damilare-akin commited on
Commit
04ec676
1 Parent(s): fd52a53

Upload best PPO LunarLander-v2 agent (tuned with Optuna).

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e0b9eeabd261538085668b0971abaa855e642633674583d53ab8176eabd630d
3
+ size 147154
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b23ae59e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b23ae5a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b23ae5b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b23ae5b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0b23ae5c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0b23ae5cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b23ae5d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0b23ae5dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b23ae5e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b23ae5ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b23ae5f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0b23abd2a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1392640,
46
+ "_total_timesteps": 1379518,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1660854444.8348734,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjZU3PhTZ1D6bQPS9isPEvvIWwj3qSgi+AAAAAAAAAABNVQ4+PU+KPhcwjb7R2Zy+n/+LPIq4V7wAAAAAAAAAAG1sKD4VeQU/AkhNvlEPwL7sYso9MmOevAAAAAAAAAAAImKavrIQzj7mVhc+Ueqjvnn7Mb5lOeI9AAAAAAAAAAAznbM8Cvwdu2CTnzsXl6M860z4u4ZkjD0AAIA/AACAP4B2N76yPZU+2QtLPqJUdr5XwVO8xvsMvgAAAAAAAAAAM50bvCYH5T5rR2e9mqffvrgsD7sT+WI8AAAAAAAAAADNJNC9GKftPmyuBD6/5L2+aFM8vUKmuj0AAAAAAAAAAE0qvT0UMJK6iauiNxXWjjJLC3q6KpS8tgAAgD8AAAAAc2qvvTQigj+7/S2+jQAUv1cio73TvQc9AAAAAAAAAACmcag9jx5Suo5XCDqrov0y3COXuyhWHrkAAIA/AAAAAM2M6jp1QLU/dN+LPFHCPb5CYIS83fEhvQAAAAAAAAAAsw4UPk8EhD+j+aY+cesTv1ekfj7lLFA9AAAAAAAAAAAzYWY8uLbRuY6hgrOGXOwuFpPJO63evDMAAIA/AACAP41RBb5c7Cc9ljYNPpHxQL5qnBq9lcbBPQAAAAAAAAAAzV2zvXuyNj/eq328KgPDvpIqar3i8pc9AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00951201796569534,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuqRqu4lJc0CUhpRSlIwBbJRL/YwBdJRHQKBp4VVxS511fZQoaAZoCWgPQwjFdvcA3dRsQJSGlFKUaBVL2mgWR0Cgae5VwPy1dX2UKGgGaAloD0MIatswCgLucUCUhpRSlGgVS9poFkdAoGrAv+OwPnV9lChoBmgJaA9DCMUbmUc+p3JAlIaUUpRoFUvaaBZHQKBqzHVf/m11fZQoaAZoCWgPQwhzZyYYjgxyQJSGlFKUaBVL42gWR0CgatA9vCMxdX2UKGgGaAloD0MIIoyfxv35ckCUhpRSlGgVS/BoFkdAoGsSzPa+OHV9lChoBmgJaA9DCJG0G33M/nFAlIaUUpRoFUvdaBZHQKBrQy+HrQh1fZQoaAZoCWgPQwg83uS36DdxQJSGlFKUaBVNAgFoFkdAoGthradtmHV9lChoBmgJaA9DCP0xrU2jAXJAlIaUUpRoFUvNaBZHQKBrap3HJcR1fZQoaAZoCWgPQwgVNgNc0NBxQJSGlFKUaBVL1WgWR0Cga5CSA6MjdX2UKGgGaAloD0MIOh4zUNkqckCUhpRSlGgVS9FoFkdAoGud+PRzBHV9lChoBmgJaA9DCAtFup9TYnNAlIaUUpRoFUvbaBZHQKBsFdNWU8p1fZQoaAZoCWgPQwj8byU7NnVzQJSGlFKUaBVLzGgWR0CgbHBz3h4udX2UKGgGaAloD0MImyFVFG+VckCUhpRSlGgVS/NoFkdAoGzetwJgLXV9lChoBmgJaA9DCPUrnQ8P7XJAlIaUUpRoFUvQaBZHQKBs3ta6jFh1fZQoaAZoCWgPQwj5u3fUWHNxQJSGlFKUaBVL4GgWR0CgbQugg5imdX2UKGgGaAloD0MIVI80uK1oc0CUhpRSlGgVTcsCaBZHQKBtm938n/l1fZQoaAZoCWgPQwgouFhRAz9wQJSGlFKUaBVL3WgWR0CgbfoOQQtjdX2UKGgGaAloD0MIOQ68Wq4Ec0CUhpRSlGgVS/RoFkdAoG5FKEnLJXV9lChoBmgJaA9DCPBS6pIxoXFAlIaUUpRoFUvwaBZHQKBukWEbo8p1fZQoaAZoCWgPQwgtzEI7p41vQJSGlFKUaBVL4mgWR0CgbrRx95QhdX2UKGgGaAloD0MI2sngKHneb0CUhpRSlGgVS+doFkdAoG6/r6ciGHV9lChoBmgJaA9DCB79L9eigXFAlIaUUpRoFUvfaBZHQKBu0foRqXZ1fZQoaAZoCWgPQwiOrPwymFFyQJSGlFKUaBVL32gWR0Cgbt8QyylfdX2UKGgGaAloD0MICRfyCG48c0CUhpRSlGgVTQoBaBZHQKBvG/O+qR51fZQoaAZoCWgPQwiLTwEw3l1xQJSGlFKUaBVL1WgWR0Cgb4hw++uedX2UKGgGaAloD0MI+BdBYyZzc0CUhpRSlGgVS/BoFkdAoG+Tkhib2HV9lChoBmgJaA9DCNzZVx6khHNAlIaUUpRoFU0nAmgWR0Cgb5nmJWNndX2UKGgGaAloD0MI071O6ksXbUCUhpRSlGgVS9NoFkdAoG/ba9K28nV9lChoBmgJaA9DCKw8gbBT83BAlIaUUpRoFUv4aBZHQKB50qbSZ0F1fZQoaAZoCWgPQwhJ88e0dkpyQJSGlFKUaBVL/GgWR0CgegTNUwSKdX2UKGgGaAloD0MIu16aIkBNc0CUhpRSlGgVS/FoFkdAoHpfoq0+knV9lChoBmgJaA9DCOurqwJ1KXFAlIaUUpRoFUvcaBZHQKB6bRHf/FR1fZQoaAZoCWgPQwgIyJdQgelxQJSGlFKUaBVLyGgWR0Cgem1LzwtrdX2UKGgGaAloD0MInGnC9tNFcECUhpRSlGgVS9RoFkdAoHrp6dDpknV9lChoBmgJaA9DCKa3PxcNIW9AlIaUUpRoFUvgaBZHQKB685myxA11fZQoaAZoCWgPQwjWdD3RdZxvQJSGlFKUaBVL12gWR0Cgev28RL9NdX2UKGgGaAloD0MIXVFKCNanc0CUhpRSlGgVS+FoFkdAoHs2Dxsl9nV9lChoBmgJaA9DCMsvgzFirXJAlIaUUpRoFUvZaBZHQKB7VMRHww11fZQoaAZoCWgPQwh6ck2BzP1wQJSGlFKUaBVL/2gWR0Cge4ZgogFHdX2UKGgGaAloD0MImPp5U5HacECUhpRSlGgVS/RoFkdAoHwoCSzPbHV9lChoBmgJaA9DCNApyM/GzXNAlIaUUpRoFU0KAWgWR0CgfGTgEU0vdX2UKGgGaAloD0MIzGJi87GKc0CUhpRSlGgVTQ4BaBZHQKB8fW912aF1fZQoaAZoCWgPQwh6bqErkRJxQJSGlFKUaBVL3WgWR0CgfKWJ79hrdX2UKGgGaAloD0MISNxj6YP+cECUhpRSlGgVTRMBaBZHQKB84UliSaF1fZQoaAZoCWgPQwhljXqIxj5yQJSGlFKUaBVL1WgWR0CgfR/KISDidX2UKGgGaAloD0MIFOrpI3BzckCUhpRSlGgVS/JoFkdAoH0nQa72+XV9lChoBmgJaA9DCDBntis0B3BAlIaUUpRoFUvWaBZHQKB9MYYR/Vl1fZQoaAZoCWgPQwiyKy0jdUdxQJSGlFKUaBVL22gWR0CgfUF3IMjNdX2UKGgGaAloD0MIEeD0Lt5RckCUhpRSlGgVS95oFkdAoH3IVuaWonV9lChoBmgJaA9DCLzplh1ibnBAlIaUUpRoFUvVaBZHQKB9/mGucMF1fZQoaAZoCWgPQwjaykv+J79uQJSGlFKUaBVL7WgWR0CgfhBttQ9BdX2UKGgGaAloD0MIdbFppdCycECUhpRSlGgVS9hoFkdAoH4sRUWEb3V9lChoBmgJaA9DCG8Sg8DKUHNAlIaUUpRoFUv7aBZHQKB+NQLux8l1fZQoaAZoCWgPQwiR8/4/DjtyQJSGlFKUaBVL02gWR0CgfkyeiBXkdX2UKGgGaAloD0MIM2/VdSjicUCUhpRSlGgVS9FoFkdAoH8VvXK8tnV9lChoBmgJaA9DCJsff2mR/XBAlIaUUpRoFUvLaBZHQKB/GfHPu5V1fZQoaAZoCWgPQwg+k/3zdEVxQJSGlFKUaBVL7WgWR0Cgfzk/r0J4dX2UKGgGaAloD0MIz6J3KuAscECUhpRSlGgVS99oFkdAoH+Fwm3OOnV9lChoBmgJaA9DCDCca5ghvnJAlIaUUpRoFU1QA2gWR0Cgf6r74zrNdX2UKGgGaAloD0MIvtpRnCPTcUCUhpRSlGgVS9poFkdAoH+tyWAwwnV9lChoBmgJaA9DCE5+i06Wg3JAlIaUUpRoFUvgaBZHQKB/9xJd0JZ1fZQoaAZoCWgPQwiLUGwFTRJxQJSGlFKUaBVL4GgWR0CggAYJ3PiUdX2UKGgGaAloD0MIH0q05DFxcUCUhpRSlGgVS+ZoFkdAoIAOd7OVxHV9lChoBmgJaA9DCInS3uBL0XBAlIaUUpRoFUvkaBZHQKCAHbN8ma91fZQoaAZoCWgPQwh+yFuufkRxQJSGlFKUaBVLxGgWR0CggGTRplBhdX2UKGgGaAloD0MIHT7pRMIccUCUhpRSlGgVS8loFkdAoIB/yqdYn3V9lChoBmgJaA9DCKfK94zE8W9AlIaUUpRoFUvjaBZHQKCAjTmW+oN1fZQoaAZoCWgPQwi/84sStBRwQJSGlFKUaBVL3WgWR0CggNRbbDdhdX2UKGgGaAloD0MIMGghAaN6ckCUhpRSlGgVS+5oFkdAoID6c9W6snV9lChoBmgJaA9DCEj7H2DtkXBAlIaUUpRoFUvtaBZHQKCBFesPrfN1fZQoaAZoCWgPQwgzb9V16NZwQJSGlFKUaBVL0mgWR0CggXw1zhgmdX2UKGgGaAloD0MI02ndBrUcc0CUhpRSlGgVS85oFkdAoIGQY1pCbHV9lChoBmgJaA9DCNJu9DGf921AlIaUUpRoFUvraBZHQKCBypw0fo11fZQoaAZoCWgPQwgD6WLTiphxQJSGlFKUaBVLv2gWR0CggiqSowVTdX2UKGgGaAloD0MIZktWRXiacUCUhpRSlGgVS+5oFkdAoIJWpXIU8HV