cyeet commited on
Commit
ed7ee1c
·
1 Parent(s): 0e5b715

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1912.46 +/- 40.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db1b97d581c8d1be1e0ea62e69e034a50f13e50fc5408811dc2d77124fb3dffd
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66927179d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6692717a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6692717af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6692717b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6692717c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6692717ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6692717d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6692717dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6692717e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6692717ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6692717f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6692719040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6692712630>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674366462691916029,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANxTDb/IAoS/YitnPwmKR77zSLs9Y4VtP4JHMz+zi1Y/EASVv98Egb/kHNi+Jc1zP8tUib/e8uA+1bKgv+SBXb3Yh4M/6OVDv7T3IT+2M/E+/Ed4P7c4C797g3W/CVZuPyRSnj8DtyY/pJXHPtBjNT9P224/f+MfP9lNkr21LNE/lkTSP5JZtT9/7+o+bY2Hv2U9Cb+Ahhk+FAx5P0mrEb3IIy89mLSSP0d7HL+K9lc+H2obvg0JAz9J1Q8/n26+Prmmp7+nOVy/i3IyPy2Hb7/a+E6/A7cmP6SVxz7QYzU/xQzGPxI8jT+uloe/4lC3PvTw6j/OXII/6EyTP6RRkb9t16e8kocOv3AZeD+KsYm9YTaoP+/mgL5pORq/TGPVvVCCZj/BoS6/3CcPP1Ld/Lz266e/FKpfPM/FVD+nBpO/2vhOvwO3Jj+klcc+0GM1P+2m3z4WYI8/sfKOv8Wl6D9YhLA/yfVxPmxp0jtINSu/Mky/vzkkHD+L9mk/ZVkiQMmIm7+FTJM/pC1Cv4Bpgr8eD5U+r6CJvsQhLT6tMzBAn1++vunzJ8B0a2M/LHELQNr4Tr8DtyY/pJXHPkimtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC360+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/nL/OgAAAAAaNOy/AAAAAM9RQL0AAAAAQjvwPwAAAAD3sAY+AAAAACNW/j8AAAAAt7rXPQAAAABwr+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAivittAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/xuTsAAAAATVrmvwAAAABTnAW+AAAAAKz04D8AAAAAU7ddOwAAAADceO4/AAAAAJqm7r0AAAAAh6PvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9AS7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANTzO9AAAAAC/w/r8AAAAAWHbkvQAAAABcS+w/AAAAAAZn870AAAAAynPtPwAAAADYImW9AAAAAMg48L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3vgO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzGjMPQAAAAAgjt2/AAAAABYsUboAAAAAVdD5PwAAAADAzNK9AAAAADDFAEAAAAAALIQCPgAAAABJeP6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJe3gEkjX4GMAWyUTegDjAF0lEdApsPzUNKAa3V9lChoBkdAmPmQxN7BwmgHTegDaAhHQKbIpJ/XoTx1fZQoaAZHQJddKojv/ipoB03oA2gIR0Cmyxx+BpYcdX2UKGgGR0CXYnl7+kxiaAdN6ANoCEdAps79PgvUSnV9lChoBkdAm5itrsSkCWgHTegDaAhHQKbQBYwqRU51fZQoaAZHQJy2o2ycCo1oB03oA2gIR0Cm1MbNB4UvdX2UKGgGR0CeKf3Ns3yaaAdN6ANoCEdAptdJmPHT7XV9lChoBkdAnV/rb1yvLWgHTegDaAhHQKbbF1fVqet1fZQoaAZHQJ7TWACnxaxoB03oA2gIR0Cm3BIdU83ddX2UKGgGR0Cah1ZTho/SaAdN6ANoCEdApuDF5Qgs9XV9lChoBkdAmvFGQbMot2gHTegDaAhHQKbjUVCXyAh1fZQoaAZHQJr3MUzsQd1oB03oA2gIR0Cm5zZwfhdddX2UKGgGR0CY0nhIOH32aAdN6ANoCEdApug4GQjlgnV9lChoBkdAnCipkXk5qGgHTegDaAhHQKbtG9aEBbR1fZQoaAZHQJyrIgzP8htoB03oA2gIR0Cm75u2JBPbdX2UKGgGR0Ces9K6WgOCaAdN6ANoCEdApvNfAKv3anV9lChoBkdAnb1uXVsk6mgHTegDaAhHQKb0WXuVopR1fZQoaAZHQJo6MJng5zZoB03oA2gIR0Cm+QE1EVnFdX2UKGgGR0CZe20cOskqaAdN6ANoCEdApvtsiSq2jXV9lChoBkdAlLhCFbmlqWgHTegDaAhHQKb/M9cry2B1fZQoaAZHQJTXNjslb/xoB03oA2gIR0CnADTBhx5tdX2UKGgGR0CT7Omgam4zaAdN6ANoCEdApwThA4XGfnV9lChoBkdAktkdSZSeiGgHTegDaAhHQKcHWyJKraN1fZQoaAZHQJHdXX18LKFoB03oA2gIR0CnCzHRkVesdX2UKGgGR0CTKjf2bobGaAdN6ANoCEdApwwtKh+OO3V9lChoBkdAkH4sh1Tzd2gHTegDaAhHQKcREZLIxQB1fZQoaAZHQJEINTsIE8toB03oA2gIR0CnE5SxRl6JdX2UKGgGR0CJpOzbeuV5aAdN6ANoCEdApxeEpb2US3V9lChoBkdAjh7iQLeANGgHTegDaAhHQKcYfolD4QB1fZQoaAZHQIyOQAyVObloB03oA2gIR0CnHU+5WilBdX2UKGgGR0CLnxVEuxr0aAdN6ANoCEdApx/kFpwjuHV9lChoBkdAivbIldC3PWgHTegDaAhHQKcj0BbwBo51fZQoaAZHQIpgeMl1KXhoB03oA2gIR0CnJM56+nIidX2UKGgGR0CSQGrfcer/aAdN6ANoCEdApymbKV6eG3V9lChoBkdAj0LaNEPUa2gHTegDaAhHQKcsFUd7v5R1fZQoaAZHQJOK2RYA80VoB03oA2gIR0CnMCBf0EowdX2UKGgGR0CUkDp4bCJoaAdN6ANoCEdApzEqeumrKnV9lChoBkdAku7/8/D+BGgHTegDaAhHQKc19Xg9/z91fZQoaAZHQJeq5yzXz19oB03oA2gIR0CnOIecpb2UdX2UKGgGR0CXLFrl/6O6aAdN6ANoCEdApzxcnkT6BXV9lChoBkdAmKvtkauOj2gHTegDaAhHQKc9Uajvd/J1fZQoaAZHQJni7lfZ26loB03oA2gIR0CnQenpr1ujdX2UKGgGR0CYcM9bor4GaAdN6ANoCEdAp0RhCY1HfHV9lChoBkdAmoMsRg7YCmgHTegDaAhHQKdIIImgJ1J1fZQoaAZHQJ2JaoR7JGRoB03oA2gIR0CnSRn1vl2edX2UKGgGR0CemwAZbY9QaAdN6ANoCEdAp03vQ+lj3HV9lChoBkdAny49HUc4pGgHTegDaAhHQKdQbLFn7Hh1fZQoaAZHQJ6WBaV2Rq5oB03oA2gIR0CnVDiDujREdX2UKGgGR0Cei1MdcSoPaAdN6ANoCEdAp1U1qQA+6nV9lChoBkdAnWyd65XlsGgHTegDaAhHQKdZ7k4m1IB1fZQoaAZHQJx1xRxcVxloB03oA2gIR0CnXHIlt0mudX2UKGgGR0CcE65aNdZ8aAdN6ANoCEdAp2BAk5ZKWnV9lChoBkdAndP8rqdH2GgHTegDaAhHQKdhUQxvegt1fZQoaAZHQJyPIyBTXJ5oB03oA2gIR0CnZfRdhRZVdX2UKGgGR0Ccel5u63AmaAdN6ANoCEdAp2iDvRZ2ZHV9lChoBkdAngv0fkmx+2gHTegDaAhHQKdsddLxqfx1fZQoaAZHQJ5Qn8xbjcVoB03oA2gIR0CnbXG6wt8NdX2UKGgGR0CdW7V9Wp6yaAdN6ANoCEdAp3IfXwsoUnV9lChoBkdAneaHskY4yWgHTegDaAhHQKd0qk0Jng51fZQoaAZHQJ8yuDjBEa5oB03oA2gIR0CneIFVT72tdX2UKGgGR0CepU+5vtMPaAdN6ANoCEdAp3mFR3u/lHV9lChoBkdAntkfKISDiGgHTegDaAhHQKd+UdS2php1fZQoaAZHQJxFvefqX4VoB03oA2gIR0CngNcMd92HdX2UKGgGR0Cd8uCRfWtmaAdN6ANoCEdAp4SgSOBDonV9lChoBkdAnY8wF9roGWgHTegDaAhHQKeFnXvH93t1fZQoaAZHQJ6D2FN+LFZoB03oA2gIR0Cnim1T72tddX2UKGgGR0CfgX0U47zTaAdN6ANoCEdAp4zc2Jiy6nV9lChoBkdAnlw/0I1LrWgHTegDaAhHQKeQmcwxnFp1fZQoaAZHQJ3AguHvc8FoB03oA2gIR0CnkZvYe1a4dX2UKGgGR0Cfqzd5Y5ktaAdN6ANoCEdAp5Y95le4TnV9lChoBkdAoBLDRtxdZGgHTegDaAhHQKeYplr/Khd1fZQoaAZHQJ+GHkELYwtoB03oA2gIR0CnnIXQD3dsdX2UKGgGR0CelQHT7VJ+aAdN6ANoCEdAp52NqnFYMnV9lChoBkdAmDL2u1WsBGgHTegDaAhHQKeiUMNtqHp1fZQoaAZHQJWUUcJdB0JoB03oA2gIR0CnpNSDIzWPdX2UKGgGR0CaFfKZDzAfaAdN6ANoCEdAp6iwFHJ9zHV9lChoBkdAmusIXbdrPGgHTegDaAhHQKeprNwBHTZ1fZQoaAZHQJxhFWkrPMVoB03oA2gIR0CnrlqFRHf/dX2UKGgGR0CZzJetSydGaAdN6ANoCEdAp7DV+G47R3V9lChoBkdAnL0Lb1yvLWgHTegDaAhHQKe0rssxwhp1fZQoaAZHQJpw6hvitJZoB03oA2gIR0CntaZNXYDldX2UKGgGR0CeHGoXbdrPaAdN6ANoCEdAp7pOVRk3CXV9lChoBkdAnOT1ZHNHH2gHTegDaAhHQKe8uUcn3L51fZQoaAZHQJt/isySFGpoB03oA2gIR0CnwIpzLfUGdX2UKGgGR0CdKHJ9iMHbaAdN6ANoCEdAp8GKXBxgiXV9lChoBkdAnNtRUedTYWgHTegDaAhHQKfGNa9K28Z1fZQoaAZHQJ7TsA1ejVRoB03oA2gIR0CnyJhtUGVzdX2UKGgGR0CbgvRISUTtaAdN6ANoCEdAp8xf7JnxrnV9lChoBkdAnOc/1YhdMWgHTegDaAhHQKfNVDdgv111fZQoaAZHQJymta4c3l1oB03oA2gIR0Cn0gUmtyPudX2UKGgGR0CbkcWK/EflaAdN6ANoCEdAp9RzZezD43V9lChoBkdAmuu+5z5oG2gHTegDaAhHQKfYJz5GjKx1fZQoaAZHQJzU1RUFSsNoB03oA2gIR0Cn2R4mkWRBdX2UKGgGR0CdDN3Roh6jaAdN6ANoCEdAp93A8GLUC3V9lChoBkdAnZAqZYxL02gHTegDaAhHQKfgMQZn+Q51fZQoaAZHQJ9++cwxnFpoB03oA2gIR0Cn4+nIQvpRdX2UKGgGR0CfHRJFLFn7aAdN6ANoCEdAp+T7p/wy7HV9lChoBkdAnEjWUbDMvGgHTegDaAhHQKfppDw6QvJ1fZQoaAZHQJ1tZr433pRoB03oA2gIR0Cn7BmOdXkpdX2UKGgGR0CbPwh/iHZcaAdN6ANoCEdAp+/YCIUJwHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:903a61d8c3e7b580baabb15f5332c905c77e39a21f430f7b0429d508006fe83d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:997d6d0370441bebafeba3a9068158162fb7da2f8132e22a2919282f3127be0f
