File size: 11,583 Bytes
c995d84
a7afd6f
 
 
 
c995d84
9e574ce
 
 
 
 
 
 
a7afd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c995d84
0eeff64
 
 
 
c5583d6
0eeff64
36e65bb
 
 
0eeff64
45c5c97
 
f8f8152
0eeff64
 
 
dad1bf3
 
 
 
 
0eeff64
 
 
 
 
 
 
 
 
 
c1b9574
 
 
 
 
 
c6828c6
 
c1b9574
bd7fccd
 
 
 
 
 
 
c6828c6
 
 
 
45c5c97
 
 
 
 
 
 
c6828c6
c1b9574
0eeff64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c995d84
a7afd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
7517984
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
language:
- en
- hi
license: llama2
library_name: transformers
tags:
- hindi
- 'english '
- Bilingual
datasets:
- sarvamai/samvaad-hi-v1
pipeline_tag: text-generation
model-index:
- name: Gaja-v1.00
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 52.82
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 76.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.64
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.91
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Gaja-v1.00
      name: Open LLM Leaderboard
---
# Model 

# 🐘 Gaja
Gaja is a Hindi/Hinglish chat model, initially trained on SarvamAI's OpenHathi model and further fine-tuned for conversational interactions. 
<img src="https://cdn-uploads.huggingface.co/production/uploads/6487239cca30096ea9f52115/sLgskU1h2Tih_bJo0ktYR.jpeg" width="600" alt="Image">

# Inference  
hey guys thanks to Bhabha AI, you guys can finally try my [model](https://www.indic.chat/)

# Additional Information
- It outperforms Airavata, AI4Bharat's chat version, on Huggingface OpenLLM benchmark suite.
- It was fine-tuned on only 1k samples 
- The code for this can be found in The github code - [Github](https://github.com/dame-cell/Gaja)

# 💬 Prompt template 

```
<|im_start|>user
{}<|im_end|> 
<|im_start|>assistant
{}<|im_end|> 
```

# 😎 Features:
- Language Support: Gaja is designed to understand and generate responses in both Hindi and Hinglish, catering to a diverse range of users.
- Base Model: Built upon SarvamAI's OpenHathi model, Gaja inherits its foundational capabilities while being optimized for conversational tasks.
- Fine-tuning: Gaja has undergone fine-tuning specifically for chat-based interactions, enhancing its ability to engage in meaningful conversations with users.
- Experimental Platform: With its flexibility and adaptability, Gaja serves as a valuable platform for conducting experiments and exploring innovative approaches to chatbot development.

# 😤 Example Output 

| User                                             | Assistant                                                                                                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| what is a large language model                   | एक बड़ा भाषा मॉडल, जिसे ML या LLM के रूप में भी जाना जाता है, एक प्रकार का एआई एल्गोरिथ्म है जो मानव भाषा को समझने और समझने में निपुण है। यह एल्गोरिथ्म एक बड़ी फिल्टरिंग योजना का उपयोग करता है, जो इसे बड़ी मात्रा में डेटा को संसाधित करने की अनुमति देता है। यह एल्गोरिथ्म एक बड़े डेटासेट से जानकारी निकालता है, जो आमतौर पर इंटरनेट पर पाया जाता है। यह एल्गोरिथ्म मानव भाषा के बारे में जानकारी को समझने और समझने के लिए कई एल्गोरिथमिक तरीकों का उपयोग करता है। बड़े भाषा मॉडल का उपयोग आमतौर पर संभावित संपर्क, अनुप्रयोगों की एक व्यापक श्रृंखला में किया जाता है। |
| How could AI help humans?                        | AI can help humans in several ways. Firstly, it can assist in decision-making by providing insights and data analysis. For example, AI-powered tools can help individuals and businesses make informed decisions based on real-time data.Secondly, AI can enhance productivity by automating repetitive and mundane tasks. This frees up time and resources for more creative and strategic work.Thirdly, AI can improve healthcare by providing personalized medical diagnoses and treatment plans. AI-powered tools can analyze vast amounts of medical data and provide insights that can lead to more effective and efficient healthcare.Fourthly, AI can enhance security by detecting and preventing cyber threats. AI-powered systems can monitor networks and detect suspicious activity, preventing cyber-attacks before they occur.Lastly, AI can contribute to environmental conservation by optimizing resource utilization and reducing waste. AI-powered systems can monitor and optimize resource usage, leading to more sustainable practices.In summary, AI can help humans by enhancing decision-making, increasing productivity, improving healthcare, enhancing security, and contributing to environmental conservation. |
| क्या आप मुझे बता सकते हैं कि भारत में लोग बड़ों के पैर छूते क्यों हैं? | भारत में, बड़ों के पैर छूना एक आदमी की बड़ों के प्रति श्रद्धा और सम्मान दिखाने की एक पारंपरिक प्रथा है। यह आदमी बड़ों को आदर और आत्मसात करता है। यह एक आदमी के बड़ों के साथ अपने संबंध को स्थापित करने और बड़ों के प्रति अपनी श्रद्धा और आत्मसात को दर्शाित करने का एक तरीका है। यह एक आदमी के बड़ों के साथ अपने घनिष्ठ संबंध को स्थापित करने और बड़ों के प्रति अपनी आत्मात्मकता और आत्मसात को दर्शाित करने का एक तरीका है।|

