d071696 commited on
Commit
c4d10a3
1 Parent(s): ddfb195

🍻 cheers

Browse files
README.md CHANGED
@@ -1,6 +1,9 @@
1
  ---
2
  base_model: d071696/vit-finetune-scrap
3
  tags:
 
 
 
4
  - generated_from_trainer
5
  datasets:
6
  - arrow
@@ -13,7 +16,7 @@ model-index:
13
  name: Image Classification
14
  type: image-classification
15
  dataset:
16
- name: arrow
17
  type: arrow
18
  config: default
19
  split: train
@@ -29,9 +32,9 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  # vit-finetune-scrap
31
 
32
- This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the arrow dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.1805
35
  - Accuracy: 0.9550
36
 
37
  ## Model description
 
1
  ---
2
  base_model: d071696/vit-finetune-scrap
3
  tags:
4
+ - image-classification
5
+ - image-feature-extraction
6
+ - image-to-text
7
  - generated_from_trainer
8
  datasets:
9
  - arrow
 
16
  name: Image Classification
17
  type: image-classification
18
  dataset:
19
+ name: d071696/scraps1
20
  type: arrow
21
  config: default
22
  split: train
 
32
 
33
  # vit-finetune-scrap
34
 
35
+ This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the d071696/scraps1 dataset.
36
  It achieves the following results on the evaluation set:
37
+ - Loss: 0.1588
38
  - Accuracy: 0.9550
39
 
40
  ## Model description
all_results.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
  "epoch": 4.0,
3
- "eval_accuracy": 0.9583333333333334,
4
- "eval_loss": 1.039479374885559,
5
- "eval_runtime": 1.0974,
6
- "eval_samples_per_second": 21.87,
7
- "eval_steps_per_second": 2.734,
8
- "total_flos": 7439897757745152.0,
9
- "train_loss": 1.4209961891174316,
10
- "train_runtime": 7.3487,
11
- "train_samples_per_second": 13.064,
12
- "train_steps_per_second": 1.089
13
  }
 
1
  {
2
  "epoch": 4.0,
3
+ "eval_accuracy": 0.954983922829582,
4
+ "eval_loss": 0.15877817571163177,
5
+ "eval_runtime": 9.6813,
6
+ "eval_samples_per_second": 64.248,
7
+ "eval_steps_per_second": 8.057,
8
+ "total_flos": 7.703325099767808e+17,
9
+ "train_loss": 0.15572628828410345,
10
+ "train_runtime": 552.98,
11
+ "train_samples_per_second": 17.975,
12
+ "train_steps_per_second": 1.128
13
  }
eval_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 4.0,
3
- "eval_accuracy": 0.9583333333333334,
4
- "eval_loss": 1.039479374885559,
5
- "eval_runtime": 1.0974,
6
- "eval_samples_per_second": 21.87,
7
- "eval_steps_per_second": 2.734
8
  }
 
1
  {
2
  "epoch": 4.0,
3
+ "eval_accuracy": 0.954983922829582,
4
+ "eval_loss": 0.15877817571163177,
5
+ "eval_runtime": 9.6813,
6
+ "eval_samples_per_second": 64.248,
7
+ "eval_steps_per_second": 8.057
8
  }
runs/Mar29_18-51-27_X5C922065N/events.out.tfevents.1711735614.X5C922065N.77198.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32614bdfe35502a4fcafcda07b5ed6f2d23ec281eb707971215e1acd15091a41
3
+ size 734
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 4.0,
3
- "total_flos": 7439897757745152.0,
4
- "train_loss": 1.4209961891174316,
5
- "train_runtime": 7.3487,
6
- "train_samples_per_second": 13.064,
7
- "train_steps_per_second": 1.089
8
  }
 
1
  {
2
  "epoch": 4.0,
3
+ "total_flos": 7.703325099767808e+17,
4
+ "train_loss": 0.15572628828410345,
5
+ "train_runtime": 552.98,
6
+ "train_samples_per_second": 17.975,
7
+ "train_steps_per_second": 1.128
8
  }
trainer_state.json CHANGED
@@ -1,29 +1,517 @@
1
  {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
  "epoch": 4.0,
5
  "eval_steps": 100,
6
- "global_step": 8,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  {
12
  "epoch": 4.0,
13
- "step": 8,
14
- "total_flos": 7439897757745152.0,
15
- "train_loss": 1.4209961891174316,
16
- "train_runtime": 7.3487,
17
- "train_samples_per_second": 13.064,
18
- "train_steps_per_second": 1.089
19
  }
20
  ],
21
  "logging_steps": 10,
22
- "max_steps": 8,
23
  "num_input_tokens_seen": 0,
24
  "num_train_epochs": 4,
25
  "save_steps": 100,
26
- "total_flos": 7439897757745152.0,
27
  "train_batch_size": 16,
28
  "trial_name": null,
29
  "trial_params": null
 