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66927179d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6692717a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6692717af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6692717b80>", "_build": "<function ActorCriticPolicy._build at 0x7f6692717c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f6692717ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6692717d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6692717dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6692717e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6692717ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6692717f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6692719040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6692712630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674366462691916029, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANxTDb/IAoS/YitnPwmKR77zSLs9Y4VtP4JHMz+zi1Y/EASVv98Egb/kHNi+Jc1zP8tUib/e8uA+1bKgv+SBXb3Yh4M/6OVDv7T3IT+2M/E+/Ed4P7c4C797g3W/CVZuPyRSnj8DtyY/pJXHPtBjNT9P224/f+MfP9lNkr21LNE/lkTSP5JZtT9/7+o+bY2Hv2U9Cb+Ahhk+FAx5P0mrEb3IIy89mLSSP0d7HL+K9lc+H2obvg0JAz9J1Q8/n26+Prmmp7+nOVy/i3IyPy2Hb7/a+E6/A7cmP6SVxz7QYzU/xQzGPxI8jT+uloe/4lC3PvTw6j/OXII/6EyTP6RRkb9t16e8kocOv3AZeD+KsYm9YTaoP+/mgL5pORq/TGPVvVCCZj/BoS6/3CcPP1Ld/Lz266e/FKpfPM/FVD+nBpO/2vhOvwO3Jj+klcc+0GM1P+2m3z4WYI8/sfKOv8Wl6D9YhLA/yfVxPmxp0jtINSu/Mky/vzkkHD+L9mk/ZVkiQMmIm7+FTJM/pC1Cv4Bpgr8eD5U+r6CJvsQhLT6tMzBAn1++vunzJ8B0a2M/LHELQNr4Tr8DtyY/pJXHPkimtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC360+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/nL/OgAAAAAaNOy/AAAAAM9RQL0AAAAAQjvwPwAAAAD3sAY+AAAAACNW/j8AAAAAt7rXPQAAAABwr+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAivittAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/xuTsAAAAATVrmvwAAAABTnAW+AAAAAKz04D8AAAAAU7ddOwAAAADceO4/AAAAAJqm7r0AAAAAh6PvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9AS7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANTzO9AAAAAC/w/r8AAAAAWHbkvQAAAABcS+w/AAAAAAZn870AAAAAynPtPwAAAADYImW9AAAAAMg48L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3vgO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzGjMPQAAAAAgjt2/AAAAABYsUboAAAAAVdD5PwAAAADAzNK9AAAAADDFAEAAAAAALIQCPgAAAABJeP6