--- base_model: d071696/vit-finetune-scrap tags: - generated_from_trainer datasets: - arrow metrics: - accuracy model-index: - name: vit-finetune-scrap results: - task: name: Image Classification type: image-classification dataset: name: arrow type: arrow config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.954983922829582 --- # vit-finetune-scrap This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.1805 - Accuracy: 0.9550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1672 | 0.64 | 100 | 0.2250 | 0.9486 | | 0.1277 | 1.28 | 200 | 0.2467 | 0.9373 | | 0.0253 | 1.92 | 300 | 0.1588 | 0.9550 | | 0.0224 | 2.56 | 400 | 0.1691 | 0.9534 | | 0.0321 | 3.21 | 500 | 0.1751 | 0.9566 | | 0.0112 | 3.85 | 600 | 0.1805 | 0.9550 | ### Framework versions - Transformers 4.39.0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2