cyeet commited on
Commit
0dcd99e
·
1 Parent(s): 9f7345c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.17 +/- 0.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ee1c0aa339b918fbde52b6bf74687a522112a6c54da62be2cbc9a4a65b105ef
3
+ size 108071
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6692719160>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f66927128d0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674372512870944842,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfTLePrvYDzwAiRE/fTLePrvYDzwAiRE/fTLePrvYDzwAiRE/fTLePrvYDzwAiRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0AGev+i0mL/S79k+yM1JP364v794Nd8+BkAPP8wpo7/mGmC/25DIvxIJUj+eOrS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]]",
60
+ "desired_goal": "[[-1.2344303 -1.1930208 0.4256578 ]\n [ 0.7882962 -1.4978178 0.4359548 ]\n [ 0.55957067 -1.274713 -0.87541044]\n [-1.5669206 0.8204509 -0.3520097 ]]",
61
+ "observation": "[[4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ7UTvZsZrz2Lffc9aixtvQeTmr0lHfI9NrLNPeXnxL2WER09tfs1Pa6BCz5HrAg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03606154 0.08549806 0.12084492]\n [-0.05790368 -0.07547574 0.11821965]\n [ 0.10043757 -0.09614543 0.03834685]\n [ 0.0444295 0.13623688 0.03336742]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN/3ZjxSR7r+UhpRSlIwBbJRLMowBdJRHQKTxtFKkEcN1fZQoaAZoCWgPQwjR6uQMxZ3nv5SGlFKUaBVLMmgWR0Ck8XrR8c+8dX2UKGgGaAloD0MIsaayKOyi4r+UhpRSlGgVSzJoFkdApPE+9WZJCnV9lChoBmgJaA9DCDlegehJmeq/lIaUUpRoFUsyaBZHQKTxAJSiudR1fZQoaAZoCWgPQwhqNLkYA2vlv5SGlFKUaBVLMmgWR0Ck8tpjDsMRdX2UKGgGaAloD0MIknpP5bRn97+UhpRSlGgVSzJoFkdApPKgwdsBQ3V9lChoBmgJaA9DCPqa5bLRufS/lIaUUpRoFUsyaBZHQKTyZJqZc9p1fZQoaAZoCWgPQwhAhLhy9s7gv5SGlFKUaBVLMmgWR0Ck8iZRKpT/dX2UKGgGaAloD0MIOQmlL4Qc47+UhpRSlGgVSzJoFkdApPPuRV6u4nV9lChoBmgJaA9DCDNPrimQ2fK/lIaUUpRoFUsyaBZHQKTztKAavRt1fZQoaAZoCWgPQwj2QZYFE3/Rv5SGlFKUaBVLMmgWR0Ck83hz3h4udX2UKGgGaAloD0MIP8QGCyfp8r+UhpRSlGgVSzJoFkdApPM6BAfMfXV9lChoBmgJaA9DCHbFjPD2IPG/lIaUUpRoFUsyaBZHQKT1BN9ph4N1fZQoaAZoCWgPQwiSrpl8s83uv5SGlFKUaBVLMmgWR0Ck9MsqJ/G3dX2UKGgGaAloD0MI+grSjEWT8b+UhpRSlGgVSzJoFkdApPSPEjxCpnV9lChoBmgJaA9DCDykGCDRBN6/lIaUUpRoFUsyaBZHQKT0UL3K0Up1fZQoaAZoCWgPQwhPO/w1WaPsv5SGlFKUaBVLMmgWR0Ck9i3dsSCfdX2UKGgGaAloD0MI7pi6K7tg6r+UhpRSlGgVSzJoFkdApPX0Of/WD3V9lChoBmgJaA9DCIaQ8/4/TvO/lIaUUpRoFUsyaBZHQKT1uBbwBo51fZQoaAZoCWgPQwiyuP/IdOjRv5SGlFKUaBVLMmgWR0Ck9XnCGetkdX2UKGgGaAloD0MIgUOoUrPH9L+UhpRSlGgVSzJoFkdApPdOFWXC0nV9lChoBmgJaA9DCGouNxjqsN2/lIaUUpRoFUsyaBZHQKT3FFzdUKl1fZQoaAZoCWgPQwjD19e61Ajjv5SGlFKUaBVLMmgWR0Ck9thJRO1wdX2UKGgGaAloD0MIsK2f/rNm87+UhpRSlGgVSzJoFkdApPaZvegte3V9lChoBmgJaA9DCA2poniVNem/lIaUUpRoFUsyaBZHQKT4dlJ6IFh1fZQoaAZoCWgPQwg5fxMKEfDkv5SGlFKUaBVLMmgWR0Ck+DywGGEgdX2UKGgGaAloD0MIt7dbkgM29L+UhpRSlGgVSzJoFkdApPgAsAeaKHV9lChoBmgJaA9DCNm1vd2S3PW/lIaUUpRoFUsyaBZHQKT3wkona391fZQoaAZoCWgPQwj6tIr+0Mz2v5SGlFKUaBVLMmgWR0Ck+ZKptJnQdX2UKGgGaAloD0MIArfu5qkOz7+UhpRSlGgVSzJoFkdApPlY9kjHGXV9lChoBmgJaA9DCKciFcYWgsy/lIaUUpRoFUsyaBZHQKT5HPj4pMJ1fZQoaAZoCWgPQwjVXG4w1GHov5SGlFKUaBVLMmgWR0Ck+N7DuSfUdX2UKGgGaAloD0MIzc6idyrg77+UhpRSlGgVSzJoFkdApPq0vXbudHV9lChoBmgJaA9DCH3ogvqWOeW/lIaUUpRoFUsyaBZHQKT6ewblzU91fZQoaAZoCWgPQwhPP6iLFMrov5SGlFKUaBVLMmgWR0Ck+j7xd6cBdX2UKGgGaAloD0MI2pJVEW6y4b+UhpRSlGgVSzJoFkdApPoAjnmq53V9lChoBmgJaA9DCA70UNuGUea/lIaUUpRoFUsyaBZHQKT72OvMbFV1fZQoaAZoCWgPQwjXUGovou33v5SGlFKUaBVLMmgWR0Ck+59Pk7wKdX2UKGgGaAloD0MIH/et1olL67+UhpRSlGgVSzJoFkdApPtjTx5LRXV9lChoBmgJaA9DCNKJBFPNLOK/lIaUUpRoFUsyaBZHQKT7JNzr/sF1fZQoaAZoCWgPQwgJ+gs9YjT9v5SGlFKUaBVLMmgWR0Ck/PNTUAktdX2UKGgGaAloD0MIX0TbMXVX4L+UhpRSlGgVSzJoFkdApPy5pnHvMXV9lChoBmgJaA9DCCeEDrqEQ+e/lIaUUpRoFUsyaBZHQKT8fa6BiCt1fZQoaAZoCWgPQwgt6SgHs4nxv5SGlFKUaBVLMmgWR0Ck/D9B8hLXdX2UKGgGaAloD0MICYofY+4a8L+UhpRSlGgVSzJoFkdApP4QgJTl1nV9lChoBmgJaA9DCGzM64hDNt+/lIaUUpRoFUsyaBZHQKT91s4T9Kp1fZQoaAZoCWgPQwge39416Avzv5SGlFKUaBVLMmgWR0Ck/ZqtYB/7dX2UKGgGaAloD0MILo1feCWJ9L+UhpRSlGgVSzJoFkdApP1cVk+X7nV9lChoBmgJaA9DCICcMGE06/K/lIaUUpRoFUsyaBZHQKT/Iskpqh11fZQoaAZoCWgPQwiE1sOXiWL/v5SGlFKUaBVLMmgWR0Ck/ukO7QLNdX2UKGgGaAloD0MIZePBFrs9+L+UhpRSlGgVSzJoFkdApP6s4gieNHV9lChoBmgJaA9DCDL/6Js0jeG/lIaUUpRoFUsyaBZHQKT+bof0Vah1fZQoaAZoCWgPQwiD34YYr/nkv5SGlFKUaBVLMmgWR0ClAD5pSJj2dX2UKGgGaAloD0MIUYL+Qo9Y9L+UhpRSlGgVSzJoFkdApQAE0aZQYXV9lChoBmgJaA9DCOI+cmvSbQPAlIaUUpRoFUsyaBZHQKT/yMMI/qx1fZQoaAZoCWgPQwgiizTxDvDpv5SGlFKUaBVLMmgWR0Ck/4pokAxSdX2UKGgGaAloD0MIn1bRH5p59b+UhpRSlGgVSzJoFkdApQFV2vB7/nV9lChoBmgJaA9DCEnb+BOVDd+/lIaUUpRoFUsyaBZHQKUBHDDTBqN1fZQoaAZoCWgPQwhbtABtq9njv5SGlFKUaBVLMmgWR0ClAOAkTpPidX2UKGgGaAloD0MIqB3+mqzR7b+UhpRSlGgVSzJoFkdApQChujynUHV9lChoBmgJaA9DCMBatWtCGvq/lIaUUpRoFUsyaBZHQKUCgrcTJyR1fZQoaAZoCWgPQwhwXwfOGZHwv5SGlFKUaBVLMmgWR0ClAkkbHZK4dX2UKGgGaAloD0MIVOI6xhWX7b+UhpRSlGgVSzJoFkdApQINF8XvY3V9lChoBmgJaA9DCBwG81fIXOi/lIaUUpRoFUsyaBZHQKUBzsOXmeV1fZQoaAZoCWgPQwgmj6flBy7hv5SGlFKUaBVLMmgWR0ClA51NxlxwdX2UKGgGaAloD0MIDYtR19r74L+UhpRSlGgVSzJoFkdApQNjmr8zh3V9lChoBmgJaA9DCEwYzcr2wQDAlIaUUpRoFUsyaBZHQKUDJ3MY/FB1fZQoaAZoCWgPQwhrYoGv6Fbov5SGlFKUaBVLMmgWR0ClAujlxOtXdX2UKGgGaAloD0MIkj1CzZBq+r+UhpRSlGgVSzJoFkdApQSvZ9NN8HV9lChoBmgJaA9DCC/3yVGAKOS/lIaUUpRoFUsyaBZHQKUEdbL2YfJ1fZQoaAZoCWgPQwjQm4pUGLsEwJSGlFKUaBVLMmgWR0ClBDmC7K7qdX2UKGgGaAloD0MITiuFQC6x9b+UhpRSlGgVSzJoFkdApQP7Dbah6HV9lChoBmgJaA9DCN8WLNUF/PC/lIaUUpRoFUsyaBZHQKUFxjyWiUR1fZQoaAZoCWgPQwjWOQZkr3fkv5SGlFKUaBVLMmgWR0ClBYyWRigCdX2UKGgGaAloD0MIpdjRONRPBMCUhpRSlGgVSzJoFkdApQVQp4KQaXV9lChoBmgJaA9DCCocQSrFzvW/lIaUUpRoFUsyaBZHQKUFEkl/pdN1fZQoaAZoCWgPQwgL7ZxmgXbzv5SGlFKUaBVLMmgWR0ClBulJpWWAdX2UKGgGaAloD0MInP2Bctu+2L+UhpRSlGgVSzJoFkdApQavgvUSZnV9lChoBmgJaA9DCPnYXaCkQPq/lIaUUpRoFUsyaBZHQKUGc3Mpw0h1fZQoaAZoCWgPQwiGOqxwyycFwJSGlFKUaBVLMmgWR0ClBjUqhDgJdX2UKGgGaAloD0MIfevDeqO2AMCUhpRSlGgVSzJoFkdApQgFh7Vrh3V9lChoBmgJaA9DCOEKKNTTh/u/lIaUUpRoFUsyaBZHQKUHy+dsi0R1fZQoaAZoCWgPQwjLviuC/w0AwJSGlFKUaBVLMmgWR0ClB4/h2nsLdX2UKGgGaAloD0MIdQZGXtakAcCUhpRSlGgVSzJoFkdApQdR6KLsKXV9lChoBmgJaA9DCJ1oVyHlJ/S/lIaUUpRoFUsyaBZHQKUJIUILPUt1fZQoaAZoCWgPQwjiICHKF7QDwJSGlFKUaBVLMmgWR0ClCOexW1c/dX2UKGgGaAloD0MIWRZM/FF0AcCUhpRSlGgVSzJoFkdApQirpxFRYXV9lChoBmgJaA9DCBmNfF7x1PW/lIaUUpRoFUsyaBZHQKUIbWGRFJB1fZQoaAZoCWgPQwi2os1xbpMDwJSGlFKUaBVLMmgWR0ClClyXUpd9dX2UKGgGaAloD0MIYvcdw2M/87+UhpRSlGgVSzJoFkdApQojAeq7y3V9lChoBmgJaA9DCGt/Z3v0Bva/lIaUUpRoFUsyaBZHQKUJ5u9eyAx1fZQoaAZoCWgPQwhslzYclgbyv5SGlFKUaBVLMmgWR0ClCaiNCJGfdX2UKGgGaAloD0MIIenTKvpD5L+UhpRSlGgVSzJoFkdApQt0mShaknV9lChoBmgJaA9DCOJ1/YLdcP6/lIaUUpRoFUsyaBZHQKULOvllsgx1fZQoaAZoCWgPQwjq6SPwhx/8v5SGlFKUaBVLMmgWR0ClCv7dSEUTdX2UKGgGaAloD0MI2T9PAwZJ7r+UhpRSlGgVSzJoFkdApQrAdXDFZXV9lChoBmgJaA9DCFjk1w+xQeW/lIaUUpRoFUsyaBZHQKUMkacZtN11fZQoaAZoCWgPQwjRyVLr/Qbwv5SGlFKUaBVLMmgWR0ClDFf2Cdz5dX2UKGgGaAloD0MIgT/8/PcAAsCUhpRSlGgVSzJoFkdApQwb4k/r0XV9lChoBmgJaA9DCEcCDTZ1Hue/lIaUUpRoFUsyaBZHQKUL3W5H3Dh1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59be9a9179228275fa3b7dbf7e747f5a1ef6f2258f25a17cb03290802a4543bd
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d6280f67dad75a8d734dc4a20b75a6b16425a02d057fc15392016b5a36bad0a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6692719160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f66927128d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674372512870944842, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfTLePrvYDzwAiRE/fTLePrvYDzwAiRE/fTLePrvYDzwAiRE/fTLePrvYDzwAiRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0AGev+i0mL/S79k+yM1JP364v794Nd8+BkAPP8wpo7/mGmC/25DIvxIJUj+eOrS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzx9Mt4+u9gPPACJET9QLYI841dmOSApGzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]\n [0.43397895 0.0087797 0.5684967 ]]", "desired_goal": "[[-1.2344303 -1.1930208 0.4256578 ]\n [ 0.7882962 -1.4978178 0.4359548 ]\n [ 0.55957067 -1.274713 -0.87541044]\n [-1.5669206 0.8204509 -0.3520097 ]]", "observation": "[[4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]\n [4.3397895e-01 8.7796999e-03 5.6849670e-01 1.5890747e-02 2.1967250e-04\n 9.4702542e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ7UTvZsZrz2Lffc9aixtvQeTmr0lHfI9NrLNPeXnxL2WER09tfs1Pa6BCz5HrAg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03606154 