File size: 17,205 Bytes
cfa02fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
---
base_model: indobenchmark/indobert-base-p1
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:12000
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Awalnya merupakan singkatan dari John's Macintosh Project.
sentences:
- Sebuah formasi yang terdiri dari sekitar 50 petugas Polisi Baltimore akhirnya
menempatkan diri mereka di antara para perusuh dan milisi, memungkinkan Massachusetts
ke-6 untuk melanjutkan ke Stasiun Camden.
- Mengecat luka dapat melindungi dari jamur dan hama.
- Dulunya merupakan singkatan dari John's Macintosh Project.
- source_sentence: Boueiz berprofesi sebagai pengacara.
sentences:
- Mereka juga gagal mengembangkan Water Cooperation Quotient yang baru.
- Pada Pemilu 1970, ia ikut serta dari Partai Persatuan Nasional namun dikalahkan.
- Seorang pengacara berprofesi sebagai Boueiz.
- source_sentence: Fakultas Studi Oriental memiliki seorang profesor.
sentences:
- Di tempat lain di New Mexico, LAHS terkadang dianggap sebagai sekolah untuk orang
kaya.
- Laporan lain juga menunjukkan kandungannya lebih rendah dari 0,1% di Australia.
- Profesor tersebut merupakan bagian dari Fakultas Studi Oriental.
- source_sentence: Hal ini terjadi di sejumlah negara, termasuk Ethiopia, Republik
Demokratik Kongo, dan Afrika Selatan.
sentences:
- Hal ini diketahui terjadi di Eritrea, Ethiopia, Kongo, Tanzania, Namibia dan Afrika
Selatan.
- Gugus amil digantikan oleh gugus pentil.
- Dan saya beritahu Anda sesuatu, itu tidak adil.
- source_sentence: Ini adalah wilayah sosial-ekonomi yang lebih rendah.
sentences:
- Ini adalah bengkel perbaikan mobil terbaru yang masih beroperasi di kota.
- Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan yang semuanya
dapat difaktorkan ulang.
- Ini adalah wilayah sosial-ekonomi yang lebih tinggi.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: str dev
type: str-dev
metrics:
- type: pearson_cosine
value: 0.4564569322733096
name: Pearson Cosine
- type: spearman_cosine
value: 0.48195228779003385
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5026090402544289
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4959933098737397
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5039005057105697
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4974503970711054
name: Spearman Euclidean
- type: pearson_dot
value: 0.30898798759416635
name: Pearson Dot
- type: spearman_dot
value: 0.2877933490149207
name: Spearman Dot
- type: pearson_max
value: 0.5039005057105697
name: Pearson Max
- type: spearman_max
value: 0.4974503970711054
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: str test
type: str-test
metrics:
- type: pearson_cosine
value: 0.47784323630714065
name: Pearson Cosine
- type: spearman_cosine
value: 0.5031401179671358
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5002126701994709
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.49583761101885343
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5003980651640989
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.49610725867890976
name: Spearman Euclidean
- type: pearson_dot
value: 0.3399664664461248
name: Pearson Dot
- type: spearman_dot
value: 0.3339252012184323
name: Spearman Dot
- type: pearson_max
value: 0.5003980651640989
name: Pearson Max
- type: spearman_max
value: 0.5031401179671358
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-base-p1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) <!-- at revision c2cd0b51ddce6580eb35263b39b0a1e5fb0a39e2 -->
- **Maximum Sequence Length:** 32 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("damand2061/negasibert-mnrl")
# Run inference
sentences = [
'Ini adalah wilayah sosial-ekonomi yang lebih rendah.',
'Ini adalah wilayah sosial-ekonomi yang lebih tinggi.',
'Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan yang semuanya dapat difaktorkan ulang.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `str-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.4565 |
| spearman_cosine | 0.482 |
| pearson_manhattan | 0.5026 |
| spearman_manhattan | 0.496 |
| pearson_euclidean | 0.5039 |
| spearman_euclidean | 0.4975 |
| pearson_dot | 0.309 |
| spearman_dot | 0.2878 |
| pearson_max | 0.5039 |
| **spearman_max** | **0.4975** |
#### Semantic Similarity
* Dataset: `str-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.4778 |
| spearman_cosine | 0.5031 |
| pearson_manhattan | 0.5002 |
| spearman_manhattan | 0.4958 |
| pearson_euclidean | 0.5004 |
| spearman_euclidean | 0.4961 |
| pearson_dot | 0.34 |
| spearman_dot | 0.3339 |
| pearson_max | 0.5004 |
| **spearman_max** | **0.5031** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 12,000 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 14.84 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.83 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
| <code>Pusat Peringatan Topan Gabungan (JTWC) juga mengeluarkan peringatan dalam kapasitas tidak resmi.</code> | <code>Pusat Peringatan Topan Gabungan (JTWC) hanya mengeluarkan peringatan dalam kapasitas yang tidak resmi.</code> |
| <code>DNP komersial digunakan sebagai antiseptik dan pestisida bioakumulasi non-selektif.</code> | <code>DNP komersial tidak dapat digunakan sebagai antiseptik atau pestisida bioakumulasi non-selektif.</code> |
| <code>Kuncian tulang belakang dan kuncian serviks diperbolehkan dan wajib dalam kompetisi jiu-jitsu Brasil IBJJF.</code> | <code>Kuncian tulang belakang dan kuncian serviks dilarang dalam kompetisi jiu-jitsu Brasil IBJJF.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | str-dev_spearman_max | str-test_spearman_max |
|:------:|:----:|:-------------:|:--------------------:|:---------------------:|
| 1.0 | 188 | - | 0.4906 | 0.5067 |
| 2.0 | 376 | - | 0.4941 | 0.5060 |
| 2.6596 | 500 | 0.0995 | - | - |
| 3.0 | 564 | - | 0.4935 | 0.5055 |
| 4.0 | 752 | - | 0.4959 | 0.5016 |
| 5.0 | 940 | - | 0.4975 | 0.5031 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |