Updated config and added modeling_llama
Browse files- README.md +0 -473
- config.json +6 -4
- modeling_llama.py +1550 -0
README.md
DELETED
@@ -1,473 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
- de
|
5 |
-
- fr
|
6 |
-
- it
|
7 |
-
- pt
|
8 |
-
- hi
|
9 |
-
- es
|
10 |
-
- th
|
11 |
-
library_name: transformers
|
12 |
-
pipeline_tag: text-generation
|
13 |
-
tags:
|
14 |
-
- facebook
|
15 |
-
- meta
|
16 |
-
- pytorch
|
17 |
-
- llama
|
18 |
-
- llama-3
|
19 |
-
license: llama3.2
|
20 |
-
extra_gated_prompt: >-
|
21 |
-
### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT
|
22 |
-
|
23 |
-
|
24 |
-
Llama 3.2 Version Release Date: September 25, 2024
|
25 |
-
|
26 |
-
|
27 |
-
“Agreement” means the terms and conditions for use, reproduction, distribution
|
28 |
-
and modification of the Llama Materials set forth herein.
|
29 |
-
|
30 |
-
|
31 |
-
“Documentation” means the specifications, manuals and documentation accompanying Llama 3.2
|
32 |
-
distributed by Meta at https://llama.meta.com/doc/overview.
|
33 |
-
|
34 |
-
|
35 |
-
“Licensee” or “you” means you, or your employer or any other person or entity (if you are
|
36 |
-
entering into this Agreement on such person or entity’s behalf), of the age required under
|
37 |
-
applicable laws, rules or regulations to provide legal consent and that has legal authority
|
38 |
-
to bind your employer or such other person or entity if you are entering in this Agreement
|
39 |
-
on their behalf.
|
40 |
-
|
41 |
-
|
42 |
-
“Llama 3.2” means the foundational large language models and software and algorithms, including
|
43 |
-
machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
|
44 |
-
fine-tuning enabling code and other elements of the foregoing distributed by Meta at
|
45 |
-
https://www.llama.com/llama-downloads.
|
46 |
-
|
47 |
-
|
48 |
-
“Llama Materials” means, collectively, Meta’s proprietary Llama 3.2 and Documentation (and
|
49 |
-
any portion thereof) made available under this Agreement.
|
50 |
-
|
51 |
-
|
52 |
-
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or,
|
53 |
-
if you are an entity, your principal place of business is in the EEA or Switzerland)
|
54 |
-
and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
|
55 |
-
|
56 |
-
|
57 |
-
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials,
|
58 |
-
you agree to be bound by this Agreement.
|
59 |
-
|
60 |
-
|
61 |
-
1. License Rights and Redistribution.
|
62 |
-
|
63 |
-
a. Grant of Rights. You are granted a non-exclusive, worldwide,
|
64 |
-
non-transferable and royalty-free limited license under Meta’s intellectual property or other rights
|
65 |
-
owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works
|
66 |
-
of, and make modifications to the Llama Materials.
|
67 |
-
|
68 |
-
b. Redistribution and Use.
|
69 |
-
|
70 |
-
i. If you distribute or make available the Llama Materials (or any derivative works thereof),
|
71 |
-
or a product or service (including another AI model) that contains any of them, you shall (A) provide
|
72 |
-
a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama”
|
73 |
-
on a related website, user interface, blogpost, about page, or product documentation. If you use the
|
74 |
-
Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or
|
75 |
-
otherwise improve an AI model, which is distributed or made available, you shall also include “Llama”
|
76 |
-
at the beginning of any such AI model name.
|
77 |
-
|
78 |
-
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
|
79 |
-
of an integrated end user product, then Section 2 of this Agreement will not apply to you.
|
80 |
-
|
81 |
-
iii. You must retain in all copies of the Llama Materials that you distribute the
|
82 |
-
following attribution notice within a “Notice” text file distributed as a part of such copies:
|
83 |
-
“Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,
|
84 |
-
Inc. All Rights Reserved.”
|
85 |
-
|
86 |
-
iv. Your use of the Llama Materials must comply with applicable laws and regulations
|
87 |
-
(including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for
|
88 |
-
the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby
|
89 |
-
incorporated by reference into this Agreement.
|
90 |
-
|
91 |
-
2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users
|
92 |
-
of the products or services made available by or for Licensee, or Licensee’s affiliates,
|
93 |
-
is greater than 700 million monthly active users in the preceding calendar month, you must request
|
94 |
-
a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to
|
95 |
-
exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
|
96 |
-
|
97 |
-
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND
|
98 |
-
RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS
|
99 |
-
ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES
|
100 |
-
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
|
101 |
-
FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED
|
102 |
-
WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
|
103 |
-
|
104 |
-
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,
|
105 |
-
WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
106 |
-
FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
|
107 |
-
IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
108 |
-
|
109 |
-
5. Intellectual Property.
|
110 |
-
|
111 |
-
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials,
|
112 |
-
neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates,
|
113 |
-
except as required for reasonable and customary use in describing and redistributing the Llama Materials or as
|
114 |
-
set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required
|
115 |
-
to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible
|
116 |
-
at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark
|
117 |
-
will inure to the benefit of Meta.
|
118 |
-
|
119 |
-
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any
|
120 |
-
derivative works and modifications of the Llama Materials that are made by you, as between you and Meta,
|
121 |
-
you are and will be the owner of such derivative works and modifications.
|
122 |
-
|
123 |
-
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or
|
124 |
-
counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion
|
125 |
-
of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable
|
126 |
-
by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or
|
127 |
-
claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third
|
128 |
-
party arising out of or related to your use or distribution of the Llama Materials.
|
129 |
-
|
130 |
-
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access
|
131 |
-
to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms
|
132 |
-
and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this
|
133 |
-
Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3,
|
134 |
-
4 and 7 shall survive the termination of this Agreement.
|
135 |
-
|
136 |
-
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of
|
137 |
-
California without regard to choice of law principles, and the UN Convention on Contracts for the International
|
138 |
-
Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of
|
139 |
-
any dispute arising out of this Agreement.
|
140 |
-
|
141 |
-
### Llama 3.2 Acceptable Use Policy
|
142 |
-
|
143 |
-
Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.2.
|
144 |
-
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (“**Policy**”).
|
145 |
-
The most recent copy of this policy can be found at
|
146 |
-
[https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).
|
147 |
-
|
148 |
-
#### Prohibited Uses
|
149 |
-
|
150 |
-
We want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:
|
151 |
-
|
152 |
-
1. Violate the law or others’ rights, including to:
|
153 |
-
1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
|
154 |
-
1. Violence or terrorism
|
155 |
-
2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
|
156 |
-
3. Human trafficking, exploitation, and sexual violence
|
157 |
-
4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
|
158 |
-
5. Sexual solicitation
|
159 |
-
6. Any other criminal activity
|
160 |
-
1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
|
161 |
-
2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
|
162 |
-
3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
|
163 |
-
4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law
|
164 |
-
5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
|
165 |
-
6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
|
166 |
-
7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta
|
167 |
-
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:
|
168 |
-
8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997
|
169 |
-
9. Guns and illegal weapons (including weapon development)
|
170 |
-
10. Illegal drugs and regulated/controlled substances
|
171 |
-
11. Operation of critical infrastructure, transportation technologies, or heavy machinery
|
172 |
-
12. Self-harm or harm to others, including suicide, cutting, and eating disorders
|
173 |
-
13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
|
174 |
-
3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:
|
175 |
-
14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
|
176 |
-
15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
|
177 |
-
16. Generating, promoting, or further distributing spam
|
178 |
-
17. Impersonating another individual without consent, authorization, or legal right
|
179 |
-
18. Representing that the use of Llama 3.2 or outputs are human-generated
|
180 |
-
19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
|
181 |
-
4. Fail to appropriately disclose to end users any known dangers of your AI system
|
182 |
-
5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2
|
183 |
-
|
184 |
-
|
185 |
-
With respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.
|
186 |
-
|
187 |
-
|
188 |
-
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
|
189 |
-
|
190 |
-
|
191 |
-
* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)
|
192 |
-
|
193 |
-
* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
|
194 |
-
|
195 |
-
* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
|
196 |
-
|
197 |
-
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]
|
198 |
-
extra_gated_fields:
|
199 |
-
First Name: text
|
200 |
-
Last Name: text
|
201 |
-
Date of birth: date_picker
|
202 |
-
Country: country
|
203 |
-
Affiliation: text
|
204 |
-
Job title:
|
205 |
-
type: select
|
206 |
-
options:
|
207 |
-
- Student
|
208 |
-
- Research Graduate
|
209 |
-
- AI researcher
|
210 |
-
- AI developer/engineer
|
211 |
-
- Reporter
|
212 |
-
- Other
|
213 |
-
geo: ip_location
|
214 |
-
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
|
215 |
-
extra_gated_description: >-
|
216 |
-
The information you provide will be collected, stored, processed and shared in
|
217 |
-
accordance with the [Meta Privacy
|
218 |
-
Policy](https://www.facebook.com/privacy/policy/).
|
219 |
-
extra_gated_button_content: Submit
|
220 |
-
---
|
221 |
-
|
222 |
-
## Model Information
|
223 |
-
|
224 |
-
The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks.
|
225 |
-
|
226 |
-
**Model Developer:** Meta
|
227 |
-
|
228 |
-
**Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
|
229 |
-
|
230 |
-
| | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff |
|
231 |
-
| :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- |
|
232 |
-
| Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 |
|
233 |
-
| | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | |
|
234 |
-
| Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 |
|
235 |
-
| | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | |
|
236 |
-
|
237 |
-
**Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly.
|
238 |
-
|
239 |
-
**Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
|
240 |
-
|
241 |
-
**Model Release Date:** Sept 25, 2024
|
242 |
-
|
243 |
-
**Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety.
|
244 |
-
|
245 |
-
**License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement).
|
246 |
-
|
247 |
-
**Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
|
248 |
-
|
249 |
-
## Intended Use
|
250 |
-
|
251 |
-
**Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources.
|
252 |
-
|
253 |
-
**Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card.
|
254 |
-
|
255 |
-
## How to use
|
256 |
-
|
257 |
-
This repository contains two versions of Llama-3.2-3B, for use with transformers and with the original `llama` codebase.
|
258 |
-
|
259 |
-
### Use with transformers
|
260 |
-
|
261 |
-
Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
|
262 |
-
|
263 |
-
Make sure to update your transformers installation via pip install --upgrade transformers.
|
264 |
-
|
265 |
-
```python
|
266 |
-
import torch
|
267 |
-
from transformers import pipeline
|
268 |
-
|
269 |
-
model_id = "meta-llama/Llama-3.2-3B"
|
270 |
-
|
271 |
-
pipe = pipeline(
|
272 |
-
"text-generation",
|
273 |
-
model=model_id,
|
274 |
-
torch_dtype=torch.bfloat16,
|
275 |
-
device_map="auto"
|
276 |
-
)
|
277 |
-
|
278 |
-
pipe("The key to life is")
|
279 |
-
```
|
280 |
-
|
281 |
-
### Use with `llama`
|
282 |
-
|
283 |
-
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama).
|
284 |
-
|
285 |
-
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
|
286 |
-
|
287 |
-
```
|
288 |
-
huggingface-cli download meta-llama/Llama-3.2-3B --include "original/*" --local-dir Llama-3.2-3B
|
289 |
-
```
|
290 |
-
|
291 |
-
## Hardware and Software
|
292 |
-
|
293 |
-
**Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure.
|
294 |
-
|
295 |
-
**Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
|
296 |
-
|
297 |
-
**Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
|
298 |
-
|
299 |
-
| | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) |
|
300 |
-
| :---- | :---: | ----- | :---: | :---: | :---: |
|
301 |
-
| Llama 3.2 1B | 370k | \- | 700 | 107 | 0 |
|
302 |
-
| Llama 3.2 3B | 460k | \- | 700 | 133 | 0 |
|
303 |
-
| Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 |
|
304 |
-
| Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 |
|
305 |
-
| Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 |
|
306 |
-
| Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 |
|
307 |
-
| Total | 833k | 86k | | 240 | 0 |
|
308 |
-
|
309 |
-
\*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required.
|
310 |
-
|
311 |
-
The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
|
312 |
-
|
313 |
-
## Training Data
|
314 |
-
|
315 |
-
**Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO).
|
316 |
-
|
317 |
-
**Data Freshness:** The pretraining data has a cutoff of December 2023\.
|
318 |
-
|
319 |
-
## Quantization
|
320 |
-
|
321 |
-
### Quantization Scheme
|
322 |
-
|
323 |
-
We designed the current quantization scheme with the [PyTorch’s ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts:
|
324 |
-
- All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations.
|
325 |
-
- The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation.
|
326 |
-
- Similar to classification layer, an 8-bit per channel quantization is used for embedding layer.
|
327 |
-
|
328 |
-
|
329 |
-
### Quantization-Aware Training and LoRA
|
330 |
-
|
331 |
-
The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO).
|
332 |
-
|
333 |
-
### SpinQuant
|
334 |
-
|
335 |
-
[SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length.
|
336 |
-
|
337 |
-
## Benchmarks \- English Text
|
338 |
-
|
339 |
-
In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library.
|
340 |
-
|
341 |
-
### Base Pretrained Models
|
342 |
-
|
343 |
-
| Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B |
|
344 |
-
| ----- | ----- | :---: | :---: | :---: | :---: | :---: |
|
345 |
-
| General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 |
|
346 |
-
| | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 |
|
347 |
-
| | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 |
|
348 |
-
| Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 |
|
349 |
-
| | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 |
|
350 |
-
| | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 |
|
351 |
-
| Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 |
|
352 |
-
|
353 |
-
### Instruction Tuned Models
|
354 |
-
|
355 |
-
| Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B |
|
356 |
-
| :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
357 |
-
| General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 |
|
358 |
-
| Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 |
|
359 |
-
| Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 |
|
360 |
-
| Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 |
|
361 |
-
| Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 |
|
362 |
-
| | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 |
|
363 |
-
| Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 |
|
364 |
-
| | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 |
|
365 |
-
| | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 |
|
366 |
-
| Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 |
|
367 |
-
| | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 |
|
368 |
-
| Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 |
|
369 |
-
| | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 |
|
370 |
-
| | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 |
|
371 |
-
| Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 |
|
372 |
-
|
373 |
-
\*\*for comparison purposes only. Model not released.
|
374 |
-
|
375 |
-
### Multilingual Benchmarks
|
376 |
-
|
377 |
-
| Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B |
|
378 |
-
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
379 |
-
| General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 |
|
380 |
-
| | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 |
|
381 |
-
| | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 |
|
382 |
-
| | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 |
|
383 |
-
| | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 |
|
384 |
-
| | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 |
|
385 |
-
| | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 |
|
386 |
-
|
387 |
-
\*\*for comparison purposes only. Model not released.
|
388 |
-
|
389 |
-
## Inference time
|
390 |
-
|
391 |
-
In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device.
|
392 |
-
|
393 |
-
| Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) |
|
394 |
-
| :---- | ----- | ----- | ----- | ----- | ----- |
|
395 |
-
| 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 |
|
396 |
-
| 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) |
|
397 |
-
| 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) |
|
398 |
-
| 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 |
|
399 |
-
| 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) |
|
400 |
-
| 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) |
|
401 |
-
|
402 |
-
(\*) The performance measurement is done using an adb binary-based approach.
|
403 |
-
(\*\*) It is measured on an Android OnePlus 12 device.
|
404 |
-
(\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64
|
405 |
-
|
406 |
-
*Footnote:*
|
407 |
-
|
408 |
-
- *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.*
|
409 |
-
- *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.*
|
410 |
-
- *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better*
|
411 |
-
- *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch*
|
412 |
-
- *RSS size \- Memory usage in resident set size (RSS)*
|
413 |
-
|
414 |
-
## Responsibility & Safety
|
415 |
-
|
416 |
-
As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
|
417 |
-
|
418 |
-
1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama
|
419 |
-
2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm
|
420 |
-
3. Provide protections for the community to help prevent the misuse of our models
|
421 |
-
|
422 |
-
### Responsible Deployment
|
423 |
-
|
424 |
-
**Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driver’s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/).
|
425 |
-
|
426 |
-
#### Llama 3.2 Instruct
|
427 |
-
|
428 |
-
**Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/).
|
429 |
-
|
430 |
-
**Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
|
431 |
-
|
432 |
-
**Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
|
433 |
-
|
434 |
-
#### Llama 3.2 Systems
|
435 |
-
|
436 |
-
**Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
|
437 |
-
|
438 |
-
### New Capabilities and Use Cases
|
439 |
-
|
440 |
-
**Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well.
|
441 |
-
|
442 |
-
**Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version.
|
443 |
-
|
444 |
-
### Evaluations
|
445 |
-
|
446 |
-
**Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case.
|
447 |
-
|
448 |
-
**Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
|
449 |
-
|
450 |
-
### Critical Risks
|
451 |
-
|
452 |
-
In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas:
|
453 |
-
|
454 |
-
**1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models.
|
455 |
-
|
456 |
-
**2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
|
457 |
-
|
458 |
-
**3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
|
459 |
-
Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2’s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models.
