“sayehs”
commited on
Commit
·
6a8a059
1
Parent(s):
791b61d
custom modeling of gpt-j-6b
Browse files- config.json +4 -1
- configuration_gptj.py +239 -0
- modeling_gptj.py +1247 -0
config.json
CHANGED
@@ -3,6 +3,10 @@
|
|
3 |
"architectures": [
|
4 |
"GPTJForCausalLM"
|
5 |
],
|
|
|
|
|
|
|
|
|
6 |
"attn_pdrop": 0.0,
|
7 |
"bos_token_id": 50256,
|
8 |
"embd_pdrop": 0.0,
|
@@ -34,7 +38,6 @@
|
|
34 |
},
|
35 |
"tie_word_embeddings": false,
|
36 |
"tokenizer_class": "GPT2Tokenizer",
|
37 |
-
"transformers_version": "4.18.0.dev0",
|
38 |
"use_cache": true,
|
39 |
"vocab_size": 50400
|
40 |
}
|
|
|
3 |
"architectures": [
|
4 |
"GPTJForCausalLM"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_gptj.GPTJConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_gptj.GPTJForCausalLM"
|
9 |
+
},
|
10 |
"attn_pdrop": 0.0,
|
11 |
"bos_token_id": 50256,
|
12 |
"embd_pdrop": 0.0,
|
|
|
38 |
},
|
39 |
"tie_word_embeddings": false,
|
40 |
"tokenizer_class": "GPT2Tokenizer",
|
|
|
41 |
"use_cache": true,
|
42 |
"vocab_size": 50400
|
43 |
}
|
configuration_gptj.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPT-J model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
|
29 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class GPTJConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
36 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
37 |
+
defaults will yield a similar configuration to that of the GPT-J
|
38 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
39 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
40 |
+
for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
44 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
46 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
47 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
48 |
+
just in case (e.g., 512 or 1024 or 2048).
|
49 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
50 |
+
Dimensionality of the embeddings and hidden states.
|
51 |
+
n_layer (`int`, *optional*, defaults to 28):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
n_head (`int`, *optional*, defaults to 16):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
56 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
57 |
+
n_inner (`int`, *optional*, defaults to None):
|
58 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
59 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
60 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
62 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout ratio for the attention.
|
67 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
68 |
+
The epsilon to use in the layer normalization layers.
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import GPTJModel, GPTJConfig
|
78 |
+
|
79 |
+
>>> # Initializing a GPT-J 6B configuration
|
80 |
+
>>> configuration = GPTJConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model from the configuration
|
83 |
+
>>> model = GPTJModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "gptj"
|
90 |
+
attribute_map = {
|
91 |
+
"max_position_embeddings": "n_positions",
|
92 |
+
"hidden_size": "n_embd",
|
93 |
+
"num_attention_heads": "n_head",
|
94 |
+
"num_hidden_layers": "n_layer",
|
95 |
+
}
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=50400,
|
100 |
+
n_positions=2048,
|
101 |
+
n_embd=4096,
|
102 |
+
n_layer=28,
|
103 |
+
n_head=16,
|
104 |
+
rotary_dim=64,
|
105 |
+
n_inner=None,
|
106 |
+
activation_function="gelu_new",
|
107 |
+
resid_pdrop=0.0,
|
108 |
+
embd_pdrop=0.0,
|
109 |
+
attn_pdrop=0.0,
|
110 |
+
layer_norm_epsilon=1e-5,
|
111 |
+
initializer_range=0.02,
|
112 |
+
use_cache=True,
|
113 |
+
bos_token_id=50256,
|
114 |
+
eos_token_id=50256,
|
115 |
+
tie_word_embeddings=False,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.n_positions = n_positions
|
120 |
+
self.n_embd = n_embd
|
121 |
+
self.n_layer = n_layer
|
122 |
+
self.n_head = n_head
|
123 |
+
self.n_inner = n_inner
|
124 |
+
self.rotary_dim = rotary_dim
|
125 |
+
self.activation_function = activation_function
|
126 |
+
self.resid_pdrop = resid_pdrop
|
127 |
+
self.embd_pdrop = embd_pdrop
|
128 |
+
self.attn_pdrop = attn_pdrop
|
129 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
130 |
+
self.initializer_range = initializer_range
|
131 |
+
self.use_cache = use_cache
|
132 |
+
|
133 |
+
self.bos_token_id = bos_token_id
|
134 |
+
self.eos_token_id = eos_token_id
|
135 |
+
|
136 |
+
super().__init__(
|
137 |
+
bos_token_id=bos_token_id,
|
138 |
+
eos_token_id=eos_token_id,
|
139 |
+
tie_word_embeddings=tie_word_embeddings,
|
140 |
+
**kwargs,
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
145 |
+
class GPTJOnnxConfig(OnnxConfigWithPast):
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
config: PretrainedConfig,
|
149 |
+
task: str = "default",
|
150 |
+
patching_specs: List[PatchingSpec] = None,
|
151 |
+
use_past: bool = False,
|
152 |
+
):
|
153 |
+
super().__init__(
|
154 |
+
config, task=task, patching_specs=patching_specs, use_past=use_past
|
155 |
+
)
|
156 |
+
if not getattr(self._config, "pad_token_id", None):
|
157 |
+
# TODO: how to do that better?
|
158 |
+
self._config.pad_token_id = 0
|
159 |
+
|
160 |
+
@property
|
161 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
162 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
163 |
+
if self.use_past:
|
164 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
165 |
+
common_inputs["attention_mask"] = {
|
166 |
+
0: "batch",
|
167 |
+
1: "past_sequence + sequence",
|
168 |
+
}
|
169 |
+
else:
|
170 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
171 |
+
|
172 |
+
return common_inputs
|
173 |
+
|
174 |
+
@property
|
175 |
+
def num_layers(self) -> int:
|
176 |
+
return self._config.n_layer
|
177 |
+
|
178 |
+
@property
|
179 |
+
def num_attention_heads(self) -> int:
|
180 |
+
return self._config.n_head
|
181 |
+
|
182 |
+
def generate_dummy_inputs(
|
183 |
+
self,
|
184 |
+
tokenizer: PreTrainedTokenizer,
|
185 |
+
batch_size: int = -1,
|
186 |
+
seq_length: int = -1,
|
187 |
+
is_pair: bool = False,
|
188 |
+
framework: Optional[TensorType] = None,
|
189 |
+
) -> Mapping[str, Any]:
|
190 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
191 |
+
tokenizer,
|
192 |
+
batch_size=batch_size,
|
193 |
+
seq_length=seq_length,
|
194 |
+
is_pair=is_pair,
|
195 |
+
framework=framework,
|
196 |
+
)
|
197 |
+
|
198 |
+
# We need to order the input in the way they appears in the forward()
|
199 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
200 |
+
|
201 |
+
# Need to add the past_keys
|
202 |
+
if self.use_past:
|
203 |
+
if not is_torch_available():
|
204 |
+
raise ValueError(
|
205 |
+
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
import torch
|
209 |
+
|
210 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
211 |
+
# Not using the same length for past_key_values
|
212 |
+
past_key_values_length = seqlen + 2
|
213 |
+
past_shape = (
|
214 |
+
batch,
|
215 |
+
self.num_attention_heads,
|
216 |
+
past_key_values_length,
|
217 |
+
self._config.hidden_size // self.num_attention_heads,
|
218 |
+
)
|
219 |
+
ordered_inputs["past_key_values"] = [
|
220 |
+
(torch.zeros(past_shape), torch.zeros(past_shape))
|
221 |
+
for _ in range(self.num_layers)
|
222 |
+
]
|
223 |
+
|
224 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
225 |
+
if self.use_past:
|
226 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
227 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
228 |
+
[
|
229 |
+
ordered_inputs["attention_mask"],
|
230 |
+
torch.ones(batch, past_key_values_length, dtype=mask_dtype),
|
231 |
+
],
|
232 |
+
dim=1,
|
233 |
+
)
|
234 |
+
|
235 |
+
return ordered_inputs
|
236 |
+
|
237 |
+
@property
|
238 |
+
def default_onnx_opset(self) -> int:
|
239 |
+
return 13
|
modeling_gptj.py
ADDED
@@ -0,0 +1,1247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPT-J model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.fx
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPast,
|
29 |
+
CausalLMOutputWithPast,
|
30 |
+
QuestionAnsweringModelOutput,
|
31 |
+
SequenceClassifierOutputWithPast,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
add_code_sample_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_torch_fx_proxy,
|
39 |
+
logging,
|
40 |
+
)
|
41 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
42 |
+
from .configuration_gptj import GPTJConfig
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
|
48 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
49 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
50 |
+
|
51 |
+
|
52 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
53 |
+
"EleutherAI/gpt-j-6B",
|
54 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gptj
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
59 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
60 |
+
sinusoid_inp = torch.einsum(
|
61 |
+
"i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq
|
62 |
+
).float()
|
63 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
64 |
+
|
65 |
+
|
66 |
+
@torch.fx.wrap
|
67 |
+
def get_embed_positions(embed_positions, position_ids):
|
68 |
+
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
|
69 |
+
|
70 |
+
|
71 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
72 |
+
x1 = x[:, :, :, ::2]
|
73 |
+
x2 = x[:, :, :, 1::2]
|
74 |
+
x = torch.stack((-x2, x1), dim=-1)
|
75 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
76 |
+
|
77 |
+
|
78 |
+
def apply_rotary_pos_emb(
|
79 |
+
tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor
|
80 |
+
) -> torch.Tensor:
|
81 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
82 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
83 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
84 |
+
|
85 |
+
|
86 |
+
class GPTJAttention(nn.Module):
|
87 |
+
def __init__(self, config):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
max_positions = config.max_position_embeddings
|
91 |
+
self.register_buffer(
|
92 |
+
"bias",
|
93 |
+
torch.tril(
|
94 |
+
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
95 |
+
).view(1, 1, max_positions, max_positions),
|
96 |
+
persistent=False,
|
97 |
+
)
|
98 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
99 |
+
|
100 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
101 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
102 |
+
|
103 |
+
self.embed_dim = config.hidden_size
|
104 |
+
self.num_attention_heads = config.num_attention_heads
|
105 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
106 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
107 |
+
raise ValueError(
|
108 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
109 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
110 |
+
)
|
111 |
+
self.scale_attn = torch.sqrt(
|
112 |
+
torch.tensor(self.head_dim, dtype=torch.float32)
|
113 |
+
).to(torch.get_default_dtype())
|
114 |
+
|
115 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
116 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
117 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
118 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
119 |
+
self.rotary_dim = config.rotary_dim
|
120 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
121 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
122 |
+
|
123 |
+
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
124 |
+
"""
|
125 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
126 |
+
"""
|
127 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
128 |
+
tensor = tensor.view(new_shape)
|
129 |
+
if rotary:
|
130 |
+
return tensor
|
131 |
+
if len(tensor.shape) == 5:
|
132 |
+
return tensor.permute(
|
133 |
+
0, 1, 3, 2, 4
|
134 |
+
) # (batch, blocks, head, block_length, head_features)
|
135 |
+
elif len(tensor.shape) == 4:
|
136 |
+
return tensor.permute(
|
137 |
+
0, 2, 1, 3
|
138 |
+
) # (batch, head, seq_length, head_features)
|
139 |
+
else:
|
140 |
+
raise ValueError(
|
141 |
+
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}"
|
142 |
+
)
|
143 |
+
|
144 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
145 |
+
"""
|
146 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
147 |
+
"""
|
148 |
+
if len(tensor.shape) == 5:
|
149 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
150 |
+
elif len(tensor.shape) == 4:
|
151 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
152 |
+
else:
|
153 |
+
raise ValueError(
|
154 |
+
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}"
|
155 |
+
)
|
156 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
157 |
+
return tensor.view(new_shape)
|
158 |
+
|
159 |
+
def _attn(
|
160 |
+
self,
|
161 |
+
query,
|
162 |
+
key,
|
163 |
+
value,
|
164 |
+
attention_mask=None,
|
165 |
+
head_mask=None,
|
166 |
+
):
|
167 |
+
