Update modeling_gemma.py
Browse files- modeling_gemma.py +1 -35
modeling_gemma.py
CHANGED
@@ -48,6 +48,7 @@ from transformers.utils import (
|
|
48 |
)
|
49 |
from .configuration_gemma import GemmaConfig
|
50 |
from transformers.models.gemma.modeling_gemma import GemmaRMSNorm
|
|
|
51 |
|
52 |
logger = logging.get_logger(__name__)
|
53 |
|
@@ -188,41 +189,6 @@ class GemmaDynamicNTKScalingRotaryEmbedding(GemmaRotaryEmbedding):
|
|
188 |
cos, sin = super().forward(x, position_ids)
|
189 |
return cos, sin
|
190 |
|
191 |
-
|
192 |
-
def rotate_half(x):
|
193 |
-
"""Rotates half the hidden dims of the input."""
|
194 |
-
x1 = x[..., : x.shape[-1] // 2]
|
195 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
196 |
-
return torch.cat((-x2, x1), dim=-1)
|
197 |
-
|
198 |
-
|
199 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
200 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
201 |
-
|
202 |
-
Args:
|
203 |
-
q (`torch.Tensor`): The query tensor.
|
204 |
-
k (`torch.Tensor`): The key tensor.
|
205 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
206 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
207 |
-
position_ids (`torch.Tensor`, *optional*):
|
208 |
-
Deprecated and unused.
|
209 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
210 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
211 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
212 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
213 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
214 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
215 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
216 |
-
Returns:
|
217 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
218 |
-
"""
|
219 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
220 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
221 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
222 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
223 |
-
return q_embed, k_embed
|
224 |
-
|
225 |
-
|
226 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
227 |
"""
|
228 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
48 |
)
|
49 |
from .configuration_gemma import GemmaConfig
|
50 |
from transformers.models.gemma.modeling_gemma import GemmaRMSNorm
|
51 |
+
from transformers.models.gemma.modeling_gemma import apply_rotary_pos_emb
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
|
|
189 |
cos, sin = super().forward(x, position_ids)
|
190 |
return cos, sin
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
193 |
"""
|
194 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|