File size: 1,504 Bytes
a907198 f01b353 991e761 a907198 991e761 31eb931 b5ea186 991e761 a907198 991e761 a907198 f01b353 991e761 a907198 991e761 a907198 991e761 a907198 991e761 a907198 991e761 a907198 991e761 a907198 991e761 a907198 991e761 a907198 60ea73c b5ea186 a907198 991e761 a907198 991e761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model: damienbenveniste/mistral-reward
library_name: transformers
model_name: mistral-reward
tags:
- generated_from_trainer
- reward-trainer
- trl
licence: license
---
# Model Card for mistral-reward
This model is a fine-tuned version of [damienbenveniste/mistral-reward](https://huggingface.co/damienbenveniste/mistral-reward).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="damienbenveniste/mistral-reward", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with Reward.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.53.2
- Pytorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |