File size: 1,504 Bytes
a907198
f01b353
991e761
 
a907198
991e761
31eb931
b5ea186
991e761
a907198
 
991e761
a907198
f01b353
991e761
a907198
991e761
a907198
991e761
 
a907198
991e761
 
 
 
 
a907198
991e761
a907198
991e761
a907198
 
991e761
a907198
991e761
a907198
60ea73c
b5ea186
 
 
 
a907198
991e761
a907198
 
 
991e761
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model: damienbenveniste/mistral-reward
library_name: transformers
model_name: mistral-reward
tags:
- generated_from_trainer
- reward-trainer
- trl
licence: license
---

# Model Card for mistral-reward

This model is a fine-tuned version of [damienbenveniste/mistral-reward](https://huggingface.co/damienbenveniste/mistral-reward).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="damienbenveniste/mistral-reward", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

 


This model was trained with Reward.

### Framework versions

- TRL: 0.19.1
- Transformers: 4.53.2
- Pytorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```