9lChoBmgJaA9DCKQzMPIyi3JAlIaUUpRoFUv/aBZHQKCCbFkxyn11fZQoaAZoCWgPQwjzOXe7HshyQJSGlFKUaBVL+GgWR0CggntpdrwfdX2UKGgGaAloD0MI6Q5iZwoycUCUhpRSlGgVS+VoFkdAoIKaVhTfi3V9lChoBmgJaA9DCN4f71WrXHBAlIaUUpRoFUvjaBZHQKCCrk/bCaZ1fZQoaAZoCWgPQwh81F+vMBJxQJSGlFKUaBVL92gWR0Cggr8CYCyRdX2UKGgGaAloD0MI46jcRG19cUCUhpRSlGgVS+doFkdAoIMCZ6Uqx3V9lChoBmgJaA9DCE6aBkVzWnBAlIaUUpRoFUvhaBZHQKCDDlCCz1N1fZQoaAZoCWgPQwhxOzQsBndyQJSGlFKUaBVL82gWR0Cgg01NYbKidX2UKGgGaAloD0MIfEj43h+zcECUhpRSlGgVS9FoFkdAoINdTR6WxHV9lChoBmgJaA9DCF97ZklA93BAlIaUUpRoFUvlaBZHQKCDsnQY1pF1fZQoaAZoCWgPQwiwyoXKv6RyQJSGlFKUaBVL/WgWR0Cgg7HbItDldX2UKGgGaAloD0MI4zWv6mxMc0CUhpRSlGgVS9BoFkdAoIPcGcFyJnV9lChoBmgJaA9DCGGnWDWIVXNAlIaUUpRoFUv3aBZHQKCEaR5kbxV1fZQoaAZoCWgPQwigcHZrmR1yQJSGlFKUaBVL72gWR0CghI+NkvsadX2UKGgGaAloD0MIkpGzsKeobkCUhpRSlGgVS9NoFkdAoIScYGdI5HV9lChoBmgJaA9DCHC044ZfpnBAlIaUUpRoFUvYaBZHQKCFHK6Fuel1fZQoaAZoCWgPQwjjNa/qrChwQJSGlFKUaBVL7WgWR0CghTJUgjhUdX2UKGgGaAloD0MIRzoDI29+ckCUhpRSlGgVS9RoFkdAoIU7zAeq73V9lChoBmgJaA9DCDuKc9RRmG9AlIaUUpRoFUvaaBZHQKCFPDKHO8l1fZQoaAZoCWgPQwgai6az00RxQJSGlFKUaBVL92gWR0CghT/h2nsLdX2UKGgGaAloD0MIAfkSKjiucECUhpRSlGgVTQYBaBZHQKCFiKk2xY91fZQoaAZoCWgPQwi53jZTYeVwQJSGlFKUaBVL3WgWR0CghagH3UQTdX2UKGgGaAloD0MIpwhwepdPc0CUhpRSlGgVS+xoFkdAoIXHrD63zHV9lChoBmgJaA9DCNmZQuc1SG5AlIaUUpRoFUvfaBZHQKCGAYRdyDJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 340,
79
+ "n_steps": 1024,
80
+ "gamma": 0.9924500724639644,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98cf578230bb1ec06a9cbf27770ffe091be342dc75216d8423f4c2a9d4ba1802
3
+ size 87865
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08f9e9af5ccceaf26f6e59ea6e2a0cd4af458c07ca7e4f30744f246d70d00970
3
+ size 43201
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 240.09 +/- 48.50
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 277.89 +/- 25.46