|
460 |
-
|
461 |
-
### Community
|
462 |
-
|
463 |
-
**Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
|
464 |
-
|
465 |
-
**Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
|
466 |
-
|
467 |
-
**Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
|
468 |
-
|
469 |
-
## Ethical Considerations and Limitations
|
470 |
-
|
471 |
-
**Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
|
472 |
-
|
473 |
-
**Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
{
|
2 |
-
"architectures": [
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
7 |
"bos_token_id": 128000,
|
@@ -18,7 +20,7 @@
|
|
18 |
"num_hidden_layers": 28,
|
19 |
"num_key_value_heads": 8,
|
20 |
"pretraining_tp": 1,
|
21 |
-
"rms_norm_eps": 1e-
|
22 |
"rope_scaling": {
|
23 |
"factor": 32.0,
|
24 |
"high_freq_factor": 4.0,
|
|
|
1 |
{
|
2 |
+
"architectures": ["LlamaForCausalLM"],
|
3 |
+
"auto_map": {
|
4 |
+
"AutoConfig": "configuration_llama.LlamaConfig",
|
5 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
|
6 |
+
},
|
7 |
"attention_bias": false,
|
8 |
"attention_dropout": 0.0,
|
9 |
"bos_token_id": 128000,
|
|
|
20 |
"num_hidden_layers": 28,
|
21 |
"num_key_value_heads": 8,
|
22 |
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-5,
|
24 |
"rope_scaling": {
|
25 |
"factor": 32.0,
|
26 |
"high_freq_factor": 4.0,
|
modeling_llama.py
ADDED
@@ -0,0 +1,1550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch LLaMA model."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
)
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
43 |
+
from transformers.utils import (
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_llama import LlamaConfig
|
52 |
+
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
53 |
+
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
64 |
+
|
65 |
+
|
66 |
+
def _get_unpad_data(attention_mask):
|
67 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
68 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
69 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
70 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
71 |
+
return (
|
72 |
+
indices,
|
73 |
+
cu_seqlens,
|
74 |
+
max_seqlen_in_batch,
|
75 |
+
)
|
76 |
+
|
77 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
78 |
+
|
79 |
+
|
80 |
+
class LlamaRotaryEmbedding(nn.Module):
|
81 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
82 |
+
super().__init__()
|
83 |
+
self.scaling_factor = scaling_factor
|
84 |
+
self.dim = dim
|
85 |
+
self.max_position_embeddings = max_position_embeddings
|
86 |
+
self.base = base
|
87 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
88 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
89 |
+
# For BC we register cos and sin cached
|
90 |
+
self.max_seq_len_cached = max_position_embeddings
|
91 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
92 |
+
t = t / self.scaling_factor
|
93 |
+
freqs = torch.outer(t, self.inv_freq)
|
94 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
95 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
96 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
97 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
98 |
+
|
99 |
+
@property
|
100 |
+
def sin_cached(self):
|
101 |
+
logger.warning_once(
|
102 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
103 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
104 |
+
)
|
105 |
+
return self._sin_cached
|
106 |
+
|
107 |
+
@property
|
108 |
+
def cos_cached(self):
|
109 |
+
logger.warning_once(
|
110 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
111 |
+
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
112 |
+
)
|
113 |
+
return self._cos_cached
|
114 |
+
|
115 |
+
@torch.no_grad()
|
116 |
+
def forward(self, x, position_ids):
|
117 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
118 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
119 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
120 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
121 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
122 |
+
device_type = x.device.type
|
123 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
124 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
125 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
126 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
127 |
+
cos = emb.cos()
|
128 |
+
sin = emb.sin()
|
129 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
130 |
+
|
131 |
+
|
132 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
133 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
134 |
+
|
135 |
+
def forward(self, x, position_ids):
|
136 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
137 |
+
position_ids = position_ids.float() / self.scaling_factor
|
138 |
+
cos, sin = super().forward(x, position_ids)
|
139 |
+
return cos, sin
|
140 |
+
|
141 |
+
|
142 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
143 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
144 |
+
|
145 |
+
def forward(self, x, position_ids):
|
146 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
147 |
+
seq_len = torch.max(position_ids) + 1
|
148 |
+
if seq_len > self.max_position_embeddings:
|
149 |
+
base = self.base * (
|
150 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
151 |
+
) ** (self.dim / (self.dim - 2))
|
152 |
+
inv_freq = 1.0 / (
|
153 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
154 |
+
)
|
155 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
156 |
+
|
157 |
+
cos, sin = super().forward(x, position_ids)
|
158 |
+
return cos, sin
|
159 |
+
|
160 |
+
|
161 |
+
def rotate_half(x):
|
162 |
+
"""Rotates half the hidden dims of the input."""
|
163 |
+
x1 = x[..., : x.shape[-1] // 2]
|
164 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
165 |
+
return torch.cat((-x2, x1), dim=-1)
|
166 |
+
|
167 |
+
|
168 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
169 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
q (`torch.Tensor`): The query tensor.
|
173 |
+
k (`torch.Tensor`): The key tensor.
|
174 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
175 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
176 |
+
position_ids (`torch.Tensor`, *optional*):
|
177 |
+
Deprecated and unused.
|
178 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
179 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
180 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
181 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
182 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
183 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
184 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
185 |
+
Returns:
|
186 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
187 |
+
"""
|
188 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
189 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
190 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
191 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
192 |
+
return q_embed, k_embed
|
193 |
+
|
194 |
+
|
195 |
+
class LlamaMLP(nn.Module):
|
196 |
+
def __init__(self, config):
|
197 |
+
super().__init__()
|
198 |
+
self.config = config
|
199 |
+
self.hidden_size = config.hidden_size
|
200 |
+
self.intermediate_size = config.intermediate_size
|
201 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
202 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
203 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
204 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
if self.config.pretraining_tp > 1:
|
208 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
209 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
210 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
211 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
212 |
+
|
213 |
+
gate_proj = torch.cat(
|
214 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
215 |
+
)
|
216 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
217 |
+
|
218 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
219 |
+
down_proj = [
|
220 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
221 |
+
]
|
222 |
+
down_proj = sum(down_proj)
|
223 |
+
else:
|
224 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
225 |
+
|
226 |
+
return down_proj
|
227 |
+
|
228 |
+
|
229 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
230 |
+
"""
|
231 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
232 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
233 |
+
"""
|
234 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
235 |
+
if n_rep == 1:
|
236 |
+
return hidden_states
|
237 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
238 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
239 |
+
|
240 |
+
|
241 |
+
class LlamaAttention(nn.Module):
|
242 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
243 |
+
|
244 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
245 |
+
super().__init__()
|
246 |
+
self.config = config
|
247 |
+
self.layer_idx = layer_idx
|
248 |
+
if layer_idx is None:
|
249 |
+
logger.warning_once(
|
250 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
251 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
252 |
+
"when creating this class."
|
253 |
+
)
|
254 |
+
|
255 |
+
self.attention_dropout = config.attention_dropout
|
256 |
+
self.hidden_size = config.hidden_size
|
257 |
+
self.num_heads = config.num_attention_heads
|
258 |
+
self.head_dim = self.hidden_size // self.num_heads
|
259 |
+
self.num_key_value_heads = config.num_key_value_heads
|
260 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
261 |
+
self.max_position_embeddings = config.max_position_embeddings
|
262 |
+
self.rope_theta = config.rope_theta
|
263 |
+
self.is_causal = True
|
264 |
+
|
265 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
266 |
+
raise ValueError(
|
267 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
268 |
+
f" and `num_heads`: {self.num_heads})."