0.08549806 0.12084492]\n [-0.05790368 -0.07547574 0.11821965]\n [ 0.10043757 -0.09614543 0.03834685]\n [ 0.0444295 0.13623688 0.03336742]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN/3ZjxSR7r+UhpRSlIwBbJRLMowBdJRHQKTxtFKkEcN1fZQoaAZoCWgPQwjR6uQMxZ3nv5SGlFKUaBVLMmgWR0Ck8XrR8c+8dX2UKGgGaAloD0MIsaayKOyi4r+UhpRSlGgVSzJoFkdApPE+9WZJCnV9lChoBmgJaA9DCDlegehJmeq/lIaUUpRoFUsyaBZHQKTxAJSiudR1fZQoaAZoCWgPQwhqNLkYA2vlv5SGlFKUaBVLMmgWR0Ck8tpjDsMRdX2UKGgGaAloD0MIknpP5bRn97+UhpRSlGgVSzJoFkdApPKgwdsBQ3V9lChoBmgJaA9DCPqa5bLRufS/lIaUUpRoFUsyaBZHQKTyZJqZc9p1fZQoaAZoCWgPQwhAhLhy9s7gv5SGlFKUaBVLMmgWR0Ck8iZRKpT/dX2UKGgGaAloD0MIOQmlL4Qc47+UhpRSlGgVSzJoFkdApPPuRV6u4nV9lChoBmgJaA9DCDNPrimQ2fK/lIaUUpRoFUsyaBZHQKTztKAavRt1fZQoaAZoCWgPQwj2QZYFE3/Rv5SGlFKUaBVLMmgWR0Ck83hz3h4udX2UKGgGaAloD0MIP8QGCyfp8r+UhpRSlGgVSzJoFkdApPM6BAfMfXV9lChoBmgJaA9DCHbFjPD2IPG/lIaUUpRoFUsyaBZHQKT1BN9ph4N1fZQoaAZoCWgPQwiSrpl8s83uv5SGlFKUaBVLMmgWR0Ck9MsqJ/G3dX2UKGgGaAloD0MI+grSjEWT8b+UhpRSlGgVSzJoFkdApPSPEjxCpnV9lChoBmgJaA9DCDykGCDRBN6/lIaUUpRoFUsyaBZHQKT0UL3K0Up1fZQoaAZoCWgPQwhPO/w1WaPsv5SGlFKUaBVLMmgWR0Ck9i3dsSCfdX2UKGgGaAloD0MI7pi6K7tg6r+UhpRSlGgVSzJoFkdApPX0Of/WD3V9lChoBmgJaA9DCIaQ8/4/TvO/lIaUUpRoFUsyaBZHQKT1uBbwBo51fZQoaAZoCWgPQwiyuP/IdOjRv5SGlFKUaBVLMmgWR0Ck9XnCGetkdX2UKGgGaAloD0MIgUOoUrPH9L+UhpRSlGgVSzJoFkdApPdOFWXC0nV9lChoBmgJaA9DCGouNxjqsN2/lIaUUpRoFUsyaBZHQKT3FFzdUKl1fZQoaAZoCWgPQwjD19e61Ajjv5SGlFKUaBVLMmgWR0Ck9thJRO1wdX2UKGgGaAloD0MIsK2f/rNm87+UhpRSlGgVSzJoFkdApPaZvegte3V9lChoBmgJaA9DCA2poniVNem/lIaUUpRoFUsyaBZHQKT4dlJ6IFh1fZQoaAZoCWgPQwg5fxMKEfDkv5SGlFKUaBVLMmgWR0Ck+DywGGEgdX2UKGgGaAloD0MIt7dbkgM29L+UhpRSlGgVSzJoFkdApPgAsAeaKHV9lChoBmgJaA9DCNm1vd2S3PW/lIaUUpRoFUsyaBZHQKT3wkona391fZQoaAZoCWgPQwj6tIr+0Mz2v5SGlFKUaBVLMmgWR0Ck+ZKptJnQdX2UKGgGaAloD0MIArfu5qkOz7+UhpRSlGgVSzJoFkdApPlY9kjHGXV9lChoBmgJaA9DCKciFcYWgsy/lIaUUpRoFUsyaBZHQKT5HPj4pMJ1fZQoaAZoCWgPQwjVXG4w1GHov5SGlFKUaBVLMmgWR0Ck