Update configuration_llama.py
Browse files- configuration_llama.py +57 -38
configuration_llama.py
CHANGED
@@ -17,14 +17,12 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""
|
21 |
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.
|
24 |
|
25 |
|
26 |
-
logger = logging.get_logger(__name__)
|
27 |
-
|
28 |
class LlamaConfig(PretrainedConfig):
|
29 |
r"""
|
30 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
@@ -50,7 +48,7 @@ class LlamaConfig(PretrainedConfig):
|
|
50 |
num_key_value_heads (`int`, *optional*):
|
51 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
@@ -75,25 +73,58 @@ class LlamaConfig(PretrainedConfig):
|
|
75 |
End of stream token id.
|
76 |
pretraining_tp (`int`, *optional*, defaults to 1):
|
77 |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
78 |
-
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
79 |
-
necessary to ensure exact reproducibility of the pretraining
|
80 |
-
issue](https://github.com/pytorch/pytorch/issues/76232).
|
81 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
Whether to tie weight embeddings
|
83 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
The base period of the RoPE embeddings.
|
85 |
rope_scaling (`Dict`, *optional*):
|
86 |
-
Dictionary containing the scaling configuration for the RoPE embeddings.
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
95 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
96 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
|
|
|
|
97 |
|
98 |
```python
|
99 |
>>> from transformers import LlamaModel, LlamaConfig
|
@@ -133,6 +164,8 @@ class LlamaConfig(PretrainedConfig):
|
|
133 |
rope_scaling=None,
|
134 |
attention_bias=False,
|
135 |
attention_dropout=0.0,
|
|
|
|
|
136 |
**kwargs,
|
137 |
):
|
138 |
self.vocab_size = vocab_size
|
@@ -154,9 +187,15 @@ class LlamaConfig(PretrainedConfig):
|
|
154 |
self.use_cache = use_cache
|
155 |
self.rope_theta = rope_theta
|
156 |
self.rope_scaling = rope_scaling
|
157 |
-
self._rope_scaling_validation()
|
158 |
self.attention_bias = attention_bias
|
159 |
self.attention_dropout = attention_dropout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
super().__init__(
|
162 |
pad_token_id=pad_token_id,
|
@@ -164,24 +203,4 @@ class LlamaConfig(PretrainedConfig):
|
|
164 |
eos_token_id=eos_token_id,
|
165 |
tie_word_embeddings=tie_word_embeddings,
|
166 |
**kwargs,
|
167 |
-
)
|
168 |
-
|
169 |
-
def _rope_scaling_validation(self):
|
170 |
-
"""
|
171 |
-
Validate the `rope_scaling` configuration.
|
172 |
-
"""
|
173 |
-
if self.rope_scaling is None:
|
174 |
-
return
|
175 |
-
|
176 |
-
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
177 |
-
raise ValueError(
|
178 |
-
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
179 |
-
)
|
180 |
-
rope_scaling_type = self.rope_scaling.get("type", None)
|
181 |
-
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
182 |
-
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
183 |
-
raise ValueError(
|
184 |
-
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
185 |
-
)
|
186 |
-
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
187 |
-
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
+
"""LLaMA model configuration"""
|
21 |
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
24 |
|
25 |
|
|
|
|
|
26 |
class LlamaConfig(PretrainedConfig):
|
27 |
r"""
|
28 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
|
|
48 |
num_key_value_heads (`int`, *optional*):
|
49 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
|
73 |
End of stream token id.
|
74 |
pretraining_tp (`int`, *optional*, defaults to 1):
|
75 |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
76 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
77 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
78 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
79 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
Whether to tie weight embeddings
|
81 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
The base period of the RoPE embeddings.
|
83 |
rope_scaling (`Dict`, *optional*):
|
84 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
85 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
86 |
+
accordingly.
|
87 |
+
Expected contents:
|
88 |
+
`rope_type` (`str`):
|
89 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
90 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
91 |
+
`factor` (`float`, *optional*):
|
92 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
93 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
94 |
+
original maximum pre-trained length.
|
95 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
96 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
97 |
+
pretraining.
|
98 |
+
`attention_factor` (`float`, *optional*):
|
99 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
100 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
101 |
+
`factor` field to infer the suggested value.
|
102 |
+
`beta_fast` (`float`, *optional*):
|
103 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
104 |
+
ramp function. If unspecified, it defaults to 32.
|
105 |
+
`beta_slow` (`float`, *optional*):
|
106 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
107 |
+
ramp function. If unspecified, it defaults to 1.
|
108 |
+
`short_factor` (`List[float]`, *optional*):
|
109 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
110 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
111 |
+
size divided by the number of attention heads divided by 2
|
112 |
+
`long_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`low_freq_factor` (`float`, *optional*):
|
117 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
118 |
+
`high_freq_factor` (`float`, *optional*):
|
119 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
120 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
121 |
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
122 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
123 |
The dropout ratio for the attention probabilities.
|
124 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
126 |
+
head_dim (`int`, *optional*):
|
127 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
128 |
|
129 |
```python
|
130 |
>>> from transformers import LlamaModel, LlamaConfig
|
|
|
164 |
rope_scaling=None,
|
165 |
attention_bias=False,
|
166 |
attention_dropout=0.0,
|
167 |
+
mlp_bias=False,
|
168 |
+
head_dim=None,
|
169 |
**kwargs,
|
170 |
):
|
171 |
self.vocab_size = vocab_size
|
|
|
187 |
self.use_cache = use_cache
|
188 |
self.rope_theta = rope_theta
|
189 |
self.rope_scaling = rope_scaling
|
|
|
190 |
self.attention_bias = attention_bias
|
191 |
self.attention_dropout = attention_dropout
|
192 |
+
self.mlp_bias = mlp_bias
|
193 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
194 |
+
# Validate the correctness of rotary position embeddings parameters
|
195 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
196 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
197 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
198 |
+
rope_config_validation(self)
|
199 |
|
200 |
super().__init__(
|
201 |
pad_token_id=pad_token_id,
|
|
|
203 |
eos_token_id=eos_token_id,
|
204 |
tie_word_embeddings=tie_word_embeddings,
|
205 |
**kwargs,
|
206 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|