File size: 2,156 Bytes
c36cb52 cf0cf54 c36cb52 cf0cf54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_keras_callback
model-index:
- name: damand2061/pfsa-id-med-indobert-nlu
results: []
language:
- id
pipeline_tag: token-classification
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# damand2061/pfsa-id-med-indobert-nlu
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0536
- Validation Loss: 0.3159
- Validation F1: 0.8593
- Validation Accuracy: 0.9287
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 19220, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Validation F1 | Validation Accuracy | Epoch |
|:----------:|:---------------:|:-------------:|:-------------------:|:-----:|
| 0.2859 | 0.2166 | 0.8202 | 0.9290 | 0 |
| 0.1802 | 0.2188 | 0.8487 | 0.9301 | 1 |
| 0.1260 | 0.2377 | 0.8558 | 0.9281 | 2 |
| 0.0807 | 0.2802 | 0.8588 | 0.9274 | 3 |
| 0.0536 | 0.3159 | 0.8593 | 0.9287 | 4 |
### Framework versions
- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1 |