# compute causal mask from causal mask buffer
|
168 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
169 |
+
causal_mask = self.bias[
|
170 |
+
:, :, key_length - query_length : key_length, :key_length
|
171 |
+
]
|
172 |
+
|
173 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
174 |
+
query = query.to(torch.float32)
|
175 |
+
key = key.to(torch.float32)
|
176 |
+
|
177 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
178 |
+
|
179 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
180 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
181 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
182 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
183 |
+
attn_weights.device
|
184 |
+
)
|
185 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
186 |
+
|
187 |
+
attn_weights = attn_weights / self.scale_attn
|
188 |
+
|
189 |
+
if attention_mask is not None:
|
190 |
+
# Apply the attention mask
|
191 |
+
attn_weights = attn_weights + attention_mask
|
192 |
+
|
193 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
194 |
+
attn_weights = attn_weights.to(value.dtype)
|
195 |
+
attn_weights = self.attn_dropout(attn_weights)
|
196 |
+
|
197 |
+
# Mask heads if we want to
|
198 |
+
if head_mask is not None:
|
199 |
+
attn_weights = attn_weights * head_mask
|
200 |
+
|
201 |
+
attn_output = torch.matmul(attn_weights, value)
|
202 |
+
|
203 |
+
return attn_output, attn_weights
|
204 |
+
|
205 |
+
def _get_embed_positions(self, position_ids):
|
206 |
+
embed_positions = self.embed_positions
|
207 |
+
if embed_positions.device != position_ids.device:
|
208 |
+
embed_positions = embed_positions.to(position_ids.device)
|
209 |
+
self.embed_positions = embed_positions
|
210 |
+
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
hidden_states: torch.FloatTensor,
|
215 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
216 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
217 |
+
position_ids: Optional[torch.LongTensor] = None,
|
218 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
219 |
+
use_cache: Optional[bool] = False,
|
220 |
+
output_attentions: Optional[bool] = False,
|
221 |
+
) -> Union[
|
222 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
223 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
224 |
+
]:
|
225 |
+
query = self.q_proj(hidden_states)
|
226 |
+
key = self.k_proj(hidden_states)
|
227 |
+
value = self.v_proj(hidden_states)
|
228 |
+
|
229 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
230 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
231 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
232 |
+
|
233 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
234 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
235 |
+
# every time in the torch.fx case
|
236 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
237 |
+
else:
|
238 |
+
embed_positions = self._get_embed_positions(position_ids)
|
239 |
+
|
240 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(
|
241 |
+
1, 1, embed_positions.shape[-1]
|
242 |
+
)
|
243 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
244 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
245 |
+
|
246 |
+
if self.rotary_dim is not None:
|
247 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
248 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
249 |
+
|
250 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
251 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
252 |
+
|
253 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
254 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
255 |
+
|
256 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
257 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
258 |
+
else:
|
259 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
260 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
261 |
+
|
262 |
+
key = key.permute(0, 2, 1, 3)
|
263 |
+
query = query.permute(0, 2, 1, 3)
|
264 |
+
|
265 |
+
if layer_past is not None:
|
266 |
+
past_key = layer_past[0]
|
267 |
+
past_value = layer_past[1]
|
268 |
+
key = torch.cat((past_key, key), dim=-2)
|
269 |
+
value = torch.cat((past_value, value), dim=-2)
|
270 |
+
|
271 |
+
if use_cache is True:
|
272 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
273 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
274 |
+
present = (key.to(hidden_states.dtype), value)
|
275 |
+
else:
|
276 |
+
present = None
|
277 |
+
|
278 |
+
# compute self-attention: V x Softmax(QK^T)
|
279 |
+
attn_output, attn_weights = self._attn(
|
280 |
+
query, key, value, attention_mask, head_mask
|
281 |
+
)
|
282 |
+
|
283 |
+
attn_output = self._merge_heads(
|
284 |
+
attn_output, self.num_attention_heads, self.head_dim
|
285 |
+
)
|
286 |
+
attn_output = self.out_proj(attn_output)
|
287 |
+
attn_output = self.resid_dropout(attn_output)
|
288 |
+
|
289 |
+
outputs = (attn_output, present)
|
290 |
+
if output_attentions:
|
291 |
+
outputs += (attn_weights,)
|
292 |
+
|
293 |
+
return outputs # a, present, (attentions)
|
294 |
+
|
295 |
+
|
296 |
+
class GPTJMLP(nn.Module):
|
297 |
+
def __init__(
|
298 |
+
self, intermediate_size, config
|
299 |
+
): # in MLP: intermediate_size= 4 * embed_dim
|
300 |
+
super().__init__()
|
301 |
+
embed_dim = config.n_embd
|
302 |
+
|
303 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
304 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
305 |
+
|
306 |
+
self.act = ACT2FN[config.activation_function]
|
307 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
308 |
+
|
309 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
310 |
+
hidden_states = self.fc_in(hidden_states)
|
311 |
+
hidden_states = self.act(hidden_states)
|
312 |
+
hidden_states = self.fc_out(hidden_states)
|
313 |
+
hidden_states = self.dropout(hidden_states)
|
314 |
+
return hidden_states
|
315 |
+
|
316 |
+
|
317 |
+
class GPTJBlock(nn.Module):
|
318 |
+
def __init__(self, config):
|
319 |
+
super().__init__()
|
320 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
321 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
322 |
+
self.attn = GPTJAttention(config)
|
323 |
+
self.mlp = GPTJMLP(inner_dim, config)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states: Optional[torch.FloatTensor],
|
328 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
329 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
330 |
+
position_ids: Optional[torch.LongTensor] = None,
|
331 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
332 |
+
use_cache: Optional[bool] = False,
|
333 |
+
output_attentions: Optional[bool] = False,
|
334 |
+
) -> Union[
|
335 |
+
Tuple[torch.Tensor],
|
336 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]],
|
337 |
+
]:
|
338 |
+
residual = hidden_states
|
339 |
+
hidden_states = self.ln_1(hidden_states)
|
340 |
+
attn_outputs = self.attn(
|
341 |
+
hidden_states=hidden_states,
|
342 |
+
layer_past=layer_past,
|
343 |
+
attention_mask=attention_mask,
|
344 |
+
position_ids=position_ids,
|
345 |
+
head_mask=head_mask,
|
346 |
+
use_cache=use_cache,
|
347 |
+
output_attentions=output_attentions,
|
348 |
+
)
|
349 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
350 |
+
outputs = attn_outputs[1:]
|
351 |
+
|
352 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
353 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
354 |
+
|
355 |
+
if use_cache:
|
356 |
+
outputs = (hidden_states,) + outputs
|
357 |
+
else:
|
358 |
+
outputs = (hidden_states,) + outputs[1:]
|
359 |
+
|
360 |
+
return outputs # hidden_states, present, (attentions)
|
361 |
+
|
362 |
+
|
363 |
+
class GPTJPreTrainedModel(PreTrainedModel):
|
364 |
+
"""
|
365 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
366 |
+
models.