|
269 |
+
)
|
270 |
+
|
271 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
272 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
273 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
274 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
275 |
+
self._init_rope()
|
276 |
+
|
277 |
+
def _init_rope(self):
|
278 |
+
if self.config.rope_scaling is None:
|
279 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
280 |
+
self.head_dim,
|
281 |
+
max_position_embeddings=self.max_position_embeddings,
|
282 |
+
base=self.rope_theta,
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
scaling_type = self.config.rope_scaling["type"]
|
286 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
287 |
+
if scaling_type == "linear":
|
288 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
289 |
+
self.head_dim,
|
290 |
+
max_position_embeddings=self.max_position_embeddings,
|
291 |
+
scaling_factor=scaling_factor,
|
292 |
+
base=self.rope_theta,
|
293 |
+
)
|
294 |
+
elif scaling_type == "dynamic":
|
295 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
296 |
+
self.head_dim,
|
297 |
+
max_position_embeddings=self.max_position_embeddings,
|
298 |
+
scaling_factor=scaling_factor,
|
299 |
+
base=self.rope_theta,
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
hidden_states: torch.Tensor,
|
307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
308 |
+
position_ids: Optional[torch.LongTensor] = None,
|
309 |
+
past_key_value: Optional[Cache] = None,
|
310 |
+
output_attentions: bool = False,
|
311 |
+
use_cache: bool = False,
|
312 |
+
cache_position: Optional[torch.LongTensor] = None,
|
313 |
+
**kwargs,
|
314 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
315 |
+
bsz, q_len, _ = hidden_states.size()
|
316 |
+
|
317 |
+
if self.config.pretraining_tp > 1:
|
318 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
319 |
+
query_slices = self.q_proj.weight.split(
|
320 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
321 |
+
)
|
322 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
323 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
324 |
+
|
325 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
326 |
+
query_states = torch.cat(query_states, dim=-1)
|
327 |
+
|
328 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
329 |
+
key_states = torch.cat(key_states, dim=-1)
|
330 |
+
|
331 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
332 |
+
value_states = torch.cat(value_states, dim=-1)
|
333 |
+
|
334 |
+
else:
|
335 |
+
query_states = self.q_proj(hidden_states)
|
336 |
+
key_states = self.k_proj(hidden_states)
|
337 |
+
value_states = self.v_proj(hidden_states)
|
338 |
+
|
339 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
340 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
341 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
342 |
+
|
343 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
344 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
345 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
346 |
+
|
347 |
+
if past_key_value is not None:
|
348 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
349 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
350 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
351 |
+
|
352 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
353 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
354 |
+
|
355 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
356 |
+
|
357 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
358 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
359 |
+
attn_weights = attn_weights + causal_mask
|
360 |
+
|
361 |
+
# upcast attention to fp32
|
362 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
363 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
364 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
365 |
+
|
366 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
367 |
+
raise ValueError(
|
368 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
369 |
+
f" {attn_output.size()}"
|
370 |
+
)
|
371 |
+
|
372 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
373 |
+
|
374 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
375 |
+
|
376 |
+
if self.config.pretraining_tp > 1:
|
377 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
378 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
379 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
380 |
+
else:
|
381 |
+
attn_output = self.o_proj(attn_output)
|
382 |
+
|
383 |
+
if not output_attentions:
|
384 |
+
attn_weights = None
|
385 |
+
|
386 |
+
return attn_output, attn_weights, past_key_value
|
387 |
+
|
388 |
+
|
389 |
+
class LlamaFlashAttention2(LlamaAttention):
|
390 |
+
"""
|
391 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
392 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
393 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(self, *args, **kwargs):
|
397 |
+
super().__init__(*args, **kwargs)
|
398 |
+
|
399 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
400 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
401 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
402 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
hidden_states: torch.Tensor,
|
407 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
408 |
+
position_ids: Optional[torch.LongTensor] = None,
|
409 |
+
past_key_value: Optional[Cache] = None,
|
410 |
+
output_attentions: bool = False,
|
411 |
+
use_cache: bool = False,
|
412 |
+
cache_position: Optional[torch.LongTensor] = None,
|
413 |
+
**kwargs,
|
414 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
415 |
+
output_attentions = False
|
416 |
+
|
417 |
+
bsz, q_len, _ = hidden_states.size()
|
418 |
+
|
419 |
+
query_states = self.q_proj(hidden_states)
|
420 |
+
key_states = self.k_proj(hidden_states)
|
421 |
+
value_states = self.v_proj(hidden_states)
|
422 |
+
|
423 |
+
# Flash attention requires the input to have the shape
|
424 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
425 |
+
# therefore we just need to keep the original shape
|
426 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
427 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
428 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
429 |
+
|
430 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
431 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
432 |
+
|
433 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
434 |
+
|
435 |
+
if past_key_value is not None:
|
436 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
437 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
438 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
439 |
+
|
440 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
441 |
+
# to be able to avoid many of these transpose/reshape/view.
|
442 |
+
query_states = query_states.transpose(1, 2)
|
443 |
+
key_states = key_states.transpose(1, 2)
|
444 |
+
value_states = value_states.transpose(1, 2)
|
445 |
+
|
446 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
447 |
+
|
448 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
449 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
450 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
451 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
452 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
453 |
+
|
454 |
+
input_dtype = query_states.dtype
|
455 |
+
if input_dtype == torch.float32:
|
456 |
+
if torch.is_autocast_enabled():
|
457 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
458 |
+
# Handle the case where the model is quantized
|
459 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
460 |
+
target_dtype = self.config._pre_quantization_dtype
|
461 |
+
else:
|
462 |
+
target_dtype = self.q_proj.weight.dtype
|
463 |
+
|
464 |
+
logger.warning_once(
|
465 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
466 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
467 |
+
f" {target_dtype}."
|
468 |
+
)
|
469 |
+
|
470 |
+
query_states = query_states.to(target_dtype)
|
471 |
+
key_states = key_states.to(target_dtype)
|
472 |
+
value_states = value_states.to(target_dtype)
|
473 |
+
|
474 |
+
attn_output = self._flash_attention_forward(
|
475 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
476 |
+
)
|
477 |
+
|
478 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
479 |
+
attn_output = self.o_proj(attn_output)
|
480 |
+
|
481 |
+
if not output_attentions:
|
482 |
+
attn_weights = None
|
483 |
+
|
484 |
+
return attn_output, attn_weights, past_key_value
|
485 |
+
|
486 |
+
def _flash_attention_forward(
|
487 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
488 |
+
):
|
489 |
+
"""
|
490 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
491 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
492 |
+
|
493 |
+
Args:
|
494 |
+
query_states (`torch.Tensor`):
|
495 |
+
Input query states to be passed to Flash Attention API
|
496 |
+
key_states (`torch.Tensor`):
|
497 |
+
Input key states to be passed to Flash Attention API
|
498 |
+
value_states (`torch.Tensor`):
|
499 |
+
Input value states to be passed to Flash Attention API
|
500 |
+
attention_mask (`torch.Tensor`):
|
501 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
502 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
503 |
+
dropout (`float`):
|
504 |
+
Attention dropout
|
505 |
+
softmax_scale (`float`, *optional*):
|
506 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
507 |
+
"""
|
508 |
+
if not self._flash_attn_uses_top_left_mask:
|
509 |
+
causal = self.is_causal
|
510 |
+
else:
|
511 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
512 |
+
causal = self.is_causal and query_length != 1
|
513 |
+
|
514 |
+
# Contains at least one padding token in the sequence
|
515 |
+
if attention_mask is not None:
|
516 |
+
batch_size = query_states.shape[0]
|
517 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
518 |
+
query_states, key_states, value_states, attention_mask, query_length
|
519 |
+
)
|
520 |
+
|
521 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
522 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
523 |
+
|
524 |
+
attn_output_unpad = flash_attn_varlen_func(
|
525 |
+
query_states,
|
526 |
+
key_states,
|
527 |
+
value_states,
|
528 |
+
cu_seqlens_q=cu_seqlens_q,
|
529 |
+
cu_seqlens_k=cu_seqlens_k,
|
530 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
531 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
532 |
+
dropout_p=dropout,
|
533 |
+
softmax_scale=softmax_scale,
|
534 |
+
causal=causal,
|
535 |
+
)
|
536 |
+
|
537 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
538 |
+
else:
|
539 |
+
attn_output = flash_attn_func(
|
540 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
541 |
+
)
|
542 |
+
|
543 |
+
return attn_output
|
544 |
+
|
545 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
546 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
547 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
548 |
+
|
549 |
+
key_layer = index_first_axis(
|
550 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
551 |
+
)
|
552 |
+
value_layer = index_first_axis(
|
553 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
554 |
+
)
|
555 |
+
if query_length == kv_seq_len:
|
556 |
+
query_layer = index_first_axis(
|
557 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
558 |
+
)
|
559 |
+
cu_seqlens_q = cu_seqlens_k
|
560 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
561 |
+
indices_q = indices_k
|
562 |
+
elif query_length == 1:
|
563 |
+
max_seqlen_in_batch_q = 1
|
564 |
+
cu_seqlens_q = torch.arange(
|
565 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
566 |
+
) # There is a memcpy here, that is very bad.