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJe3gEkjX4GMAWyUTegDjAF0lEdApsPzUNKAa3V9lChoBkdAmPmQxN7BwmgHTegDaAhHQKbIpJ/XoTx1fZQoaAZHQJddKojv/ipoB03oA2gIR0Cmyxx+BpYcdX2UKGgGR0CXYnl7+kxiaAdN6ANoCEdAps79PgvUSnV9lChoBkdAm5itrsSkCWgHTegDaAhHQKbQBYwqRU51fZQoaAZHQJy2o2ycCo1oB03oA2gIR0Cm1MbNB4UvdX2UKGgGR0CeKf3Ns3yaaAdN6ANoCEdAptdJmPHT7XV9lChoBkdAnV/rb1yvLWgHTegDaAhHQKbbF1fVqet1fZQoaAZHQJ7TWACnxaxoB03oA2gIR0Cm3BIdU83ddX2UKGgGR0Cah1ZTho/SaAdN6ANoCEdApuDF5Qgs9XV9lChoBkdAmvFGQbMot2gHTegDaAhHQKbjUVCXyAh1fZQoaAZHQJr3MUzsQd1oB03oA2gIR0Cm5zZwfhdddX2UKGgGR0CY0nhIOH32aAdN6ANoCEdApug4GQjlgnV9lChoBkdAnCipkXk5qGgHTegDaAhHQKbtG9aEBbR1fZQoaAZHQJyrIgzP8htoB03oA2gIR0Cm75u2JBPbdX2UKGgGR0Ces9K6WgOCaAdN6ANoCEdApvNfAKv3anV9lChoBkdAnb1uXVsk6mgHTegDaAhHQKb0WXuVopR1fZQoaAZHQJo6MJng5zZoB03oA2gIR0Cm+QE1EVnFdX2UKGgGR0CZe20cOskqaAdN6ANoCEdApvtsiSq2jXV9lChoBkdAlLhCFbmlqWgHTegDaAhHQKb/M9cry2B1fZQoaAZHQJTXNjslb/xoB03oA2gIR0CnADTBhx5tdX2UKGgGR0CT7Omgam4zaAdN6ANoCEdApwThA4XGfnV9lChoBkdAktkdSZSeiGgHTegDaAhHQKcHWyJKraN1fZQoaAZHQJHdXX18LKFoB03oA2gIR0CnCzHRkVesdX2UKGgGR0CTKjf2bobGaAdN6ANoCEdApwwtKh+OO3V9lChoBkdAkH4sh1Tzd2gHTegDaAhHQKcREZLIxQB1fZQoaAZHQJEINTsIE8toB03oA2gIR0CnE5SxRl6JdX2UKGgGR0CJpOzbeuV5aAdN6ANoCEdApxeEpb2US3V9lChoBkdAjh7iQLeANGgHTegDaAhHQKcYfolD4QB1fZQoaAZHQIyOQAyVObloB03oA2gIR0CnHU+5WilBdX2UKGgGR0CLnxVEuxr0aAdN6ANoCEdApx/kFpwjuHV9lChoBkdAivbIldC3PWgHTegDaAhHQKcj0BbwBo51fZQoaAZHQIpgeMl1KXhoB03oA2gIR0CnJM56+nIidX2UKGgGR0CSQGrfcer/aAdN6ANoCEdApymbKV6eG3V9lChoBkdAj0LaNEPUa2gHTegDaAhHQKcsFUd7v5R1fZQoaAZHQJOK2RYA80VoB03oA2gIR0CnMCBf0EowdX2UKGgGR0CUkDp4bCJoaAdN6ANoCEdApzEqeumrKnV9lChoBkdAku7/8/D+BGgHTegDaAhHQKc19Xg9/z91fZQoaAZHQJeq5yzXz19oB03oA2gIR0CnOIecpb2UdX2UKGgGR0CXLFrl/6O6aAdN6ANoCEdApzxcnkT6BXV9lChoBkdAmKvtkauOj2gHTegDaAhHQKc9Uajvd/J1fZQoaAZHQJni7lfZ26loB03oA2gIR0CnQenpr1ujdX2UKGgGR0CYcM9bor4GaAdN6ANoCEdAp0RhCY1HfHV9lChoBkdAmoMsRg7YCmgHTegDaAhHQKdIIImgJ1J1fZQoaAZHQJ2JaoR7JGRoB03oA2gIR0CnSRn1vl2edX2UKGgGR0CemwAZbY9QaAdN6ANoCEdAp03vQ+lj3HV9lChoBkdAny49HUc4pGgHTegDaAhHQKdQbLFn7Hh1fZQoaAZHQJ6WBaV2Rq5oB03oA2gIR0CnVDiDujREdX2UKGgGR0Cei1MdcSoPaAdN6ANoCEdAp1U1qQA+6nV9lChoBkdAnWyd65XlsGgHTegDaAhHQKdZ7k4m1IB1fZQoaAZHQJx1xRxcVxloB03oA2gIR0CnXHIlt0mudX2UKGgGR0CcE65aNdZ8aAdN6ANoCEdAp2BAk5ZKWnV9lChoBkdAndP8rqdH2GgHTegDaAhHQKdhUQxvegt1fZQoaAZHQJyPIyBTXJ5oB03oA2gIR0CnZfRdhRZVdX2UKGgGR0Ccel5u63AmaAdN6ANoCEdAp2