy nielsr HF Staff commited on
Commit
266c431
Β·
verified Β·
1 Parent(s): ab95d18

Add comprehensive model card for CSC-SQL model (#1)

Browse files

- Add comprehensive model card for CSC-SQL model (0a0d80548f8f5c165ac902f2ad76447c69679e8a)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ library_name: transformers
4
+ license: apache-2.0
5
+ tags:
6
+ - text-to-sql
7
+ - sql
8
+ - reinforcement-learning
9
+ - qwen2
10
+ ---
11
+
12
+ # CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
13
+
14
+ This repository contains the model presented in the paper [CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning](https://huggingface.co/papers/2505.13271).
15
+
16
+ **Code Repository**: [https://github.com/CycloneBoy/csc_sql](https://github.com/CycloneBoy/csc_sql)
17
+
18
+ ## Introduction
19
+
20
+ Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72% execution accuracy, while the 32B model achieves 73.67%.
21
+
22
+ ![CSC-SQL Framework](https://github.com/CycloneBoy/csc_sql/raw/main/data/image/csc_sql_framework.png)
23
+
24
+ ## Main Results
25
+
26
+ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
27
+ ![CSC-SQL Main Results](https://github.com/CycloneBoy/csc_sql/raw/main/data/image/csc_sql_result_main.png)
28
+
29
+ ## Model Checkpoints
30
+
31
+ The models and datasets related to CSC-SQL are available on Hugging Face and ModelScope:
32
+
33
+ | **Model and Dataset** | Modelscope | HuggingFace |
34
+ | :------------------------------------ | :---------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------ |
35
+ | bird train and dev dataset | [πŸ€– Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [πŸ€— HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
36
+ | CscSQL-Merge-Qwen2.5-Coder-3B-Instruct | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-3B-Instruct) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-3B-Instruct) |
37
+ | CscSQL-Merge-Qwen2.5-Coder-7B-Instruct | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-7B-Instruct) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-7B-Instruct) |
38
+ | CscSQL-Grpo-Qwen2.5-Coder-3B-Instruct | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-3B-Instruct) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-3B-Instruct) |
39
+ | CscSQL-Grpo-XiYanSQL-QwenCoder-3B-2502 | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-3B-2502) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-3B-2502) |
40
+ | CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct) |
41
+ | CscSQL-Grpo-XiYanSQL-QwenCoder-7B-2502 | [πŸ€– Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-7B-2502) | [πŸ€— HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Grpo-XiYanSQL-QwenCoder-7B-2502) |
42
+
43
+ ## Usage
44
+
45
+ This model can be loaded and used with the Hugging Face `transformers` library. Below is a simple example for text-to-SQL inference. For more advanced usage, including data processing, training, and evaluation scripts, please refer to the [official GitHub repository](https://github.com/CycloneBoy/csc_sql).
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
50
+
51
+ # The specific model identifier for this repository
52
+ model_id = "cycloneboy/CscSQL-Grpo-Qwen2.5-Coder-7B-Instruct" # Replace with the actual model ID if different
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
55
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.bfloat16, trust_remote_code=True)
56
+ model.eval()
57
+
58
+ # Example: Text-to-SQL inference using the Qwen2 chat template
59
+ # For a real-world text-to-SQL task, you would typically need to provide the database schema or
60
+ # context relevant to the query as part of the prompt.
61
+ question = "What are the names of all employees who work in the 'Sales' department?"
62
+ messages = [
63
+ {"role": "system", "content": "You are a helpful assistant trained to convert natural language questions into SQL queries."},
64
+ {"role": "user", "content": f"Translate the following natural language query into SQL: '{question}'"},
65
+ ]
66
+
67
+ # Apply the chat template to format the input according to Qwen2's conventions
68
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
69
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
70
+
71
+ # Define generation parameters
72
+ generation_config = GenerationConfig(
73
+ max_new_tokens=256,
74
+ do_sample=False, # Use greedy decoding for reproducible results
75
+ temperature=0.7,
76
+ top_p=0.9,
77
+ eos_token_id=tokenizer.eos_token_id,
78
+ pad_token_id=tokenizer.pad_token_id,
79
+ )
80
+
81
+ with torch.no_grad():
82
+ output_ids = model.generate(model_inputs.input_ids, generation_config=generation_config)
83
+
84
+ # Decode the generated SQL query, skipping special tokens
85
+ generated_sql = tokenizer.decode(output_ids[0][len(model_inputs.input_ids[0]):], skip_special_tokens=True)
86
+ print(f"Generated SQL: {generated_sql}")
87
+ ```
88
+
89
+ ## Citation
90
+
91
+ If you find our work helpful or inspiring, please feel free to cite it:
92
+
93
+ ```bibtex
94
+ @misc{sheng2025cscsqlcorrectiveselfconsistencytexttosql,
95
+ title={CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning},
96
+ author={Lei Sheng and Shuai-Shuai Xu},
97
+ year={2025},
98
+ eprint={2505.13271},
99
+ archivePrefix={arXiv},
100
+ primaryClass={cs.CL},
101
+ url={https://arxiv.org/abs/2505.13271},
102
+ }
103
+ ```