1
  {
2
+ "best_metric": 0.15877817571163177,
3
+ "best_model_checkpoint": "./vit-finetune-scrap/checkpoint-300",
4
  "epoch": 4.0,
5
  "eval_steps": 100,
6
+ "global_step": 624,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
+ {
12
+ "epoch": 0.06,
13
+ "grad_norm": 2.869983673095703,
14
+ "learning_rate": 0.00019679487179487178,
15
+ "loss": 1.9747,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13,
20
+ "grad_norm": 2.9758315086364746,
21
+ "learning_rate": 0.0001935897435897436,
22
+ "loss": 1.209,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.19,
27
+ "grad_norm": 3.3387157917022705,
28
+ "learning_rate": 0.00019038461538461538,
29
+ "loss": 0.7205,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.26,
34
+ "grad_norm": 2.921093463897705,
35
+ "learning_rate": 0.0001871794871794872,
36
+ "loss": 0.4159,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.32,
41
+ "grad_norm": 2.4197134971618652,
42
+ "learning_rate": 0.00018397435897435897,
43
+ "loss": 0.3879,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.38,
48
+ "grad_norm": 2.498006582260132,
49
+ "learning_rate": 0.00018076923076923077,
50
+ "loss": 0.2695,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.45,
55
+ "grad_norm": 0.9913655519485474,
56
+ "learning_rate": 0.00017756410256410257,
57
+ "loss": 0.33,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.51,
62
+ "grad_norm": 5.167428493499756,
63
+ "learning_rate": 0.00017435897435897436,
64
+ "loss": 0.2374,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.58,
69
+ "grad_norm": 5.158258438110352,
70
+ "learning_rate": 0.00017115384615384616,
71
+ "loss": 0.2531,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.64,
76
+ "grad_norm": 2.1700403690338135,
77
+ "learning_rate": 0.00016794871794871796,
78
+ "loss": 0.1672,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.64,
83
+ "eval_accuracy": 0.9485530546623794,
84
+ "eval_loss": 0.22496841847896576,
85
+ "eval_runtime": 11.2945,
86
+ "eval_samples_per_second": 55.071,
87
+ "eval_steps_per_second": 6.906,
88
+ "step": 100
89
+ },
90
+ {
91
+ "epoch": 0.71,
92
+ "grad_norm": 4.994268894195557,
93
+ "learning_rate": 0.00016474358974358976,
94
+ "loss": 0.1319,
95
+ "step": 110
96
+ },
97
+ {
98
+ "epoch": 0.77,
99
+ "grad_norm": 2.2666022777557373,
100
+ "learning_rate": 0.00016153846153846155,
101
+ "loss": 0.283,
102
+ "step": 120
103
+ },
104
+ {
105
+ "epoch": 0.83,
106
+ "grad_norm": 3.1912319660186768,
107
+ "learning_rate": 0.00015833333333333332,
108
+ "loss": 0.1666,
109
+ "step": 130
110
+ },
111
+ {
112
+ "epoch": 0.9,
113
+ "grad_norm": 3.1358578205108643,
114
+ "learning_rate": 0.00015512820512820515,
115
+ "loss": 0.2819,
116
+ "step": 140
117
+ },
118
+ {
119
+ "epoch": 0.96,
120
+ "grad_norm": 2.050241470336914,
121
+ "learning_rate": 0.00015192307692307692,
122
+ "loss": 0.2874,
123
+ "step": 150
124
+ },
125
+ {
126
+ "epoch": 1.03,
127
+ "grad_norm": 5.193918704986572,
128
+ "learning_rate": 0.00014871794871794872,
129
+ "loss": 0.2103,
130
+ "step": 160
131
+ },
132
+ {
133
+ "epoch": 1.09,
134
+ "grad_norm": 0.405056893825531,
135
+ "learning_rate": 0.00014551282051282051,
136
+ "loss": 0.1818,
137
+ "step": 170
138
+ },
139
+ {
140
+ "epoch": 1.15,
141
+ "grad_norm": 11.979884147644043,
142
+ "learning_rate": 0.0001423076923076923,
143
+ "loss": 0.1626,
144
+ "step": 180
145
+ },
146
+ {
147
+ "epoch": 1.22,
148
+ "grad_norm": 0.3927968442440033,
149
+ "learning_rate": 0.0001391025641025641,
150
+ "loss": 0.0824,
151
+ "step": 190
152
+ },
153
+ {
154
+ "epoch": 1.28,
155
+ "grad_norm": 0.11850783228874207,
156
+ "learning_rate": 0.0001358974358974359,
157
+ "loss": 0.1277,
158
+ "step": 200
159
+ },
160
+ {
161
+ "epoch": 1.28,
162
+ "eval_accuracy": 0.9372990353697749,
163
+ "eval_loss": 0.24667073786258698,
164
+ "eval_runtime": 76.2101,
165
+ "eval_samples_per_second": 8.162,
166
+ "eval_steps_per_second": 1.023,
167
+ "step": 200
168
+ },
169
+ {
170
+ "epoch": 1.35,
171
+ "grad_norm": 0.8870755434036255,
172
+ "learning_rate": 0.0001326923076923077,
173
+ "loss": 0.1308,
174
+ "step": 210
175
+ },
176
+ {
177
+ "epoch": 1.41,
178
+ "grad_norm": 0.12857934832572937,
179
+ "learning_rate": 0.0001294871794871795,
180
+ "loss": 0.1047,
181
+ "step": 220
182
+ },
183
+ {
184
+ "epoch": 1.47,
185
+ "grad_norm": 0.11967829614877701,
186
+ "learning_rate": 0.00012628205128205127,
187
+ "loss": 0.0523,
188
+ "step": 230
189
+ },
190
+ {
191
+ "epoch": 1.54,
192
+ "grad_norm": 1.8435248136520386,
193
+ "learning_rate": 0.0001230769230769231,
194
+ "loss": 0.089,
195
+ "step": 240
196
+ },
197
+ {
198
+ "epoch": 1.6,
199
+ "grad_norm": 0.07049544900655746,
200
+ "learning_rate": 0.00011987179487179487,
201
+ "loss": 0.0651,
202
+ "step": 250
203
+ },
204
+ {
205
+ "epoch": 1.67,
206
+ "grad_norm": 7.795147895812988,
207
+ "learning_rate": 0.00011666666666666668,
208
+ "loss": 0.0827,
209
+ "step": 260
210
+ },
211
+ {
212
+ "epoch": 1.73,
213
+ "grad_norm": 0.06726662069559097,
214
+ "learning_rate": 0.00011346153846153846,
215
+ "loss": 0.1727,
216
+ "step": 270
217
+ },
218
+ {
219
+ "epoch": 1.79,
220
+ "grad_norm": 4.7732672691345215,
221
+ "learning_rate": 0.00011025641025641027,
222
+ "loss": 0.0867,
223
+ "step": 280
224
+ },
225
+ {
226
+ "epoch": 1.86,
227
+ "grad_norm": 0.08257576823234558,
228
+ "learning_rate": 0.00010705128205128206,
229
+ "loss": 0.0349,
230
+ "step": 290
231
+ },
232
+ {
233
+ "epoch": 1.92,
234
+ "grad_norm": 0.15855157375335693,
235
+ "learning_rate": 0.00010384615384615386,
236
+ "loss": 0.0253,
237
+ "step": 300
238
+ },
239
+ {
240
+ "epoch": 1.92,
241
+ "eval_accuracy": 0.954983922829582,
242
+ "eval_loss": 0.15877817571163177,
243
+ "eval_runtime": 9.849,
244
+ "eval_samples_per_second": 63.153,
245
+ "eval_steps_per_second": 7.92,
246
+ "step": 300
247
+ },
248
+ {
249
+ "epoch": 1.99,
250
+ "grad_norm": 11.21109676361084,
251
+ "learning_rate": 0.00010064102564102564,
252
+ "loss": 0.0988,
253
+ "step": 310
254
+ },
255
+ {
256
+ "epoch": 2.05,
257
+ "grad_norm": 0.06449388712644577,
258
+ "learning_rate": 9.743589743589744e-05,
259
+ "loss": 0.0666,
260
+ "step": 320
261
+ },
262
+ {
263