+N7DuSfUdX2UKGgGaAloD0MIzc6idyrg77+UhpRSlGgVSzJoFkdApPq0vXbudHV9lChoBmgJaA9DCH3ogvqWOeW/lIaUUpRoFUsyaBZHQKT6ewblzU91fZQoaAZoCWgPQwhPP6iLFMrov5SGlFKUaBVLMmgWR0Ck+j7xd6cBdX2UKGgGaAloD0MI2pJVEW6y4b+UhpRSlGgVSzJoFkdApPoAjnmq53V9lChoBmgJaA9DCA70UNuGUea/lIaUUpRoFUsyaBZHQKT72OvMbFV1fZQoaAZoCWgPQwjXUGovou33v5SGlFKUaBVLMmgWR0Ck+59Pk7wKdX2UKGgGaAloD0MIH/et1olL67+UhpRSlGgVSzJoFkdApPtjTx5LRXV9lChoBmgJaA9DCNKJBFPNLOK/lIaUUpRoFUsyaBZHQKT7JNzr/sF1fZQoaAZoCWgPQwgJ+gs9YjT9v5SGlFKUaBVLMmgWR0Ck/PNTUAktdX2UKGgGaAloD0MIX0TbMXVX4L+UhpRSlGgVSzJoFkdApPy5pnHvMXV9lChoBmgJaA9DCCeEDrqEQ+e/lIaUUpRoFUsyaBZHQKT8fa6BiCt1fZQoaAZoCWgPQwgt6SgHs4nxv5SGlFKUaBVLMmgWR0Ck/D9B8hLXdX2UKGgGaAloD0MICYofY+4a8L+UhpRSlGgVSzJoFkdApP4QgJTl1nV9lChoBmgJaA9DCGzM64hDNt+/lIaUUpRoFUsyaBZHQKT91s4T9Kp1fZQoaAZoCWgPQwge39416Avzv5SGlFKUaBVLMmgWR0Ck/ZqtYB/7dX2UKGgGaAloD0MILo1feCWJ9L+UhpRSlGgVSzJoFkdApP1cVk+X7nV9lChoBmgJaA9DCICcMGE06/K/lIaUUpRoFUsyaBZHQKT/Iskpqh11fZQoaAZoCWgPQwiE1sOXiWL/v5SGlFKUaBVLMmgWR0Ck/ukO7QLNdX2UKGgGaAloD0MIZePBFrs9+L+UhpRSlGgVSzJoFkdApP6s4gieNHV9lChoBmgJaA9DCDL/6Js0jeG/lIaUUpRoFUsyaBZHQKT+bof0Vah1fZQoaAZoCWgPQwiD34YYr/nkv5SGlFKUaBVLMmgWR0ClAD5pSJj2dX2UKGgGaAloD0MIUYL+Qo9Y9L+UhpRSlGgVSzJoFkdApQAE0aZQYXV9lChoBmgJaA9DCOI+cmvSbQPAlIaUUpRoFUsyaBZHQKT/yMMI/qx1fZQoaAZoCWgPQwgiizTxDvDpv5SGlFKUaBVLMmgWR0Ck/4pokAxSdX2UKGgGaAloD0MIn1bRH5p59b+UhpRSlGgVSzJoFkdApQFV2vB7/nV9lChoBmgJaA9DCEnb+BOVDd+/lIaUUpRoFUsyaBZHQKUBHDDTBqN1fZQoaAZoCWgPQwhbtABtq9njv5SGlFKUaBVLMmgWR0ClAOAkTpPidX2UKGgGaAloD0MIqB3+mqzR7b+UhpRSlGgVSzJoFkdApQChujynUHV9lChoBmgJaA9DCMBatWtCGvq/lIaUUpRoFUsyaBZHQKUCgrcTJyR1fZQoaAZoCWgPQwhwXwfOGZHwv5SGlFKUaBVLMmgWR0ClAkkbHZK4dX2UKGgGaAloD0MIVOI6xhWX7b+UhpRSlGgVSzJoFkdApQINF8XvY3V9lChoBmgJaA9DCBwG81fIXOi/lIaUUpRoFUsyaBZHQKUBzsOXmeV1fZQoaAZoCWgPQwgmj6flBy7hv5SGlFKUaBVLMmgWR0ClA51NxlxwdX2UKGgGaAloD0MIDYtR19r74L+UhpRSlGgVSzJoFkdApQNjmr8zh3V9lChoBmgJaA9DCEwYzcr2wQDAlIaUUpRoFUsyaBZHQKUDJ3MY/FB1fZQoaAZoCWgPQwhrYoGv6Fbov5SGlFKUaBVLMmgWR0ClAujlxOtXdX2UKGgGaAloD0MIkj1CzZBq+r+UhpRSlGgVSzJoFkdApQSvZ9NN8HV9lChoBmgJaA9DCC/3yVGAKOS/lIaUUpRoFUsyaBZHQKUEdbL2YfJ1fZQoaAZoCWgPQwjQm4pUGLsEwJSGlFKUaBVLMmgWR0ClBDmC7K7qdX2UKGgGaAloD0MITiuFQC6x9b+UhpRSlGgVSzJoFkdApQP7Dbah6HV9lChoBmgJaA9DCN8WLNUF/PC/lIaUUpRoFUsyaBZHQKUFxjyWiUR1fZQoaAZoCWgPQwjWOQZkr3fkv5SGlFKUaBVLMmgWR0ClBYyWRigCdX2UKGgGaAloD0MIpdjRONRPBMCUhpRSlGgVSzJoFkdApQVQp4KQaXV9lChoBmgJaA9DCCocQSrFzvW/lIaUUpRoFUsyaBZHQKUFEkl/pdN1fZQoaAZoCWgPQwgL7ZxmgXbzv5SGlFKUaBVLMmgWR0ClBulJpWWAdX2UKGgGaAloD0MInP2Bctu+2L+UhpRSlGgVSzJoFkdApQavgvUSZnV9lChoBmgJaA9DCPnYXaCkQPq/lIaUUpRoFUsyaBZHQKUGc3Mpw0h1fZQoaAZoCWgPQwiGOqxwyycFwJSGlFKUaBVLMmgWR0ClBjUqhDgJdX2UKGgGaAloD0MIfevDeqO2AMCUhpRSlGgVSzJoFkdApQgFh7Vrh3V9lChoBmgJaA9DCOEKKNTTh/u/lIaUUpRoFUsyaBZHQKUHy+dsi0R1fZQoaAZoCWgPQwjLviuC/w0AwJSGlFKUaBVLMmgWR0ClB4/h2nsLdX2UKGgGaAloD0MIdQZGXtakAcCUhpRSlGgVSzJoFkdApQdR6KLsKXV9lChoBmgJaA9DCJ1oVyHlJ/S/lIaUUpRoFUsyaBZHQKUJIUILPUt1fZQoaAZoCWgPQwjiICHKF7QDwJSGlFKUaBVLMmgWR0ClCOexW1c/dX2UKGgGaAloD0MIWRZM/FF0AcCUhpRSlGgVSzJoFkdApQirpxFRYXV9lChoBmgJaA9DCBmNfF7x1PW/lIaUUpRoFUsyaBZHQKUIbWGRFJB1fZQoaAZoCWgPQwi2os1xbpMDwJSGlFKUaBVLMmgWR0ClClyXUpd9dX2UKGgGaAloD0MIYvcdw2M/87+UhpRSlGgVSzJoFkdApQojAeq7y3V9lChoBmgJaA9DCGt/Z3v0Bva/lIaUUpRoFUsyaBZHQKUJ5u9eyAx1fZQoaAZoCWgPQwhslzYclgbyv5SGlFKUaBVLMmgWR0ClCaiNCJGfdX2UKGgGaAloD0MIIenTKvpD5L+UhpRSlGgVSzJoFkdApQt0mShaknV9lChoBmgJaA9DCOJ1/YLdcP6/lIaUUpRoFUsyaBZHQKULOvllsgx1fZQoaAZoCWgPQwjq6SPwhx/8v5SGlFKUaBVLMmgWR0ClCv7dSEUTdX2UKGgGaAloD0MI2T9PAwZJ7r+UhpRSlGgVSzJoFkdApQrAdXDFZXV9lChoBmgJaA9DCFjk1w+xQeW/lIaUUpRoFUsyaBZHQKUMkacZtN11fZQoaAZoCWgPQwjRyVLr/Qbwv5SGlFKUaBVLMmgWR0ClDFf2Cdz5dX2UKGgGaAloD0MIgT/8/PcAAsCUhpRSlGgVSzJoFkdApQwb4k/r0XV9lChoBmgJaA9DCEcCDTZ1Hue/lIaUUpRoFUsyaBZHQKUL3W5H3Dh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.1737760016461833, "std_reward": 0.523938752061695, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T08:15:43.208748"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:715cf7cac6a27ea2b4e63cd56fa0534f5904da55635f456e4ce8e741274e7f99
3
+ size 3056