--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - feature-extraction - zero-shot-image-classification - image-to-text - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-finetune-scrap results: - task: name: Image Classification type: image-classification dataset: name: d071696/scraps1 type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- # vit-finetune-scrap This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the d071696/scraps1 dataset. It achieves the following results on the evaluation set: - Loss: 1.5546 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.39.0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2