|
367 |
+
"""
|
368 |
+
|
369 |
+
config_class = GPTJConfig
|
370 |
+
base_model_prefix = "transformer"
|
371 |
+
is_parallelizable = True
|
372 |
+
supports_gradient_checkpointing = True
|
373 |
+
_no_split_modules = ["GPTJBlock"]
|
374 |
+
_skip_keys_device_placement = "past_key_values"
|
375 |
+
|
376 |
+
def __init__(self, *inputs, **kwargs):
|
377 |
+
super().__init__(*inputs, **kwargs)
|
378 |
+
|
379 |
+
def _init_weights(self, module):
|
380 |
+
"""Initialize the weights."""
|
381 |
+
if isinstance(module, (nn.Linear,)):
|
382 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
383 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
384 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
385 |
+
if module.bias is not None:
|
386 |
+
module.bias.data.zero_()
|
387 |
+
elif isinstance(module, nn.Embedding):
|
388 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
389 |
+
if module.padding_idx is not None:
|
390 |
+
module.weight.data[module.padding_idx].zero_()
|
391 |
+
elif isinstance(module, nn.LayerNorm):
|
392 |
+
module.bias.data.zero_()
|
393 |
+
module.weight.data.fill_(1.0)
|
394 |
+
|
395 |
+
|
396 |
+
GPTJ_START_DOCSTRING = r"""
|
397 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
398 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
399 |
+
behavior.
|
400 |
+
|
401 |
+
Parameters:
|
402 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
403 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
404 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
405 |
+
"""
|
406 |
+
|
407 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
408 |
+
Args:
|
409 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
410 |
+
Indices of input sequence tokens in the vocabulary.
|
411 |
+
|
412 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
413 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
414 |
+
|
415 |
+
[What are input IDs?](../glossary#input-ids)
|
416 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
417 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
418 |
+
|
419 |
+
- 1 for tokens that are **not masked**,
|
420 |
+
- 0 for tokens that are **masked**.
|
421 |
+
|
422 |
+
[What are attention masks?](../glossary#attention-mask)
|
423 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
424 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
425 |
+
1]`:
|
426 |
+
|
427 |
+
- 0 corresponds to a *sentence A* token,
|
428 |
+
- 1 corresponds to a *sentence B* token.
|
429 |
+
|
430 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
431 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
432 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
433 |
+
config.n_positions - 1]`.
|
434 |
+
|
435 |
+
[What are position IDs?](../glossary#position-ids)
|
436 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
437 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
438 |
+
|
439 |
+
- 1 indicates the head is **not masked**,
|
440 |
+
- 0 indicates the head is **masked**.
|
441 |
+
|
442 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
443 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
444 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
445 |
+
model's internal embedding lookup matrix.
|
446 |
+
output_attentions (`bool`, *optional*):
|
447 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
448 |
+
tensors for more detail.
|
449 |
+
output_hidden_states (`bool`, *optional*):
|
450 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
451 |
+
more detail.
|
452 |
+
return_dict (`bool`, *optional*):
|
453 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
454 |
+
"""
|
455 |
+
|
456 |
+
PARALLELIZE_DOCSTRING = r"""
|
457 |
+
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
|
458 |
+
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
|
459 |
+
across all devices.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
463 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
464 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
465 |
+
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
|
466 |
+
following number of attention modules:
|
467 |
+
|
468 |
+
- gpt-j-6B: 28
|
469 |
+
|
470 |
+
Example:
|
471 |
+
|
472 |
+
```python
|
473 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
|
474 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
475 |
+
device_map = {
|
476 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
477 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
478 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
479 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
480 |
+
}
|
481 |
+
model.parallelize(device_map)
|
482 |
+
```
|
483 |
+
"""
|
484 |
+
|
485 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
486 |
+
Moves the model to CPU from a model parallel state.
|
487 |
+
|
488 |
+
Example:
|
489 |
+
|
490 |
+
```python
|
491 |
+
# On a 4 GPU machine with gpt-j-6B:
|
492 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
493 |
+
device_map = {
|
494 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
495 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
496 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
497 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
498 |
+
}
|
499 |
+
model.parallelize(device_map) # Splits the model across several devices
|
500 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
501 |
+
```
|
502 |
+
"""
|
503 |
+
|
504 |
+
|
505 |
+
@add_start_docstrings(
|
506 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
507 |
+
GPTJ_START_DOCSTRING,
|
508 |
+
)
|
509 |
+
class GPTJModel(GPTJPreTrainedModel):
|
510 |
+
def __init__(self, config):
|
511 |
+
super().__init__(config)
|
512 |
+
|
513 |
+
self.embed_dim = config.n_embd
|
514 |
+
self.vocab_size = config.vocab_size
|
515 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
516 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
517 |
+
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
|
518 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
519 |
+
|
520 |
+
# Model parallel
|
521 |
+
self.model_parallel = False
|
522 |
+
self.device_map = None
|
523 |
+
self.gradient_checkpointing = False
|
524 |
+
|
525 |
+
# Initialize weights and apply final processing
|
526 |
+
self.post_init()
|
527 |
+
|
528 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
529 |
+
def parallelize(self, device_map=None):
|
530 |
+
warnings.warn(
|
531 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
532 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
533 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
534 |
+
" ...}",
|
535 |
+
FutureWarning,
|
536 |
+
)
|
537 |
+
# Check validity of device_map
|
538 |
+
self.device_map = (
|
539 |
+
get_device_map(len(self.h), range(torch.cuda.device_count()))
|
540 |
+
if device_map is None
|
541 |
+
else device_map
|
542 |
+
)
|
543 |