+ "epoch": 2.12,
264
+ "grad_norm": 0.988405168056488,
265
+ "learning_rate": 9.423076923076924e-05,
266
+ "loss": 0.0295,
267
+ "step": 330
268
+ },
269
+ {
270
+ "epoch": 2.18,
271
+ "grad_norm": 0.06675518304109573,
272
+ "learning_rate": 9.102564102564103e-05,
273
+ "loss": 0.018,
274
+ "step": 340
275
+ },
276
+ {
277
+ "epoch": 2.24,
278
+ "grad_norm": 0.08486536890268326,
279
+ "learning_rate": 8.782051282051283e-05,
280
+ "loss": 0.0714,
281
+ "step": 350
282
+ },
283
+ {
284
+ "epoch": 2.31,
285
+ "grad_norm": 0.05260853096842766,
286
+ "learning_rate": 8.461538461538461e-05,
287
+ "loss": 0.0354,
288
+ "step": 360
289
+ },
290
+ {
291
+ "epoch": 2.37,
292
+ "grad_norm": 0.053938668221235275,
293
+ "learning_rate": 8.141025641025641e-05,
294
+ "loss": 0.0548,
295
+ "step": 370
296
+ },
297
+ {
298
+ "epoch": 2.44,
299
+ "grad_norm": 0.06470278650522232,
300
+ "learning_rate": 7.820512820512821e-05,
301
+ "loss": 0.0162,
302
+ "step": 380
303
+ },
304
+ {
305
+ "epoch": 2.5,
306
+ "grad_norm": 0.0850602388381958,
307
+ "learning_rate": 7.500000000000001e-05,
308
+ "loss": 0.033,
309
+ "step": 390
310
+ },
311
+ {
312
+ "epoch": 2.56,
313
+ "grad_norm": 0.04342366382479668,
314
+ "learning_rate": 7.17948717948718e-05,
315
+ "loss": 0.0224,
316
+ "step": 400
317
+ },
318
+ {
319
+ "epoch": 2.56,
320
+ "eval_accuracy": 0.9533762057877814,
321
+ "eval_loss": 0.16905710101127625,
322
+ "eval_runtime": 9.8491,
323
+ "eval_samples_per_second": 63.153,
324
+ "eval_steps_per_second": 7.92,
325
+ "step": 400
326
+ },
327
+ {
328
+ "epoch": 2.63,
329
+ "grad_norm": 0.05912560597062111,
330
+ "learning_rate": 6.858974358974359e-05,
331
+ "loss": 0.0503,
332
+ "step": 410
333
+ },
334
+ {
335
+ "epoch": 2.69,
336
+ "grad_norm": 0.04359501227736473,
337
+ "learning_rate": 6.538461538461539e-05,
338
+ "loss": 0.0537,
339
+ "step": 420
340
+ },
341
+ {
342
+ "epoch": 2.76,
343
+ "grad_norm": 0.0935799852013588,
344
+ "learning_rate": 6.217948717948718e-05,
345
+ "loss": 0.0145,
346
+ "step": 430
347
+ },
348
+ {
349
+ "epoch": 2.82,
350
+ "grad_norm": 0.05057013779878616,
351
+ "learning_rate": 5.897435897435898e-05,
352
+ "loss": 0.0132,
353
+ "step": 440
354
+ },
355
+ {
356
+ "epoch": 2.88,
357
+ "grad_norm": 0.4015754461288452,
358
+ "learning_rate": 5.576923076923077e-05,
359
+ "loss": 0.0382,
360
+ "step": 450
361
+ },
362
+ {
363
+ "epoch": 2.95,
364
+ "grad_norm": 0.03421848267316818,
365
+ "learning_rate": 5.256410256410257e-05,
366
+ "loss": 0.0123,
367
+ "step": 460
368
+ },
369
+ {
370
+ "epoch": 3.01,
371
+ "grad_norm": 0.043205052614212036,
372
+ "learning_rate": 4.935897435897436e-05,
373
+ "loss": 0.0417,
374
+ "step": 470
375
+ },
376
+ {
377
+ "epoch": 3.08,
378
+ "grad_norm": 0.03611929342150688,
379
+ "learning_rate": 4.615384615384616e-05,
380
+ "loss": 0.0125,
381
+ "step": 480
382
+ },
383
+ {
384
+ "epoch": 3.14,
385
+ "grad_norm": 0.04078483581542969,
386
+ "learning_rate": 4.294871794871795e-05,
387
+ "loss": 0.0193,
388
+ "step": 490
389
+ },
390
+ {
391
+ "epoch": 3.21,
392
+ "grad_norm": 0.043482307344675064,