|
567 |
+
indices_q = cu_seqlens_q[:-1]
|
568 |
+
query_layer = query_layer.squeeze(1)
|
569 |
+
else:
|
570 |
+
# The -q_len: slice assumes left padding.
|
571 |
+
attention_mask = attention_mask[:, -query_length:]
|
572 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
573 |
+
|
574 |
+
return (
|
575 |
+
query_layer,
|
576 |
+
key_layer,
|
577 |
+
value_layer,
|
578 |
+
indices_q,
|
579 |
+
(cu_seqlens_q, cu_seqlens_k),
|
580 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
581 |
+
)
|
582 |
+
|
583 |
+
|
584 |
+
class LlamaSdpaAttention(LlamaAttention):
|
585 |
+
"""
|
586 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
587 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
588 |
+
SDPA API.
|
589 |
+
"""
|
590 |
+
|
591 |
+
# Adapted from LlamaAttention.forward
|
592 |
+
def forward(
|
593 |
+
self,
|
594 |
+
hidden_states: torch.Tensor,
|
595 |
+
attention_mask: Optional[torch.Tensor] = None,
|
596 |
+
position_ids: Optional[torch.LongTensor] = None,
|
597 |
+
past_key_value: Optional[Cache] = None,
|
598 |
+
output_attentions: bool = False,
|
599 |
+
use_cache: bool = False,
|
600 |
+
cache_position: Optional[torch.LongTensor] = None,
|
601 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
602 |
+
if output_attentions:
|
603 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
604 |
+
logger.warning_once(
|
605 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
606 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
607 |
+
)
|
608 |
+
return super().forward(
|
609 |
+
hidden_states=hidden_states,
|
610 |
+
attention_mask=attention_mask,
|
611 |
+
position_ids=position_ids,
|
612 |
+
past_key_value=past_key_value,
|
613 |
+
output_attentions=output_attentions,
|
614 |
+
use_cache=use_cache,
|
615 |
+
cache_position=cache_position,
|
616 |
+
)
|
617 |
+
|
618 |
+
bsz, q_len, _ = hidden_states.size()
|
619 |
+
|
620 |
+
query_states = self.q_proj(hidden_states)
|
621 |
+
key_states = self.k_proj(hidden_states)
|
622 |
+
value_states = self.v_proj(hidden_states)
|
623 |
+
|
624 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
625 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
626 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
627 |
+
|
628 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
629 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
630 |
+
|
631 |
+
# In case static cache is used, it is an instance attribute.
|
632 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
633 |
+
|
634 |
+
if past_key_value is not None:
|
635 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
636 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
637 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
638 |
+
|
639 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
640 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
641 |
+
|
642 |
+
causal_mask = attention_mask
|
643 |
+
if attention_mask is not None:
|
644 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
645 |
+
|
646 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
647 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
648 |
+
if causal_mask is not None:
|
649 |
+
query_states = query_states.contiguous()
|
650 |
+
key_states = key_states.contiguous()
|
651 |
+
value_states = value_states.contiguous()
|
652 |
+
|
653 |
+
# In case we are not compiling, we may set `causal_mask` to None, which is required to dispatch to SDPA's Flash Attention 2 backend, rather
|
654 |
+
# relying on the `is_causal` argument.
|
655 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
656 |
+
query_states,
|
657 |
+
key_states,
|
658 |
+
value_states,
|
659 |
+
attn_mask=causal_mask,
|
660 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
661 |
+
is_causal=causal_mask is None and q_len > 1,
|
662 |
+
)
|
663 |
+
|
664 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
665 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
666 |
+
|
667 |
+
attn_output = self.o_proj(attn_output)
|
668 |
+
|
669 |
+
return attn_output, None, past_key_value
|
670 |
+
|
671 |
+
|
672 |
+
LLAMA_ATTENTION_CLASSES = {
|
673 |
+
"eager": LlamaAttention,
|
674 |
+
"flash_attention_2": LlamaFlashAttention2,
|
675 |
+
"sdpa": LlamaSdpaAttention,
|
676 |
+
}
|
677 |
+
|
678 |
+
|
679 |
+
class LlamaDecoderLayer(nn.Module):
|
680 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
681 |
+
super().__init__()
|
682 |
+
self.hidden_size = config.hidden_size
|
683 |
+
|
684 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
685 |
+
|
686 |
+
self.mlp = LlamaMLP(config)
|
687 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
688 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
689 |
+
|
690 |
+
def forward(
|
691 |
+
self,
|
692 |
+
hidden_states: torch.Tensor,
|
693 |
+
attention_mask: Optional[torch.Tensor] = None,
|
694 |
+
position_ids: Optional[torch.LongTensor] = None,
|
695 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
696 |
+
output_attentions: Optional[bool] = False,
|
697 |
+
use_cache: Optional[bool] = False,
|
698 |
+
cache_position: Optional[torch.LongTensor] = None,
|
699 |
+
**kwargs,
|
700 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
701 |
+
"""
|
702 |
+
Args:
|
703 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
704 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
705 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
706 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
707 |
+
output_attentions (`bool`, *optional*):
|
708 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
709 |
+
returned tensors for more detail.
|
710 |
+
use_cache (`bool`, *optional*):
|
711 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
712 |
+
(see `past_key_values`).
|
713 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
714 |
+
"""
|
715 |
+
if "padding_mask" in kwargs:
|
716 |
+
warnings.warn(
|
717 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
718 |
+
)
|
719 |
+
|
720 |
+
residual = hidden_states
|
721 |
+
|
722 |
+
hidden_states = self.input_layernorm(hidden_states)
|
723 |
+
|
724 |
+
# Self Attention
|
725 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
726 |
+
hidden_states=hidden_states,
|
727 |
+
attention_mask=attention_mask,
|
728 |
+
position_ids=position_ids,
|
729 |
+
past_key_value=past_key_value,
|
730 |
+
output_attentions=output_attentions,
|
731 |
+
use_cache=use_cache,
|
732 |
+
cache_position=cache_position,
|
733 |
+
**kwargs,
|
734 |
+
)
|
735 |
+
hidden_states = residual + hidden_states
|
736 |
+
|
737 |
+
# Fully Connected
|
738 |
+
residual = hidden_states
|
739 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
740 |
+
hidden_states = self.mlp(hidden_states)
|
741 |
+
hidden_states = residual + hidden_states
|
742 |
+
|
743 |
+
outputs = (hidden_states,)
|
744 |
+
|
745 |
+
if output_attentions:
|
746 |
+
outputs += (self_attn_weights,)
|
747 |
+
|
748 |
+
if use_cache:
|
749 |
+
outputs += (present_key_value,)
|
750 |
+
|
751 |
+
return outputs
|
752 |
+
|
753 |
+
|
754 |
+
LLAMA_START_DOCSTRING = r"""
|
755 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
756 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
757 |
+
etc.)
|
758 |
+
|
759 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
760 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
761 |
+
and behavior.
|
762 |
+
|
763 |
+
Parameters:
|
764 |
+
config ([`LlamaConfig`]):
|
765 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
766 |
+
load the weights associated with the model, only the configuration. Check out the
|
767 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
768 |
+
"""
|
769 |
+
|
770 |
+
|
771 |
+
@add_start_docstrings(
|
772 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
773 |
+
LLAMA_START_DOCSTRING,
|
774 |
+
)
|
775 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
776 |
+
config_class = LlamaConfig
|
777 |
+
base_model_prefix = "model"
|
778 |
+
supports_gradient_checkpointing = True
|
779 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
780 |
+
_skip_keys_device_placement = ["past_key_values"]
|
781 |
+
_supports_flash_attn_2 = True
|
782 |
+
_supports_sdpa = True
|
783 |
+
_supports_cache_class = True
|
784 |
+
|
785 |
+
def _init_weights(self, module):
|
786 |
+
std = self.config.initializer_range
|
787 |
+
if isinstance(module, nn.Linear):
|
788 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
789 |
+
if module.bias is not None:
|
790 |
+
module.bias.data.zero_()
|
791 |
+
elif isinstance(module, nn.Embedding):
|
792 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
793 |
+
if module.padding_idx is not None:
|
794 |
+
module.weight.data[module.padding_idx].zero_()
|
795 |
+
|
796 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
797 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
798 |
+
raise ValueError(
|
799 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
800 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
801 |
+
)
|
802 |
+
|
803 |
+
for layer in self.model.layers:
|
804 |
+
device = layer.input_layernorm.weight.device
|
805 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
806 |
+
dtype = self.config._pre_quantization_dtype
|
807 |
+
else:
|
808 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
809 |
+
layer.self_attn.past_key_value = cache_cls(
|
810 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
811 |
+
)
|
812 |
+
|
813 |
+
def _reset_cache(self):
|
814 |
+
for layer in self.model.layers:
|
815 |
+
layer.self_attn.past_key_value = None
|
816 |
+
|
817 |
+
|
818 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
819 |
+
Args:
|
820 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
821 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
822 |
+
it.
