File size: 2,753 Bytes
7397291
 
df88b66
7397291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: t5-small
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: sql-training-1725691627
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sql-training-1725691627

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0117

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.0561        | 0.0674 | 500   | 0.0401          |
| 0.0398        | 0.1348 | 1000  | 0.0298          |
| 0.035         | 0.2022 | 1500  | 0.0259          |
| 0.0312        | 0.2696 | 2000  | 0.0231          |
| 0.0244        | 0.3370 | 2500  | 0.0204          |
| 0.0264        | 0.4044 | 3000  | 0.0191          |
| 0.0295        | 0.4718 | 3500  | 0.0181          |
| 0.0227        | 0.5392 | 4000  | 0.0171          |
| 0.0245        | 0.6066 | 4500  | 0.0162          |
| 0.02          | 0.6739 | 5000  | 0.0153          |
| 0.0193        | 0.7413 | 5500  | 0.0148          |
| 0.0198        | 0.8087 | 6000  | 0.0142          |
| 0.0231        | 0.8761 | 6500  | 0.0139          |
| 0.0224        | 0.9435 | 7000  | 0.0134          |
| 0.0133        | 1.0109 | 7500  | 0.0131          |
| 0.0166        | 1.0783 | 8000  | 0.0129          |
| 0.0173        | 1.1457 | 8500  | 0.0126          |
| 0.0143        | 1.2131 | 9000  | 0.0124          |
| 0.0105        | 1.2805 | 9500  | 0.0123          |
| 0.0193        | 1.3479 | 10000 | 0.0122          |
| 0.0183        | 1.4153 | 10500 | 0.0120          |
| 0.0142        | 1.4827 | 11000 | 0.0119          |
| 0.0128        | 1.5501 | 11500 | 0.0118          |
| 0.0132        | 1.6175 | 12000 | 0.0118          |
| 0.0143        | 1.6849 | 12500 | 0.0117          |
| 0.015         | 1.7523 | 13000 | 0.0117          |
| 0.0161        | 1.8197 | 13500 | 0.0117          |
| 0.0132        | 1.8870 | 14000 | 0.0117          |
| 0.0119        | 1.9544 | 14500 | 0.0117          |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1