393
+ "learning_rate": 3.974358974358974e-05,
394
+ "loss": 0.0321,
395
+ "step": 500
396
+ },
397
+ {
398
+ "epoch": 3.21,
399
+ "eval_accuracy": 0.9565916398713826,
400
+ "eval_loss": 0.17511475086212158,
401
+ "eval_runtime": 9.8922,
402
+ "eval_samples_per_second": 62.878,
403
+ "eval_steps_per_second": 7.885,
404
+ "step": 500
405
+ },
406
+ {
407
+ "epoch": 3.27,
408
+ "grad_norm": 0.03763527050614357,
409
+ "learning_rate": 3.653846153846154e-05,
410
+ "loss": 0.0118,
411
+ "step": 510
412
+ },
413
+ {
414
+ "epoch": 3.33,
415
+ "grad_norm": 0.05929262936115265,
416
+ "learning_rate": 3.3333333333333335e-05,
417
+ "loss": 0.0636,
418
+ "step": 520
419
+ },
420
+ {
421
+ "epoch": 3.4,
422
+ "grad_norm": 0.039751436561346054,
423
+ "learning_rate": 3.012820512820513e-05,
424
+ "loss": 0.0105,
425
+ "step": 530
426
+ },
427
+ {
428
+ "epoch": 3.46,
429
+ "grad_norm": 0.03735564276576042,
430
+ "learning_rate": 2.6923076923076923e-05,
431
+ "loss": 0.0495,
432
+ "step": 540
433
+ },
434
+ {
435
+ "epoch": 3.53,
436
+ "grad_norm": 0.051983293145895004,
437
+ "learning_rate": 2.3717948717948718e-05,
438
+ "loss": 0.011,
439
+ "step": 550
440
+ },
441
+ {
442
+ "epoch": 3.59,
443
+ "grad_norm": 0.034572675824165344,
444
+ "learning_rate": 2.0512820512820512e-05,
445
+ "loss": 0.0109,
446
+ "step": 560
447
+ },
448
+ {
449
+ "epoch": 3.65,
450
+ "grad_norm": 0.04169879108667374,
451
+ "learning_rate": 1.730769230769231e-05,
452
+ "loss": 0.0108,
453
+ "step": 570
454
+ },
455
+ {
456
+ "epoch": 3.72,
457
+ "grad_norm": 0.032876156270504,
458
+ "learning_rate": 1.4102564102564104e-05,
459
+ "loss": 0.0104,
460
+ "step": 580
461
+ },
462
+ {
463
+ "epoch": 3.78,
464
+ "grad_norm": 0.03522384166717529,
465
+ "learning_rate": 1.0897435897435898e-05,
466
+ "loss": 0.0109,
467
+ "step": 590
468
+ },
469
+ {
470
+ "epoch": 3.85,
471
+ "grad_norm": 0.11409874260425568,
472
+ "learning_rate": 7.692307692307694e-06,
473
+ "loss": 0.0112,
474
+ "step": 600
475
+ },
476
+ {
477
+ "epoch": 3.85,
478
+ "eval_accuracy": 0.954983922829582,
479
+ "eval_loss": 0.18050101399421692,
480
+ "eval_runtime": 9.8888,
481
+ "eval_samples_per_second": 62.899,
482
+ "eval_steps_per_second": 7.888,
483
+ "step": 600
484
+ },
485
+ {
486
+ "epoch": 3.91,
487
+ "grad_norm": 0.04359051212668419,
488
+ "learning_rate": 4.487179487179488e-06,
489
+ "loss": 0.0109,
490
+ "step": 610
491
+ },
492
+ {
493
+ "epoch": 3.97,
494
+ "grad_norm": 0.03071708232164383,
495
+ "learning_rate": 1.282051282051282e-06,
496
+ "loss": 0.0429,
497
+ "step": 620
498
+ },
499
  {
500
  "epoch": 4.0,
501
+ "step": 624,
502
+ "total_flos": 7.703325099767808e+17,
503
+ "train_loss": 0.15572628828410345,
504
+ "train_runtime": 552.98,
505
+ "train_samples_per_second": 17.975,
506
+ "train_steps_per_second": 1.128
507
  }
508
  ],
509
  "logging_steps": 10,
510
+ "max_steps": 624,
511
  "num_input_tokens_seen": 0,
512
  "num_train_epochs": 4,
513
  "save_steps": 100,
514
+ "total_flos": 7.703325099767808e+17,
515
  "train_batch_size": 16,
516
  "trial_name": null,
517
  "trial_params": null