zifei9 commited on
Commit
1b9b030
·
verified ·
1 Parent(s): 55d60de

Upload configuration_mistral.py

Browse files
Files changed (1) hide show
  1. configuration_mistral.py +161 -0
configuration_mistral.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Mistral model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class MistralConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
27
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
28
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
29
+
30
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
31
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`MistralModel`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 14336):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*, defaults to 8):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
56
+ head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
57
+ The attention head dimension.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
61
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
62
+ allows sequence of up to 4096*32 tokens.
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ The id of the padding token.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ The id of the "beginning-of-sequence" token.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ The id of the "end-of-sequence" token.
76
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
77
+ Whether the model's input and output word embeddings should be tied.
78
+ rope_theta (`float`, *optional*, defaults to 10000.0):
79
+ The base period of the RoPE embeddings.
80
+ sliding_window (`int`, *optional*, defaults to 4096):
81
+ Sliding window attention window size. If not specified, will default to `4096`.
82
+ attention_dropout (`float`, *optional*, defaults to 0.0):
83
+ The dropout ratio for the attention probabilities.
84
+
85
+ ```python
86
+ >>> from transformers import MistralModel, MistralConfig
87
+
88
+ >>> # Initializing a Mistral 7B style configuration
89
+ >>> configuration = MistralConfig()
90
+
91
+ >>> # Initializing a model from the Mistral 7B style configuration
92
+ >>> model = MistralModel(configuration)
93
+
94
+ >>> # Accessing the model configuration
95
+ >>> configuration = model.config
96
+ ```"""
97
+
98
+ model_type = "mistral"
99
+ keys_to_ignore_at_inference = ["past_key_values"]
100
+ # Default tensor parallel plan for base model `MistralModel`
101
+ base_model_tp_plan = {
102
+ "layers.*.self_attn.q_proj": "colwise",
103
+ "layers.*.self_attn.k_proj": "colwise",
104
+ "layers.*.self_attn.v_proj": "colwise",
105
+ "layers.*.self_attn.o_proj": "rowwise",
106
+ "layers.*.mlp.gate_proj": "colwise",
107
+ "layers.*.mlp.up_proj": "colwise",
108
+ "layers.*.mlp.down_proj": "rowwise",
109
+ }
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_size=32000,
114
+ hidden_size=4096,
115
+ intermediate_size=14336,
116
+ num_hidden_layers=32,
117
+ num_attention_heads=32,
118
+ num_key_value_heads=8,
119
+ head_dim=None,
120
+ hidden_act="silu",
121
+ max_position_embeddings=4096 * 32,
122
+ initializer_range=0.02,
123
+ rms_norm_eps=1e-6,
124
+ use_cache=True,
125
+ pad_token_id=None,
126
+ bos_token_id=1,
127
+ eos_token_id=2,
128
+ tie_word_embeddings=False,
129
+ rope_theta=10000.0,
130
+ sliding_window=4096,
131
+ attention_dropout=0.0,
132
+ **kwargs,
133
+ ):
134
+ self.vocab_size = vocab_size
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.hidden_size = hidden_size
137
+ self.intermediate_size = intermediate_size
138
+ self.num_hidden_layers = num_hidden_layers
139
+ self.num_attention_heads = num_attention_heads
140
+ self.sliding_window = sliding_window
141
+ self.head_dim = head_dim or hidden_size // num_attention_heads
142
+
143
+ # for backward compatibility
144
+ if num_key_value_heads is None:
145
+ num_key_value_heads = num_attention_heads
146
+
147
+ self.num_key_value_heads = num_key_value_heads
148
+ self.hidden_act = hidden_act
149
+ self.initializer_range = initializer_range
150
+ self.rms_norm_eps = rms_norm_eps
151
+ self.use_cache = use_cache
152
+ self.rope_theta = rope_theta
153
+ self.attention_dropout = attention_dropout
154
+
155
+ super().__init__(
156
+ pad_token_id=pad_token_id,
157
+ bos_token_id=bos_token_id,
158
+ eos_token_id=eos_token_id,
159
+ tie_word_embeddings=tie_word_embeddings,
160
+ **kwargs,
161
+ )