iDvRZ2ZHV9lChoBkdAngv0fkmx+2gHTegDaAhHQKdsddLxqfx1fZQoaAZHQJ5Qn8xbjcVoB03oA2gIR0CnbXG6wt8NdX2UKGgGR0CdW7V9Wp6yaAdN6ANoCEdAp3IfXwsoUnV9lChoBkdAneaHskY4yWgHTegDaAhHQKd0qk0Jng51fZQoaAZHQJ8yuDjBEa5oB03oA2gIR0CneIFVT72tdX2UKGgGR0CepU+5vtMPaAdN6ANoCEdAp3mFR3u/lHV9lChoBkdAntkfKISDiGgHTegDaAhHQKd+UdS2php1fZQoaAZHQJxFvefqX4VoB03oA2gIR0CngNcMd92HdX2UKGgGR0Cd8uCRfWtmaAdN6ANoCEdAp4SgSOBDonV9lChoBkdAnY8wF9roGWgHTegDaAhHQKeFnXvH93t1fZQoaAZHQJ6D2FN+LFZoB03oA2gIR0Cnim1T72tddX2UKGgGR0CfgX0U47zTaAdN6ANoCEdAp4zc2Jiy6nV9lChoBkdAnlw/0I1LrWgHTegDaAhHQKeQmcwxnFp1fZQoaAZHQJ3AguHvc8FoB03oA2gIR0CnkZvYe1a4dX2UKGgGR0Cfqzd5Y5ktaAdN6ANoCEdAp5Y95le4TnV9lChoBkdAoBLDRtxdZGgHTegDaAhHQKeYplr/Khd1fZQoaAZHQJ+GHkELYwtoB03oA2gIR0CnnIXQD3dsdX2UKGgGR0CelQHT7VJ+aAdN6ANoCEdAp52NqnFYMnV9lChoBkdAmDL2u1WsBGgHTegDaAhHQKeiUMNtqHp1fZQoaAZHQJWUUcJdB0JoB03oA2gIR0CnpNSDIzWPdX2UKGgGR0CaFfKZDzAfaAdN6ANoCEdAp6iwFHJ9zHV9lChoBkdAmusIXbdrPGgHTegDaAhHQKeprNwBHTZ1fZQoaAZHQJxhFWkrPMVoB03oA2gIR0CnrlqFRHf/dX2UKGgGR0CZzJetSydGaAdN6ANoCEdAp7DV+G47R3V9lChoBkdAnL0Lb1yvLWgHTegDaAhHQKe0rssxwhp1fZQoaAZHQJpw6hvitJZoB03oA2gIR0CntaZNXYDldX2UKGgGR0CeHGoXbdrPaAdN6ANoCEdAp7pOVRk3CXV9lChoBkdAnOT1ZHNHH2gHTegDaAhHQKe8uUcn3L51fZQoaAZHQJt/isySFGpoB03oA2gIR0CnwIpzLfUGdX2UKGgGR0CdKHJ9iMHbaAdN6ANoCEdAp8GKXBxgiXV9lChoBkdAnNtRUedTYWgHTegDaAhHQKfGNa9K28Z1fZQoaAZHQJ7TsA1ejVRoB03oA2gIR0CnyJhtUGVzdX2UKGgGR0CbgvRISUTtaAdN6ANoCEdAp8xf7JnxrnV9lChoBkdAnOc/1YhdMWgHTegDaAhHQKfNVDdgv111fZQoaAZHQJymta4c3l1oB03oA2gIR0Cn0gUmtyPudX2UKGgGR0CbkcWK/EflaAdN6ANoCEdAp9RzZezD43V9lChoBkdAmuu+5z5oG2gHTegDaAhHQKfYJz5GjKx1fZQoaAZHQJzU1RUFSsNoB03oA2gIR0Cn2R4mkWRBdX2UKGgGR0CdDN3Roh6jaAdN6ANoCEdAp93A8GLUC3V9lChoBkdAnZAqZYxL02gHTegDaAhHQKfgMQZn+Q51fZQoaAZHQJ9++cwxnFpoB03oA2gIR0Cn4+nIQvpRdX2UKGgGR0CfHRJFLFn7aAdN6ANoCEdAp+T7p/wy7HV9lChoBkdAnEjWUbDMvGgHTegDaAhHQKfppDw6QvJ1fZQoaAZHQJ1tZr433pRoB03oA2gIR0Cn7BmOdXkpdX2UKGgGR0CbPwh/iHZcaAdN6ANoCEdAp+/YCIUJwHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b56284fa9d6b0e52a7f9d5cecbebaa3fd00b3ad10159968151e4d658534020e
3
+ size 1243289
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1912.4590575492707, "std_reward": 40.61445615580948, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T07:24:57.334235"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04ee6a7f505df3b9b23ec07e6e8df2993f88bbd12c9916fa540f833398f805e0
3
+ size 2136