File size: 1,733 Bytes
580050a
c943017
580050a
0f2d1dc
 
 
580050a
 
ddfb195
 
 
580050a
 
ddfb195
 
 
 
 
0f2d1dc
ddfb195
 
 
 
 
 
 
27590db
580050a
 
 
 
 
 
 
0f2d1dc
ddfb195
27590db
 
580050a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678d01a
27590db
580050a
 
 
 
 
 
 
 
ddfb195
 
27590db
580050a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: d071696/vit-finetune-scrap
tags:
- image-classification
- image-feature-extraction
- image-to-text
- generated_from_trainer
datasets:
- arrow
metrics:
- accuracy
model-index:
- name: vit-finetune-scrap
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: d071696/scraps1
      type: arrow
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9260450160771704
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-finetune-scrap

This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the d071696/scraps1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3599
- Accuracy: 0.9260

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0021        | 3.22  | 1000 | 0.3599          | 0.9260   |


### Framework versions

- Transformers 4.39.0
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2