|
823 |
+
|
824 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
825 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
826 |
+
|
827 |
+
[What are input IDs?](../glossary#input-ids)
|
828 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
829 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
830 |
+
|
831 |
+
- 1 for tokens that are **not masked**,
|
832 |
+
- 0 for tokens that are **masked**.
|
833 |
+
|
834 |
+
[What are attention masks?](../glossary#attention-mask)
|
835 |
+
|
836 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
837 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
838 |
+
|
839 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
840 |
+
`past_key_values`).
|
841 |
+
|
842 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
843 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
844 |
+
information on the default strategy.
|
845 |
+
|
846 |
+
- 1 indicates the head is **not masked**,
|
847 |
+
- 0 indicates the head is **masked**.
|
848 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
849 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
850 |
+
config.n_positions - 1]`.
|
851 |
+
|
852 |
+
[What are position IDs?](../glossary#position-ids)
|
853 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
854 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
855 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
856 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
857 |
+
|
858 |
+
Two formats are allowed:
|
859 |
+
- a [`~cache_utils.Cache`] instance;
|
860 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
861 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
862 |
+
cache format.
|
863 |
+
|
864 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
865 |
+
legacy cache format will be returned.
|
866 |
+
|
867 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
868 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
869 |
+
of shape `(batch_size, sequence_length)`.
|
870 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
871 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
872 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
873 |
+
model's internal embedding lookup matrix.
|
874 |
+
use_cache (`bool`, *optional*):
|
875 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
876 |
+
`past_key_values`).
|
877 |
+
output_attentions (`bool`, *optional*):
|
878 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
879 |
+
tensors for more detail.
|
880 |
+
output_hidden_states (`bool`, *optional*):
|
881 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
882 |
+
more detail.
|
883 |
+
return_dict (`bool`, *optional*):
|
884 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
885 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
886 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
887 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
888 |
+
the complete sequence length.
|
889 |
+
"""
|
890 |
+
|
891 |
+
|
892 |
+
@add_start_docstrings(
|
893 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
894 |
+
LLAMA_START_DOCSTRING,
|
895 |
+
)
|
896 |
+
class LlamaModel(LlamaPreTrainedModel):
|
897 |
+
"""
|
898 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
899 |
+
|
900 |
+
Args:
|
901 |
+
config: LlamaConfig
|
902 |
+
"""
|
903 |
+
|
904 |
+
def __init__(self, config: LlamaConfig):
|
905 |
+
super().__init__(config)
|
906 |
+
self.padding_idx = config.pad_token_id
|
907 |
+
self.vocab_size = config.vocab_size
|
908 |
+
|
909 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
910 |
+
self.layers = nn.ModuleList(
|
911 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
912 |
+
)
|
913 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
914 |
+
self.gradient_checkpointing = False
|
915 |
+
|
916 |
+
# Initialize weights and apply final processing
|
917 |
+
self.post_init()
|
918 |
+
|
919 |
+
def get_input_embeddings(self):
|
920 |
+
return self.embed_tokens
|
921 |
+
|
922 |
+
def set_input_embeddings(self, value):
|
923 |
+
self.embed_tokens = value
|
924 |
+
|
925 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
926 |
+
def forward(
|
927 |
+
self,
|
928 |
+
input_ids: torch.LongTensor = None,
|
929 |
+
attention_mask: Optional[torch.Tensor] = None,
|
930 |
+
position_ids: Optional[torch.LongTensor] = None,
|
931 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
932 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
933 |
+
use_cache: Optional[bool] = None,
|
934 |
+
output_attentions: Optional[bool] = None,
|
935 |
+
output_hidden_states: Optional[bool] = None,
|
936 |
+
return_dict: Optional[bool] = None,
|
937 |
+
cache_position: Optional[torch.LongTensor] = None,
|
938 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
939 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
940 |
+
output_hidden_states = (
|
941 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
942 |
+
)
|
943 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
944 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
945 |
+
|
946 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
947 |
+
raise ValueError(
|
948 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
949 |
+
)
|
950 |
+
|
951 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
952 |
+
logger.warning_once(
|
953 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
954 |
+
)
|
955 |
+
use_cache = False
|
956 |
+
|
957 |
+
if inputs_embeds is None:
|
958 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
959 |
+
|
960 |
+
past_seen_tokens = 0
|
961 |
+
if use_cache: # kept for BC (cache positions)
|
962 |
+
if past_key_values is not None and not isinstance(past_key_values, StaticCache):
|
963 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
964 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
965 |
+
|
966 |
+
if cache_position is None:
|
967 |
+
if isinstance(past_key_values, StaticCache):
|
968 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
969 |
+
cache_position = torch.arange(
|
970 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
971 |
+
)
|
972 |
+
|
973 |
+
if position_ids is None:
|
974 |
+
position_ids = cache_position.unsqueeze(0)
|
975 |
+
|
976 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens)
|
977 |
+
|
978 |
+
# embed positions
|
979 |
+
hidden_states = inputs_embeds
|
980 |
+
|
981 |
+
# decoder layers
|
982 |
+
all_hidden_states = () if output_hidden_states else None
|
983 |
+
all_self_attns = () if output_attentions else None
|
984 |
+
next_decoder_cache = None
|
985 |
+
|
986 |
+
for decoder_layer in self.layers:
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states += (hidden_states,)
|
989 |
+
|
990 |
+
if self.gradient_checkpointing and self.training:
|
991 |
+
layer_outputs = self._gradient_checkpointing_func(
|
992 |
+
decoder_layer.__call__,
|
993 |
+
hidden_states,
|
994 |
+
causal_mask,
|
995 |
+
position_ids,
|
996 |
+
past_key_values,
|
997 |
+
output_attentions,
|
998 |
+
use_cache,
|
999 |
+
cache_position,
|
1000 |
+
)
|
1001 |
+
else:
|
1002 |
+
layer_outputs = decoder_layer(
|
1003 |
+
hidden_states,
|
1004 |
+
attention_mask=causal_mask,
|
1005 |
+
position_ids=position_ids,
|
1006 |
+
past_key_value=past_key_values,
|
1007 |
+
output_attentions=output_attentions,
|
1008 |
+
use_cache=use_cache,
|
1009 |
+
cache_position=cache_position,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
hidden_states = layer_outputs[0]
|
1013 |
+
|
1014 |
+
if use_cache:
|
1015 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1016 |
+
|
1017 |
+
if output_attentions:
|
1018 |
+
all_self_attns += (layer_outputs[1],)
|
1019 |
+
|
1020 |
+
hidden_states = self.norm(hidden_states)
|
1021 |
+
|
1022 |
+
# add hidden states from the last decoder layer
|
1023 |
+
if output_hidden_states:
|
1024 |
+
all_hidden_states += (hidden_states,)
|
1025 |
+
|
1026 |
+
next_cache = None
|
1027 |
+
if use_cache:
|
1028 |
+
next_cache = (
|
1029 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1030 |
+
)
|
1031 |
+
if not return_dict:
|
1032 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1033 |
+
return BaseModelOutputWithPast(
|
1034 |
+
last_hidden_state=hidden_states,
|
1035 |
+
past_key_values=next_cache,
|
1036 |
+
hidden_states=all_hidden_states,
|
1037 |
+
attentions=all_self_attns,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
def _update_causal_mask(
|
1041 |
+
self,
|
1042 |
+
attention_mask: torch.Tensor,
|
1043 |
+
input_tensor: torch.Tensor,
|
1044 |
+
cache_position: torch.Tensor,
|
1045 |
+
past_seen_tokens: int,
|
1046 |
+
):
|
1047 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1048 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1049 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1050 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1051 |
+
|
1052 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1053 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1054 |
+
return attention_mask
|
1055 |
+
return None
|
1056 |
+
|
1057 |
+
if self.config._attn_implementation == "sdpa":