# Eval 
### Hindi eval 

| Task                   | #Samples | Accuracy | Precision | F1   | Recall | Metrics                    |
|------------------------|----------|----------|-----------|------|--------|----------------------------|
| Indic-Sentiment Analysis | 100      | 0.71     | -         | 0.76 | -      | Accuracy, F1 score         |
| Indic-QA Evaluation     | 50       |  -       | 0.62      | 0.68 | 0.75   | Bert Score                 |
| Indic-NLI               | 50       | 0.24     | -         | 0.17 | -      | Accuracy, F1 score         |
| Indic-Paraphrase       | 500       | 0.52     | 0.49      | 0.48 | -      | Accuracy, F1 score, Precision |



### English eval 

Model name| Average  | ARC | HellaSwag | MMLU | TruthfulQA   | Winogrande | GSM8K|      
|-------|------------------------|-----------|----------|-----------|------|--------|------------|       
| [damerajee/Gaja-v1.00](https://huggingface.co/damerajee/Gaja-v1.00)| 	47.69 | 52.82 |    76.31  |     40.83   | 44.64	| 	 70.64       |    0.91   |  
| [manishiitg/open-aditi-hi-v2](https://huggingface.co/manishiitg/open-aditi-hi-v2) | 	59.31 | 59.39 |  82.01   |   61.41     | 45.84 	| 	77.19        |    30.02  |    
| [ai4bharat/Airavata](https://huggingface.co/ai4bharat/Airavata) | 	45.52 | 46.5 |    69.26  |     43.9   | 40.62	| 	 68.82       |    4.02   |      

![Screenshot (30).png](https://cdn-uploads.huggingface.co/production/uploads/6487239cca30096ea9f52115/ip_xYv7XpC68RKq7P-Qt-.png)


# 🚀 Infernce(colab or kaggle notebooks)

### Installing dependencies
```python
!pip install -q peft bitsandbytes datasets accelerate
```

### Load the model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("damerajee/Gaja-v1.00")
model = AutoModelForCausalLM.from_pretrained("damerajee/Gaja-v1.00",load_in_4bit=True)
```

### Try it out 
```python

messages = [
    {"role": "user", "content": "Why do poeple in India touch the feet of elders when they greet them?"},
]
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize = True,
    add_generation_prompt = True, # Must add for generation
    return_tensors = "pt",
).to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 300, use_cache = True)
```





# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_damerajee__Gaja-v1.00)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |47.69|
|AI2 Reasoning Challenge (25-Shot)|52.82|
|HellaSwag (10-Shot)              |76.31|
|MMLU (5-Shot)                    |40.83|
|TruthfulQA (0-shot)              |44.64|
|Winogrande (5-shot)              |70.64|
|GSM8k (5-shot)                   | 0.91|