+
assert_device_map(self.device_map, len(self.h))
|
544 |
+
self.model_parallel = True
|
545 |
+
self.first_device = (
|
546 |
+
"cpu"
|
547 |
+
if "cpu" in self.device_map.keys()
|
548 |
+
else "cuda:" + str(min(self.device_map.keys()))
|
549 |
+
)
|
550 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
551 |
+
self.wte = self.wte.to(self.first_device)
|
552 |
+
# Load onto devices
|
553 |
+
for k, v in self.device_map.items():
|
554 |
+
for block in v:
|
555 |
+
cuda_device = "cuda:" + str(k)
|
556 |
+
self.h[block] = self.h[block].to(cuda_device)
|
557 |
+
# ln_f to last
|
558 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
559 |
+
|
560 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
561 |
+
def deparallelize(self):
|
562 |
+
warnings.warn(
|
563 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
564 |
+
FutureWarning,
|
565 |
+
)
|
566 |
+
self.model_parallel = False
|
567 |
+
self.device_map = None
|
568 |
+
self.first_device = "cpu"
|
569 |
+
self.last_device = "cpu"
|
570 |
+
self.wte = self.wte.to("cpu")
|
571 |
+
for index in range(len(self.h)):
|
572 |
+
self.h[index] = self.h[index].to("cpu")
|
573 |
+
self.ln_f = self.ln_f.to("cpu")
|
574 |
+
torch.cuda.empty_cache()
|
575 |
+
|
576 |
+
def get_input_embeddings(self):
|
577 |
+
return self.wte
|
578 |
+
|
579 |
+
def set_input_embeddings(self, new_embeddings):
|
580 |
+
self.wte = new_embeddings
|
581 |
+
|
582 |
+
@add_start_docstrings_to_model_forward(
|
583 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
584 |
+
)
|
585 |
+
@add_code_sample_docstrings(
|
586 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
587 |
+
output_type=BaseModelOutputWithPast,
|
588 |
+
config_class=_CONFIG_FOR_DOC,
|
589 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
590 |
+
)
|
591 |
+
def forward(
|
592 |
+
self,
|
593 |
+
input_ids: Optional[torch.LongTensor] = None,
|
594 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
595 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
596 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
597 |
+
position_ids: Optional[torch.LongTensor] = None,
|
598 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
599 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
600 |
+
use_cache: Optional[bool] = None,
|
601 |
+
output_attentions: Optional[bool] = None,
|
602 |
+
output_hidden_states: Optional[bool] = None,
|
603 |
+
return_dict: Optional[bool] = None,
|
604 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
605 |
+
output_attentions = (
|
606 |
+
output_attentions
|
607 |
+
if output_attentions is not None
|
608 |
+
else self.config.output_attentions
|
609 |
+
)
|
610 |
+
output_hidden_states = (
|
611 |
+
output_hidden_states
|
612 |
+
if output_hidden_states is not None
|
613 |
+
else self.config.output_hidden_states
|
614 |
+
)
|
615 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
616 |
+
return_dict = (
|
617 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
618 |
+
)
|
619 |
+
|
620 |
+
if input_ids is not None and inputs_embeds is not None:
|
621 |
+
raise ValueError(
|
622 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
623 |
+
)
|
624 |
+
elif input_ids is not None:
|
625 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
626 |
+
input_shape = input_ids.size()
|
627 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
628 |
+
batch_size = input_ids.shape[0]
|
629 |
+
elif inputs_embeds is not None:
|
630 |
+
input_shape = inputs_embeds.size()[:-1]
|
631 |
+
batch_size = inputs_embeds.shape[0]
|
632 |
+
else:
|
633 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
634 |
+
|
635 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
636 |
+
|
637 |
+
if token_type_ids is not None:
|
638 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
639 |
+
|
640 |
+
if past_key_values is None:
|
641 |
+
past_length = 0
|
642 |
+
past_key_values = tuple([None] * len(self.h))
|
643 |
+
else:
|
644 |
+
past_length = past_key_values[0][0].size(-2)
|
645 |
+
|
646 |
+
if position_ids is None:
|
647 |
+
position_ids = torch.arange(
|
648 |
+
past_length,
|
649 |
+
input_shape[-1] + past_length,
|
650 |
+
dtype=torch.long,
|
651 |
+
device=device,
|
652 |
+
)
|
653 |
+
position_ids = position_ids.unsqueeze(0)
|
654 |
+
|
655 |
+
# Attention mask.
|
656 |
+
if attention_mask is not None:
|
657 |
+
if batch_size <= 0:
|
658 |
+
raise ValueError("batch_size has to be defined and > 0")
|
659 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
660 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
661 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
662 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
663 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
664 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
665 |
+
attention_mask = attention_mask[:, None, None, :]
|
666 |
+
|
667 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
668 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
669 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
670 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
671 |
+
# effectively the same as removing these entirely.
|
672 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
673 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
674 |
+
|
675 |
+
# Prepare head mask if needed
|
676 |
+
# 1.0 in head_mask indicate we keep the head
|
677 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
678 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
679 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
680 |
+
|
681 |
+
if inputs_embeds is None:
|
682 |
+
inputs_embeds = self.wte(input_ids)
|
683 |
+
|
684 |
+
hidden_states = inputs_embeds
|
685 |
+
|
686 |
+
if token_type_ids is not None:
|
687 |
+
token_type_embeds = self.wte(token_type_ids)
|
688 |
+
hidden_states = hidden_states + token_type_embeds
|
689 |
+
|
690 |
+
hidden_states = self.drop(hidden_states)
|
691 |
+
|
692 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
693 |
+
|
694 |
+
if self.gradient_checkpointing and self.training:
|
695 |
+
if use_cache:
|
696 |
+
logger.warning_once(
|
697 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
698 |
+
)
|
699 |
+
use_cache = False
|
700 |
+
|
701 |
+
presents = () if use_cache else None
|
702 |
+
all_self_attentions = () if output_attentions else None
|
703 |
+
all_hidden_states = () if output_hidden_states else None
|
704 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
705 |
+
# Model parallel
|
706 |
+
if self.model_parallel:
|
707 |
+
torch.cuda.set_device(hidden_states.device)
|
708 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
709 |
+
if layer_past is not None:
|
710 |
+
layer_past = tuple(
|
711 |
+
past_state.to(hidden_states.device) for past_state in layer_past
|
712 |
+
)
|
713 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
714 |
+