|
1058 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument,
|
1059 |
+
# in order to dispatch on Flash Attention 2.
|
1060 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1061 |
+
attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens
|
1062 |
+
):
|
1063 |
+
return None
|
1064 |
+
|
1065 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1066 |
+
min_dtype = torch.finfo(dtype).min
|
1067 |
+
sequence_length = input_tensor.shape[1]
|
1068 |
+
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
|
1069 |
+
target_length = self.config.max_position_embeddings
|
1070 |
+
else: # dynamic cache
|
1071 |
+
target_length = (
|
1072 |
+
attention_mask.shape[-1]
|
1073 |
+
if isinstance(attention_mask, torch.Tensor)
|
1074 |
+
else past_seen_tokens + sequence_length + 1
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1078 |
+
if sequence_length != 1:
|
1079 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1080 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1081 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1082 |
+
if attention_mask is not None:
|
1083 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1084 |
+
if attention_mask.dim() == 2:
|
1085 |
+
mask_length = attention_mask.shape[-1]
|
1086 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1087 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1088 |
+
elif attention_mask.dim() == 4:
|
1089 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1090 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1091 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1092 |
+
offset = cache_position[0]
|
1093 |
+
else:
|
1094 |
+
offset = 0
|
1095 |
+
mask_shape = attention_mask.shape
|
1096 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1097 |
+
causal_mask[
|
1098 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1099 |
+
] = mask_slice
|
1100 |
+
|
1101 |
+
if (
|
1102 |
+
self.config._attn_implementation == "sdpa"
|
1103 |
+
and attention_mask is not None
|
1104 |
+
and attention_mask.device.type == "cuda"
|
1105 |
+
):
|
1106 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1107 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1108 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1109 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1110 |
+
|
1111 |
+
return causal_mask
|
1112 |
+
|
1113 |
+
|
1114 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1115 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1116 |
+
|
1117 |
+
def __init__(self, config):
|
1118 |
+
super().__init__(config)
|
1119 |
+
self.model = LlamaModel(config)
|
1120 |
+
self.vocab_size = config.vocab_size
|
1121 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1122 |
+
|
1123 |
+
# Initialize weights and apply final processing
|
1124 |
+
self.post_init()
|
1125 |
+
|
1126 |
+
def get_input_embeddings(self):
|
1127 |
+
return self.model.embed_tokens
|
1128 |
+
|
1129 |
+
def set_input_embeddings(self, value):
|
1130 |
+
self.model.embed_tokens = value
|
1131 |
+
|
1132 |
+
def get_output_embeddings(self):
|
1133 |
+
return self.lm_head
|
1134 |
+
|
1135 |
+
def set_output_embeddings(self, new_embeddings):
|
1136 |
+
self.lm_head = new_embeddings
|
1137 |
+
|
1138 |
+
def set_decoder(self, decoder):
|
1139 |
+
self.model = decoder
|
1140 |
+
|
1141 |
+
def get_decoder(self):
|
1142 |
+
return self.model
|
1143 |
+
|
1144 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1145 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1146 |
+
def forward(
|
1147 |
+
self,
|
1148 |
+
input_ids: torch.LongTensor = None,
|
1149 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1150 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1151 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1152 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1153 |
+
labels: Optional[torch.LongTensor] = None,
|
1154 |
+
use_cache: Optional[bool] = None,
|
1155 |
+
output_attentions: Optional[bool] = None,
|
1156 |
+
output_hidden_states: Optional[bool] = None,
|
1157 |
+
return_dict: Optional[bool] = None,
|
1158 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1159 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1160 |
+
r"""
|
1161 |
+
Args:
|
1162 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1163 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1164 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1165 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1166 |
+
|
1167 |
+
Returns:
|
1168 |
+
|
1169 |
+
Example:
|
1170 |
+
|
1171 |
+
```python
|
1172 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1173 |
+
|
1174 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1175 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1176 |
+
|
1177 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1178 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1179 |
+
|
1180 |
+
>>> # Generate
|
1181 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1182 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1183 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1184 |
+
```"""
|
1185 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1186 |
+
output_hidden_states = (
|
1187 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1188 |
+
)
|
1189 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1190 |
+
|
1191 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1192 |
+
outputs = self.model(
|
1193 |
+
input_ids=input_ids,
|
1194 |
+
attention_mask=attention_mask,
|
1195 |
+
position_ids=position_ids,
|
1196 |
+
past_key_values=past_key_values,
|
1197 |
+
inputs_embeds=inputs_embeds,
|
1198 |
+
use_cache=use_cache,
|
1199 |
+
output_attentions=output_attentions,
|
1200 |
+
output_hidden_states=output_hidden_states,
|
1201 |
+
return_dict=return_dict,
|
1202 |
+
cache_position=cache_position,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
hidden_states = outputs[0]
|
1206 |
+
if self.config.pretraining_tp > 1:
|
1207 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1208 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1209 |
+
logits = torch.cat(logits, dim=-1)
|
1210 |
+
else:
|
1211 |
+
logits = self.lm_head(hidden_states)
|
1212 |
+
logits = logits.float()
|
1213 |
+
|
1214 |
+
loss = None
|
1215 |
+
if labels is not None:
|
1216 |
+
# Shift so that tokens < n predict n
|
1217 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1218 |
+
shift_labels = labels[..., 1:].contiguous()
|
1219 |
+
# Flatten the tokens
|
1220 |
+
loss_fct = CrossEntropyLoss()
|
1221 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1222 |
+
shift_labels = shift_labels.view(-1)
|
1223 |
+
# Enable model parallelism
|
1224 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1225 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1226 |
+
|
1227 |
+
if not return_dict:
|
1228 |
+
output = (logits,) + outputs[1:]
|
1229 |
+
return (loss,) + output if loss is not None else output
|
1230 |
+
|
1231 |
+
return CausalLMOutputWithPast(
|
1232 |
+
loss=loss,
|
1233 |
+
logits=logits,
|
1234 |
+
past_key_values=outputs.past_key_values,
|
1235 |
+
hidden_states=outputs.hidden_states,
|
1236 |
+
attentions=outputs.attentions,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
def prepare_inputs_for_generation(
|
1240 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1241 |
+
):
|
1242 |
+
# With static cache, the `past_key_values` is None
|
1243 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1244 |
+
has_static_cache = False
|
1245 |
+
if past_key_values is None:
|
1246 |
+
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1247 |
+
has_static_cache = past_key_values is not None
|
1248 |
+
|
1249 |
+
past_length = 0
|
1250 |
+
if past_key_values is not None:
|
1251 |
+
if isinstance(past_key_values, Cache):
|
1252 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1253 |
+
max_cache_length = (
|
1254 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1255 |
+
if past_key_values.get_max_length() is not None
|
1256 |
+
else None
|
1257 |
+
)
|
1258 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1259 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1260 |
+
else:
|
1261 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1262 |
+
max_cache_length = None
|
1263 |
+
|
1264 |
+
# Keep only the unprocessed tokens:
|
1265 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1266 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1267 |
+
# input)
|
1268 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1269 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1270 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1271 |
+
# input_ids based on the past_length.
|
1272 |
+
elif past_length < input_ids.shape[1]:
|
1273 |
+
input_ids = input_ids[:, past_length:]
|
1274 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1275 |
+
|
1276 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1277 |
+
if (
|
1278 |
+
max_cache_length is not None
|
1279 |
+
and attention_mask is not None
|
1280 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1281 |
+
):
|
1282 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1283 |
+
|
1284 |
+
position_ids = kwargs.get("position_ids", None)
|
1285 |
+
if attention_mask is not None and position_ids is None:
|
1286 |
+
# create position_ids on the fly for batch generation
|
1287 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1288 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1289 |
+
if past_key_values:
|
1290 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1291 |
+
|
1292 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1293 |
+
if inputs_embeds is not None and past_key_values is None:
|
1294 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1295 |
+
else:
|
1296 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1297 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1298 |
+
# TODO: use `next_tokens` directly instead.
|
1299 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1300 |
+
|
1301 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1302 |
+
if cache_position is None:
|
1303 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1304 |
+
else:
|
1305 |
+
cache_position = cache_position[-input_length:]
|
1306 |
+
|
1307 |
+
if has_static_cache:
|
1308 |
+
past_key_values = None
|
1309 |
+
|
1310 |
+
model_inputs.update(
|
1311 |
+
{
|
1312 |
+
"position_ids": position_ids,
|
1313 |
+
"cache_position": cache_position,
|
1314 |
+
"past_key_values": past_key_values,
|
1315 |
+
"use_cache": kwargs.get("use_cache"),
|
1316 |
+
"attention_mask": attention_mask,
|
1317 |
+
}
|
1318 |
+
)
|
1319 |
+
return model_inputs
|
1320 |
+
|
1321 |
+
@staticmethod
|
1322 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1323 |
+
reordered_past = ()
|
1324 |
+
for layer_past in past_key_values:
|
1325 |
+
reordered_past += (
|
1326 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1327 |
+
)
|
1328 |
+
return reordered_past
|
1329 |
+
|
1330 |
+
|
1331 |
+
@add_start_docstrings(
|
1332 |
+
"""
|
1333 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1334 |
+
|
1335 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1336 |
+
(e.g. GPT-2) do.