if attention_mask is not None:
|
715 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
716 |
+
if isinstance(head_mask, torch.Tensor):
|
717 |
+
head_mask = head_mask.to(hidden_states.device)
|
718 |
+
if output_hidden_states:
|
719 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
720 |
+
|
721 |
+
if self.gradient_checkpointing and self.training:
|
722 |
+
outputs = self._gradient_checkpointing_func(
|
723 |
+
block.__call__,
|
724 |
+
hidden_states,
|
725 |
+
None,
|
726 |
+
attention_mask,
|
727 |
+
position_ids,
|
728 |
+
head_mask[i],
|
729 |
+
use_cache,
|
730 |
+
output_attentions,
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
outputs = block(
|
734 |
+
hidden_states=hidden_states,
|
735 |
+
layer_past=layer_past,
|
736 |
+
attention_mask=attention_mask,
|
737 |
+
position_ids=position_ids,
|
738 |
+
head_mask=head_mask[i],
|
739 |
+
use_cache=use_cache,
|
740 |
+
output_attentions=output_attentions,
|
741 |
+
)
|
742 |
+
|
743 |
+
hidden_states = outputs[0]
|
744 |
+
if use_cache is True:
|
745 |
+
presents = presents + (outputs[1],)
|
746 |
+
|
747 |
+
if output_attentions:
|
748 |
+
all_self_attentions = all_self_attentions + (
|
749 |
+
outputs[2 if use_cache else 1],
|
750 |
+
)
|
751 |
+
|
752 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
753 |
+
if self.model_parallel:
|
754 |
+
for k, v in self.device_map.items():
|
755 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
756 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
757 |
+
|
758 |
+
hidden_states = self.ln_f(hidden_states)
|
759 |
+
|
760 |
+
hidden_states = hidden_states.view(output_shape)
|
761 |
+
# Add last hidden state
|
762 |
+
if output_hidden_states:
|
763 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
764 |
+
|
765 |
+
if not return_dict:
|
766 |
+
return tuple(
|
767 |
+
v
|
768 |
+
for v in [
|
769 |
+
hidden_states,
|
770 |
+
presents,
|
771 |
+
all_hidden_states,
|
772 |
+
all_self_attentions,
|
773 |
+
]
|
774 |
+
if v is not None
|
775 |
+
)
|
776 |
+
|
777 |
+
return BaseModelOutputWithPast(
|
778 |
+
last_hidden_state=hidden_states,
|
779 |
+
past_key_values=presents,
|
780 |
+
hidden_states=all_hidden_states,
|
781 |
+
attentions=all_self_attentions,
|
782 |
+
)
|
783 |
+
|
784 |
+
|
785 |
+
@add_start_docstrings(
|
786 |
+
"""
|
787 |
+
The GPT-J Model transformer with a language modeling head on top.
|
788 |
+
""",
|
789 |
+
GPTJ_START_DOCSTRING,
|
790 |
+
)
|
791 |
+
class GPTJForCausalLM(GPTJPreTrainedModel):
|
792 |
+
_tied_weights_keys = ["lm_head.weight"]
|
793 |
+
|
794 |
+
def __init__(self, config):
|
795 |
+
super().__init__(config)
|
796 |
+
self.transformer = GPTJModel(config)
|
797 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
798 |
+
|
799 |
+
# Model parallel
|
800 |
+
self.model_parallel = False
|
801 |
+
self.device_map = None
|
802 |
+
|
803 |
+
# Initialize weights and apply final processing
|
804 |
+
self.post_init()
|
805 |
+
|
806 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
807 |
+
def parallelize(self, device_map=None):
|
808 |
+
warnings.warn(
|
809 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
810 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
811 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
812 |
+
" 0, 'transformer.h.1': 1, ...}",
|
813 |
+
FutureWarning,
|
814 |
+
)
|
815 |
+
self.device_map = (
|
816 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
817 |
+
if device_map is None
|
818 |
+
else device_map
|
819 |
+
)
|
820 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
821 |
+
self.transformer.parallelize(self.device_map)
|
822 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
823 |
+
self.model_parallel = True
|
824 |
+
|
825 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
826 |
+
def deparallelize(self):
|
827 |
+
warnings.warn(
|
828 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
829 |
+
FutureWarning,
|
830 |
+
)
|
831 |
+
self.transformer.deparallelize()
|
832 |
+
self.transformer = self.transformer.to("cpu")
|
833 |
+
self.lm_head = self.lm_head.to("cpu")
|
834 |
+
self.model_parallel = False
|
835 |
+
torch.cuda.empty_cache()
|
836 |
+
|
837 |
+
def get_output_embeddings(self):
|
838 |
+
return self.lm_head
|
839 |
+
|
840 |
+
def set_output_embeddings(self, new_embeddings):
|
841 |
+
self.lm_head = new_embeddings
|
842 |
+
|
843 |
+
def prepare_inputs_for_generation(
|
844 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
845 |
+
):
|
846 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
847 |
+
# Omit tokens covered by past_key_values
|
848 |
+
if past_key_values:
|
849 |
+
past_length = past_key_values[0][0].shape[2]
|
850 |
+
|
851 |
+
# Some generation methods already pass only the last input ID
|
852 |
+
if input_ids.shape[1] > past_length:
|
853 |
+
remove_prefix_length = past_length
|
854 |
+
else:
|
855 |
+
# Default to old behavior: keep only final ID
|
856 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
857 |
+
|
858 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
859 |
+
if token_type_ids is not None:
|
860 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
861 |
+
|
862 |
+
attention_mask = kwargs.get("attention_mask", None)
|
863 |
+
position_ids = kwargs.get("position_ids", None)
|
864 |
+
|
865 |
+
if attention_mask is not None and position_ids is None:
|
866 |
+
# create position_ids on the fly for batch generation
|
867 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
868 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
869 |
+
if past_key_values:
|
870 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
871 |
+
|
872 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
873 |
+
if inputs_embeds is not None and past_key_values is None:
|
874 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
875 |
+
else:
|
876 |
+
model_inputs = {"input_ids": input_ids}
|
877 |
+
|
878 |
+
model_inputs.update(
|
879 |
+
{
|
880 |
+
"past_key_values": past_key_values,
|
881 |
+
"use_cache": kwargs.get("use_cache"),
|
882 |
+
"position_ids": position_ids,
|
883 |
+
"attention_mask": attention_mask,
|
884 |
+
"token_type_ids": token_type_ids,
|
885 |
+
}
|
886 |
+
)
|
887 |
+
|
888 |
+
return model_inputs
|
889 |
+
|
890 |
+
@add_start_docstrings_to_model_forward(
|
891 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
892 |
+
)
|
893 |
+
@add_code_sample_docstrings(
|
894 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
895 |
+
output_type=CausalLMOutputWithPast,
|
896 |
+
config_class=_CONFIG_FOR_DOC,
|
897 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
898 |
+
)
|
899 |
+
def forward(
|
900 |
+
self,
|
901 |
+
input_ids: Optional[torch.LongTensor] = None,
|
902 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
903 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
904 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
905 |
+
position_ids: Optional[torch.LongTensor] = None,
|
906 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
907 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
908 |
+
labels: Optional[torch.LongTensor] = None,
|
909 |
+
use_cache: Optional[bool] = None,
|
910 |
+
output_attentions: Optional[bool] = None,
|
911 |
+
output_hidden_states: Optional[bool] = None,
|
912 |
+
return_dict: Optional[bool] = None,
|
913 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
914 |
+
r"""
|
915 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
916 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
917 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
918 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
919 |
+
"""
|
920 |
+
return_dict = (
|
921 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
922 |
+
)
|
923 |
+
|
924 |
+
transformer_outputs = self.transformer(
|
925 |
+
input_ids,
|
926 |
+
past_key_values=past_key_values,
|
927 |
+
attention_mask=attention_mask,
|
928 |
+
token_type_ids=token_type_ids,
|
929 |
+
position_ids=position_ids,
|
930 |
+
head_mask=head_mask,
|
931 |
+
inputs_embeds=inputs_embeds,
|
932 |
+
use_cache=use_cache,
|
933 |
+
output_attentions=output_attentions,
|
934 |
+
output_hidden_states=output_hidden_states,
|
935 |
+
return_dict=return_dict,
|
936 |
+
)
|
937 |
+
hidden_states = transformer_outputs[0]
|
938 |
+
|
939 |
+
# Set device for model parallelism
|
940 |
+
if self.model_parallel:
|
941 |
+
torch.cuda.set_device(self.transformer.first_device)
|
942 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
943 |
+
|
944 |
+
# make sure sampling in fp16 works correctly and
|
945 |
+
# compute loss in fp32 to match with mesh-tf version
|
946 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
947 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
948 |
+
|
949 |
+
loss = None
|
950 |
+
if labels is not None:
|
951 |
+
# move labels to correct device to enable model parallelism
|
952 |
+
labels = labels.to(lm_logits.device)
|
953 |
+
# Shift so that tokens < n predict n
|
954 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
955 |
+
shift_labels = labels[..., 1:].contiguous()
|
956 |
+
# Flatten the tokens
|
957 |
+
loss_fct = CrossEntropyLoss()
|
958 |
+
loss = loss_fct(
|
959 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
960 |
+
)
|
961 |
+
|
962 |
+
loss = loss.to(hidden_states.dtype)
|
963 |
+
|
964 |
+
if not return_dict:
|
965 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
966 |
+
return ((loss,) + output) if loss is not None else output
|
967 |
+
|
968 |
+
return CausalLMOutputWithPast(
|
969 |
+
loss=loss,
|
970 |
+
logits=lm_logits,
|
971 |
+
past_key_values=transformer_outputs.past_key_values,
|
972 |
+
hidden_states=transformer_outputs.hidden_states,
|
973 |
+
attentions=transformer_outputs.attentions,
|
974 |
+
)
|
975 |
+
|
976 |
+
@staticmethod
|
977 |
+
def _reorder_cache(
|
978 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
979 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
980 |
+
"""
|
981 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
982 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
983 |
+
beam_idx at every generation step.
|
984 |
+
"""
|
985 |
+
return tuple(
|
986 |
+
tuple(
|
987 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
988 |
+
for past_state in layer_past
|
989 |
+
)
|
990 |
+
for layer_past in past_key_values
|
991 |
+
)
|
992 |
+
|
993 |
+
|
994 |
+
@add_start_docstrings(
|
995 |
+
"""
|
996 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
997 |
+
|
998 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
999 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
1000 |
+
|
1001 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1002 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1003 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1004 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1005 |
+
each row of the batch).
|
1006 |
+
""",
|
1007 |
+
GPTJ_START_DOCSTRING,
|
1008 |
+
)
|
1009 |
+
class GPTJForSequenceClassification(GPTJPreTrainedModel):
|
1010 |
+
def __init__(self, config):
|
1011 |
+
super().__init__(config)
|
1012 |
+
self.num_labels = config.num_labels
|
1013 |
+
self.transformer = GPTJModel(config)
|
1014 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1015 |
+
|
1016 |
+
# Model parallel
|
1017 |
+
self.model_parallel = False
|
1018 |
+
self.device_map = None
|
1019 |
+
|
1020 |
+
# Initialize weights and apply final processing
|
1021 |
+
self.post_init()
|
1022 |
+
|
1023 |
+
@add_start_docstrings_to_model_forward(
|
1024 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1025 |
+
)
|
1026 |
+
@add_code_sample_docstrings(
|
1027 |
+
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
|
1028 |
+
output_type=SequenceClassifierOutputWithPast,
|
1029 |
+
config_class=_CONFIG_FOR_DOC,
|
1030 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1031 |
+
)
|
1032 |
+
def forward(
|
1033 |
+
self,
|
1034 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1035 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1036 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1037 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1038 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1039 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1040 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1041 |
+
labels: Optional[torch.LongTensor] = None,
|
1042 |
+
use_cache: Optional[bool] = None,
|
1043 |
+
output_attentions: Optional[bool] = None,
|
1044 |
+
output_hidden_states: Optional[bool] = None,
|
1045 |
+
return_dict: Optional[bool] = None,
|
1046 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1047 |
+
r"""
|
1048 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1049 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1050 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1051 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1052 |
+
"""
|
1053 |
+
return_dict = (
|
1054 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
transformer_outputs = self.transformer(
|
1058 |
+
input_ids,
|
1059 |
+
past_key_values=past_key_values,
|
1060 |
+
attention_mask=attention_mask,
|
1061 |
+
token_type_ids=token_type_ids,
|
1062 |
+
position_ids=position_ids,
|
1063 |
+
head_mask=head_mask,
|
1064 |
+
inputs_embeds=inputs_embeds,
|
1065 |
+
use_cache=use_cache,
|
1066 |
+
output_attentions=output_attentions,
|
1067 |
+
output_hidden_states=output_hidden_states,
|
1068 |
+
return_dict=return_dict,
|
1069 |
+
)
|
1070 |
+
hidden_states = transformer_outputs[0]
|
1071 |
+
logits = self.score(hidden_states)
|
1072 |
+
|
1073 |
+
if input_ids is not None:
|
1074 |
+
batch_size = input_ids.shape[0]
|
1075 |
+
else:
|
1076 |
+
batch_size = inputs_embeds.shape[0]
|
1077 |
+
|
1078 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1079 |