|
1337 |
+
|
1338 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1339 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1340 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1341 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1342 |
+
each row of the batch).
|
1343 |
+
""",
|
1344 |
+
LLAMA_START_DOCSTRING,
|
1345 |
+
)
|
1346 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1347 |
+
def __init__(self, config):
|
1348 |
+
super().__init__(config)
|
1349 |
+
self.num_labels = config.num_labels
|
1350 |
+
self.model = LlamaModel(config)
|
1351 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1352 |
+
|
1353 |
+
# Initialize weights and apply final processing
|
1354 |
+
self.post_init()
|
1355 |
+
|
1356 |
+
def get_input_embeddings(self):
|
1357 |
+
return self.model.embed_tokens
|
1358 |
+
|
1359 |
+
def set_input_embeddings(self, value):
|
1360 |
+
self.model.embed_tokens = value
|
1361 |
+
|
1362 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1363 |
+
def forward(
|
1364 |
+
self,
|
1365 |
+
input_ids: torch.LongTensor = None,
|
1366 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1367 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1368 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1369 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1370 |
+
labels: Optional[torch.LongTensor] = None,
|
1371 |
+
use_cache: Optional[bool] = None,
|
1372 |
+
output_attentions: Optional[bool] = None,
|
1373 |
+
output_hidden_states: Optional[bool] = None,
|
1374 |
+
return_dict: Optional[bool] = None,
|
1375 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1376 |
+
r"""
|
1377 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1378 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1379 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1380 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1381 |
+
"""
|
1382 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1383 |
+
|
1384 |
+
transformer_outputs = self.model(
|
1385 |
+
input_ids,
|
1386 |
+
attention_mask=attention_mask,
|
1387 |
+
position_ids=position_ids,
|
1388 |
+
past_key_values=past_key_values,
|
1389 |
+
inputs_embeds=inputs_embeds,
|
1390 |
+
use_cache=use_cache,
|
1391 |
+
output_attentions=output_attentions,
|
1392 |
+
output_hidden_states=output_hidden_states,
|
1393 |
+
return_dict=return_dict,
|
1394 |
+
)
|
1395 |
+
hidden_states = transformer_outputs[0]
|
1396 |
+
logits = self.score(hidden_states)
|
1397 |
+
|
1398 |
+
if input_ids is not None:
|
1399 |
+
batch_size = input_ids.shape[0]
|
1400 |
+
else:
|
1401 |
+
batch_size = inputs_embeds.shape[0]
|
1402 |
+
|
1403 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1404 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1405 |
+
if self.config.pad_token_id is None:
|
1406 |
+
sequence_lengths = -1
|
1407 |
+
else:
|
1408 |
+
if input_ids is not None:
|
1409 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1410 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1411 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1412 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1413 |
+
else:
|
1414 |
+
sequence_lengths = -1
|
1415 |
+
|
1416 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1417 |
+
|
1418 |
+
loss = None
|
1419 |
+
if labels is not None:
|
1420 |
+
labels = labels.to(logits.device)
|
1421 |
+
if self.config.problem_type is None:
|
1422 |
+
if self.num_labels == 1:
|
1423 |
+
self.config.problem_type = "regression"
|
1424 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1425 |
+
self.config.problem_type = "single_label_classification"
|
1426 |
+
else:
|
1427 |
+
self.config.problem_type = "multi_label_classification"
|
1428 |
+
|
1429 |
+
if self.config.problem_type == "regression":
|
1430 |
+
loss_fct = MSELoss()
|
1431 |
+
if self.num_labels == 1:
|
1432 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1433 |
+
else:
|
1434 |
+
loss = loss_fct(pooled_logits, labels)
|
1435 |
+
elif self.config.problem_type == "single_label_classification":
|
1436 |
+
loss_fct = CrossEntropyLoss()
|
1437 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1438 |
+
elif self.config.problem_type == "multi_label_classification":
|
1439 |
+
loss_fct = BCEWithLogitsLoss()
|
1440 |
+
loss = loss_fct(pooled_logits, labels)
|
1441 |
+
if not return_dict:
|
1442 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1443 |
+
return ((loss,) + output) if loss is not None else output
|
1444 |
+
|
1445 |
+
return SequenceClassifierOutputWithPast(
|
1446 |
+
loss=loss,
|
1447 |
+
logits=pooled_logits,
|
1448 |
+
past_key_values=transformer_outputs.past_key_values,
|
1449 |
+
hidden_states=transformer_outputs.hidden_states,
|
1450 |
+
attentions=transformer_outputs.attentions,
|
1451 |
+
)
|
1452 |
+
|
1453 |
+
|
1454 |
+
@add_start_docstrings(
|
1455 |
+
"""
|
1456 |
+
The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
|
1457 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1458 |
+
""",
|
1459 |
+
LLAMA_START_DOCSTRING,
|
1460 |
+
)
|
1461 |
+
class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
1462 |
+
base_model_prefix = "transformer"
|
1463 |
+
|
1464 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
|
1465 |
+
def __init__(self, config):
|
1466 |
+
super().__init__(config)
|
1467 |
+
self.transformer = LlamaModel(config)
|
1468 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1469 |
+
|
1470 |
+
# Initialize weights and apply final processing
|
1471 |
+
self.post_init()
|
1472 |
+
|
1473 |
+
def get_input_embeddings(self):
|
1474 |
+
return self.transformer.embed_tokens
|
1475 |
+
|
1476 |
+
def set_input_embeddings(self, value):
|
1477 |
+
self.transformer.embed_tokens = value
|
1478 |
+
|
1479 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1480 |
+
def forward(
|
1481 |
+
self,
|
1482 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1483 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1484 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1485 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1486 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1487 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1488 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1489 |
+
output_attentions: Optional[bool] = None,
|
1490 |
+
output_hidden_states: Optional[bool] = None,
|
1491 |
+
return_dict: Optional[bool] = None,
|
1492 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1493 |
+
r"""
|
1494 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1495 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1496 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1497 |
+
are not taken into account for computing the loss.
|
1498 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1499 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1500 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1501 |
+
are not taken into account for computing the loss.
|
1502 |
+
"""
|
1503 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1504 |
+
|
1505 |
+
outputs = self.transformer(
|
1506 |
+
input_ids,
|
1507 |
+
attention_mask=attention_mask,
|
1508 |
+
position_ids=position_ids,
|
1509 |
+
past_key_values=past_key_values,
|
1510 |
+
inputs_embeds=inputs_embeds,
|
1511 |
+
output_attentions=output_attentions,
|
1512 |
+
output_hidden_states=output_hidden_states,
|
1513 |
+
return_dict=return_dict,
|
1514 |
+
)
|
1515 |
+
|
1516 |
+
sequence_output = outputs[0]
|
1517 |
+
|
1518 |
+
logits = self.qa_outputs(sequence_output)
|
1519 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1520 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1521 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1522 |
+
|
1523 |
+
total_loss = None
|
1524 |
+
if start_positions is not None and end_positions is not None:
|
1525 |
+
# If we are on multi-GPU, split add a dimension
|
1526 |
+
if len(start_positions.size()) > 1:
|
1527 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1528 |
+
if len(end_positions.size()) > 1:
|
1529 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1530 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1531 |
+
ignored_index = start_logits.size(1)
|
1532 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1533 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1534 |
+
|
1535 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1536 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1537 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1538 |
+
total_loss = (start_loss + end_loss) / 2
|
1539 |
+
|
1540 |
+
if not return_dict:
|
1541 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1542 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1543 |
+
|
1544 |
+
return QuestionAnsweringModelOutput(
|
1545 |
+
loss=total_loss,
|
1546 |
+
start_logits=start_logits,
|
1547 |
+
end_logits=end_logits,
|
1548 |
+
hidden_states=outputs.hidden_states,
|
1549 |
+
attentions=outputs.attentions,
|
1550 |
+
)
|