+
raise ValueError(
|
1080 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1081 |
+
)
|
1082 |
+
if self.config.pad_token_id is None:
|
1083 |
+
sequence_lengths = -1
|
1084 |
+
else:
|
1085 |
+
if input_ids is not None:
|
1086 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1087 |
+
sequence_lengths = (
|
1088 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1089 |
+
)
|
1090 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1091 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1092 |
+
else:
|
1093 |
+
sequence_lengths = -1
|
1094 |
+
logger.warning(
|
1095 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1096 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
pooled_logits = logits[
|
1100 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1101 |
+
]
|
1102 |
+
|
1103 |
+
loss = None
|
1104 |
+
if labels is not None:
|
1105 |
+
labels = labels.to(pooled_logits.device)
|
1106 |
+
if self.config.problem_type is None:
|
1107 |
+
if self.num_labels == 1:
|
1108 |
+
self.config.problem_type = "regression"
|
1109 |
+
elif self.num_labels > 1 and (
|
1110 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1111 |
+
):
|
1112 |
+
self.config.problem_type = "single_label_classification"
|
1113 |
+
else:
|
1114 |
+
self.config.problem_type = "multi_label_classification"
|
1115 |
+
|
1116 |
+
if self.config.problem_type == "regression":
|
1117 |
+
loss_fct = MSELoss()
|
1118 |
+
if self.num_labels == 1:
|
1119 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1120 |
+
else:
|
1121 |
+
loss = loss_fct(pooled_logits, labels)
|
1122 |
+
elif self.config.problem_type == "single_label_classification":
|
1123 |
+
loss_fct = CrossEntropyLoss()
|
1124 |
+
loss = loss_fct(
|
1125 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1126 |
+
)
|
1127 |
+
elif self.config.problem_type == "multi_label_classification":
|
1128 |
+
loss_fct = BCEWithLogitsLoss()
|
1129 |
+
loss = loss_fct(pooled_logits, labels)
|
1130 |
+
if not return_dict:
|
1131 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1132 |
+
return ((loss,) + output) if loss is not None else output
|
1133 |
+
|
1134 |
+
return SequenceClassifierOutputWithPast(
|
1135 |
+
loss=loss,
|
1136 |
+
logits=pooled_logits,
|
1137 |
+
past_key_values=transformer_outputs.past_key_values,
|
1138 |
+
hidden_states=transformer_outputs.hidden_states,
|
1139 |
+
attentions=transformer_outputs.attentions,
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
|
1143 |
+
@add_start_docstrings(
|
1144 |
+
"""
|
1145 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1146 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1147 |
+
""",
|
1148 |
+
GPTJ_START_DOCSTRING,
|
1149 |
+
)
|
1150 |
+
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
|
1151 |
+
def __init__(self, config):
|
1152 |
+
super().__init__(config)
|
1153 |
+
self.num_labels = config.num_labels
|
1154 |
+
self.transformer = GPTJModel(config)
|
1155 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1156 |
+
|
1157 |
+
# Model parallel
|
1158 |
+
self.model_parallel = False
|
1159 |
+
self.device_map = None
|
1160 |
+
|
1161 |
+
# Initialize weights and apply final processing
|
1162 |
+
self.post_init()
|
1163 |
+
|
1164 |
+
@add_start_docstrings_to_model_forward(
|
1165 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1166 |
+
)
|
1167 |
+
@add_code_sample_docstrings(
|
1168 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1169 |
+
output_type=QuestionAnsweringModelOutput,
|
1170 |
+
config_class=_CONFIG_FOR_DOC,
|
1171 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1172 |
+
)
|
1173 |
+
def forward(
|
1174 |
+
self,
|
1175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1177 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1178 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1179 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1180 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1181 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1182 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1183 |
+
output_attentions: Optional[bool] = None,
|
1184 |
+
output_hidden_states: Optional[bool] = None,
|
1185 |
+
return_dict: Optional[bool] = None,
|
1186 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1187 |
+
r"""
|
1188 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1189 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1190 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1191 |
+
are not taken into account for computing the loss.
|
1192 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1193 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1194 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1195 |
+
are not taken into account for computing the loss.
|
1196 |
+
"""
|
1197 |
+
return_dict = (
|
1198 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
outputs = self.transformer(
|
1202 |
+
input_ids,
|
1203 |
+
attention_mask=attention_mask,
|
1204 |
+
token_type_ids=token_type_ids,
|
1205 |
+
position_ids=position_ids,
|
1206 |
+
head_mask=head_mask,
|
1207 |
+
inputs_embeds=inputs_embeds,
|
1208 |
+
output_attentions=output_attentions,
|
1209 |
+
output_hidden_states=output_hidden_states,
|
1210 |
+
return_dict=return_dict,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
sequence_output = outputs[0]
|
1214 |
+
|
1215 |
+
logits = self.qa_outputs(sequence_output)
|
1216 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1217 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1218 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1219 |
+
|
1220 |
+
total_loss = None
|
1221 |
+
if start_positions is not None and end_positions is not None:
|
1222 |
+
# If we are on multi-GPU, split add a dimension
|
1223 |
+
if len(start_positions.size()) > 1:
|
1224 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1225 |
+
if len(end_positions.size()) > 1:
|
1226 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1227 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1228 |
+
ignored_index = start_logits.size(1)
|
1229 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1230 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1231 |
+
|
1232 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1233 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1234 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1235 |
+
total_loss = (start_loss + end_loss) / 2
|
1236 |
+
|
1237 |
+
if not return_dict:
|
1238 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1239 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1240 |
+
|
1241 |
+
return QuestionAnsweringModelOutput(
|
1242 |
+
loss=total_loss,
|
1243 |
+
start_logits=start_logits,
|
1244 |
+
end_logits=end_logits,
|
1245 |
+
hidden_states=outputs.hidden_states,
|
1246 |
+
attentions=outputs.attentions,
|
1247 |
+
)
|