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f532d58a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f532d58a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f532d58a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f532d58aa70>", "_build": "<function ActorCriticPolicy._build at 0x7f532d58ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7f532d58ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f532d58ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f532d58acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f532d58ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f532d58add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f532d58ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f532d5e7060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659737253.8117752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAFpLxrmrY9R/wAvU1/JL7vqHE8vn79vAAAAAAAAAAAs+AhPa02dj4iFs+992xcvpMzLLyWE129AAAAAAAAAACNoww+s0c6P+iRgb2qCmW+oMJxPMrnmjwAAAAAAAAAAFCdyj4AMVE/pe+TPX59zr7IuJg+B6EavQAAAAAAAAAATdgLvcgq7zsA+RY9enR5vtcn7DzNYkC7AAAAAAAAAABNrSQ9JJkePJTouzxVlFS+DTkDPM9+AT0AAAAAAAAAADMIAr09Sjk49hrAPBP65ry7lM47XtyzvAAAAAAAAAAAxlKEPq/tbD52yMW9O8xqvqVpsT1RgQ69AAAAAAAAAACdsWm+kOySP8vagr4UCX2+/WyEvrJjKz0AAAAAAAAAAPpLaD7RhoQ/YgiePdw3ub7wURA+U7EsOwAAAAAAAAAAmtupPPYcL7p4u4m8CbsBvD1/TTvzSuO8AAAAAAAAgD8NW1y+U5OYP2f9jr3fVaC+saMZvtYzPT0AAAAAAAAAAGao8TzsrbI+Vb3Wvc+ceb7DcqS8EFw8vQAAAAAAAAAA2ioOPjFBnT+HIQ8/9Ab0vnN9Jj7Wtxw+AAAAAAAAAACaeYe7KSUtO6HlST1zRkq96UcAumT3Gr0AAAAAAAAAAADQjzypnxE9duHzPDVbNb6Xqaq8Z8krPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQiECDuGBcECUhpRSlIwBbJRNBwGMAXSUR0CRs0Pwd8zAdX2UKGgGaAloD0MIwAgaM8n8cECUhpRSlGgVTQ4BaBZHQJG0QpjMFEB1fZQoaAZoCWgPQwhflnZqLnZsQJSGlFKUaBVNRAFoFkdAkbRei35N5HV9lChoBmgJaA9DCPEPW3p043FAlIaUUpRoFU1ZAWgWR0CRtLOrhisodX2UKGgGaAloD0MIOdGuQkoibkCUhpRSlGgVTTEBaBZHQJG1NbfP5YZ1fZQoaAZoCWgPQwic3sX78ddxQJSGlFKUaBVNDQFoFkdAkbj6AvtdA3V9lChoBmgJaA9DCGFUUicgnnFAlIaUUpRoFU0RAWgWR0CRuSYPGyX2dX2UKGgGaAloD0MICtgORmxzbkCUhpRSlGgVTSMBaBZHQJG6jMvAXVN1fZQoaAZoCWgPQwi5/If0231cQJSGlFKUaBVN6ANoFkdAkbqOueSSvHV9lChoBmgJaA9DCK3D0VU6mnFAlIaUUpRoFU0gAWgWR0CRvKFdcB2fdX2UKGgGaAloD0MI6MByhIzUbkCUhpRSlGgVTUwBaBZHQJG99OUMXrN1fZQoaAZoCWgPQwhVhnE3iABxQJSGlFKUaBVNgAFoFkdAkb4tke6qbXV9lChoBmgJaA9DCPFkNzP6xW5AlIaUUpRoFU1VAWgWR0CRvo6pHZsbdX2UKGgGaAloD0MILCl3n2MccECUhpRSlGgVTUUBaBZHQJG/6butwJh1fZQoaAZoCWgPQwibVZ+rLTFwQJSGlFKUaBVNTgFoFkdAkcCWTX8O1HV9lChoBmgJaA9DCJRt4A4UTnJAlIaUUpRoFU1GAWgWR0CRwP3l0YCRdX2UKGgGaAloD0MIVYZxNwgXa0CUhpRSlGgVTUcBaBZHQJHCGfmLcbl1fZQoaAZoCWgPQwjP2QJC6y5vQJSGlFKUaBVNOgFoFkdAkcIs36yjYnV9lChoBmgJaA9DCO7of7nWGnJAlIaUUpRoFU2NAWgWR0CRwvD8cdYGdX2UKGgGaAloD0MItDukGCDCbECUhpRSlGgVTXYBaBZHQJHDs4zabnZ1fZQoaAZoCWgPQwgKStHKPR5yQJSGlFKUaBVNZgFoFkdAkcQrDQ7cPHV9lChoBmgJaA9DCFrZPuSt93BAlIaUUpRoFU04AWgWR0CRxYcn3L3cdX2UKGgGaAloD0MISkONQhLGbUCUhpRSlGgVTSMBaBZHQJHFvYI0IkZ1fZQoaAZoCWgPQwjEtdrDHltwQJSGlFKUaBVNMQFoFkdAkcY02cawU3V9lChoBmgJaA9DCDPFHASd+W5AlIaUUpRoFU1mAWgWR0CRxvgvDgqFdX2UKGgGaAloD0MI3GYqxGM3cECUhpRSlGgVTQ4BaBZHQJHHRGI9C/p1fZQoaAZoCWgPQwizQpHu551yQJSGlFKUaBVNRwFoFkdAkcg25paibnV9lChoBmgJaA9DCL+6KlCLFXBAlIaUUpRoFU05AWgWR0CRyILaVUuMdX2UKGgGaAloD0MIwtzu5f7ZcECUhpRSlGgVTXABaBZHQJHgKTRplBh1fZQoaAZoCWgPQwjuWkI+aGpuQJSGlFKUaBVNFQFoFkdAkeCtyo4uLHV9lChoBmgJaA9DCGvvU1VoXG1AlIaUUpRoFU1KAWgWR0CR4O+/QBxQdX2UKGgGaAloD0MIEoPAyqF0ckCUhpRSlGgVTUgBaBZHQJHhP9vS+g11fZQoaAZoCWgPQwhN1qiHKGZwQJSGlFKUaBVNewFoFkdAkeHqNAC4jXV9lChoBmgJaA9DCM77/zhhJ3FAlIaUUpRoFU1AAWgWR0CR4gnCO3lTdX2UKGgGaAloD0MId4U+WIZTckCUhpRSlGgVTSwBaBZHQJHiO+nIhhZ1fZQoaAZoCWgPQwimft5UpBBDQJSGlFKUaBVNJAFoFkdAkeMkDQqqfnV9lChoBmgJaA9DCGJLj6Z6TXBAlIaUUpRoFU08AWgWR0CR43UmUnogdX2UKGgGaAloD0MImnlyTYHFbECUhpRSlGgVTSQBaBZHQJHkdfAsTWZ1fZQoaAZoCWgPQwind/F+3FhuQJSGlFKUaBVNHwFoFkdAkeWvP9kz43V9lChoBmgJaA9DCPLQd7cyuGtAlIaUUpRoFU07AWgWR0CR5dhOP/70dX2UKGgGaAloD0MIb4Pab+3/b0CUhpRSlGgVTU4BaBZHQJHl/0wrUb11fZQoaAZoCWgPQwjH155ZUq5xQJSGlFKUaBVNFwFoFkdAkebbXYlIE3V9lChoBmgJaA9DCLKbGf0oWnJAlIaUUpRoFU1CAWgWR0CR5+nWrfcfdX2UKGgGaAloD0MI6kDWU6sPcECUhpRSlGgVTQoBaBZHQJHolHoX9BN1fZQoaAZoCWgPQwifH0YIzzlyQJSGlFKUaBVNEwFoFkdAkelYS+QEIXV9lChoBmgJaA9DCEXVr3Q+WXFAlIaUUpRoFU2TAWgWR0CR6aFUQ04zdX2UKGgGaAloD0MIZRcMrjmRckCUhpRSlGgVTRoBaBZHQJHrG8zyjHp1fZQoaAZoCWgPQwjZeLDFbp9uQJSGlFKUaBVNVAFoFkdAkeu9dzGPxXV9lChoBmgJaA9DCBXhJqMKp3FAlIaUUpRoFU1KAWgWR0CR67rTpgTidX2UKGgGaAloD0MIH0jeOdRucUCUhpRSlGgVTRYBaBZHQJHr/u1F6Rh1fZQoaAZoCWgPQwiMSuoE9P5yQJSGlFKUaBVNSwFoFkdAkexiad+Xq3V9lChoBmgJaA9DCK+YEd6ej3FAlIaUUpRoFU1OAWgWR0CR7Jw97ngYdX2UKGgGaAloD0MIWvCiryCrb0CUhpRSlGgVTSUBaBZHQJHsw9LYf4h1fZQoaAZoCWgPQwiMTSuFgOdxQJSGlFKUaBVNGQFoFkdAke6lawD/2nV9lChoBmgJaA9DCL+4VKWtinBAlIaUUpRoFU0wAWgWR0CR7z3ljmSydX2UKGgGaAloD0MIGJeqtMU/cUCUhpRSlGgVTRgBaBZHQJHvzAN5MUR1fZQoaAZoCWgPQwgn2lVIuQBxQJSGlFKUaBVNQgFoFkdAkfAllGwzL3V9lChoBmgJaA9DCJXTnpLzgW5AlIaUUpRoFU15AWgWR0CR8FmJWNm2dX2UKGgGaAloD0MI93R1x2KtbkCUhpRSlGgVTSoBaBZHQJHxXM/yGzt1fZQoaAZoCWgPQwi8JM6K6OhwQJSGlFKUaBVNNAFoFkdAkfJjCHh0hnV9lChoBmgJaA9DCLfVrDM+yG5AlIaUUpRoFU00AWgWR0CR849PUKAsdX2UKGgGaAloD0MI5x2n6Mhob0CUhpRSlGgVTVEBaBZHQJH0rU7Sy+p1fZQoaAZoCWgPQwgBbhYv1rlxQJSGlFKUaBVNGAFoFkdAkfVqNdZ7onV9lChoBmgJaA9DCHBdMSN8a3JAlIaUUpRoFU1LAWgWR0CR9yOM2m52dX2UKGgGaAloD0MIdSDrqdUabkCUhpRSlGgVTRkBaBZHQJH3M2NvOyF1fZQoaAZoCWgPQwh6VtKKr3FwQJSGlFKUaBVNPQFoFkdAkfhex8lXzXV9lChoBmgJaA9DCLMG76vyGHBAlIaUUpRoFU1NAWgWR0CR+IeiBXjmdX2UKGgGaAloD0MIFJfjFUgecECUhpRSlGgVTTwBaBZHQJH4p4SpR411fZQoaAZoCWgPQwjdlzPbFUtwQJSGlFKUaBVNJgFoFkdAkfyQW8AaN3V9lChoBmgJaA9DCIL+Qo/YSHFAlIaUUpRoFU1WAWgWR0CR/KMvysjndX2UKGgGaAloD0MI+Z6RCM1rcUCUhpRSlGgVTSoBaBZHQJH85wJgLJF1fZQoaAZoCWgPQwjhXS7iu0ZxQJSGlFKUaBVNVgFoFkdAkf0vseGO/HV9lChoBmgJaA9DCClcj8K1inBAlIaUUpRoFU1QAWgWR0CR/X3Sa3I/dX2UKGgGaAloD0MIJgD/lCoYckCUhpRSlGgVTSoBaBZHQJH94EV32VV1fZQoaAZoCWgPQwigM2lTdYhwQJSGlFKUaBVNBQJoFkdAkf8Kya/h2nV9lChoBmgJaA9DCBOe0OtP4nBAlIaUUpRoFU0VAWgWR0CR/ykAggX/dX2UKGgGaAloD0MI0Chd+tehckCUhpRSlGgVTUoBaBZHQJH/0rI5o5B1fZQoaAZoCWgPQwizfF2G/1ZxQJSGlFKUaBVNNwFoFkdAkgFTru6VdHV9lChoBmgJaA9DCKzj+KFSH3BAlIaUUpRoFU0iAWgWR0CSAcD4gzP9dX2UKGgGaAloD0MI2nQEcLPQbECUhpRSlGgVTQkBaBZHQJIB0/keZG91fZQoaAZoCWgPQwgNUYU/AzNwQJSGlFKUaBVNVwFoFkdAkgHglF+d9XV9lChoBmgJaA9DCDv/dtnvPXFAlIaUUpRoFU0SAWgWR0CSAitMfzSUdX2UKGgGaAloD0MIlIeFWtNzckCUhpRSlGgVTT4BaBZHQJIChBomG/N1fZQoaAZoCWgPQwgboDTUqAtwQJSGlFKUaBVNRQFoFkdAkhgYRZlnRXV9lChoBmgJaA9DCJAQ5QvaR2xAlIaUUpRoFU3ZAWgWR0CSJDf6GgzydX2UKGgGaAloD0MItMcL6TDIcECUhpRSlGgVTfQBaBZHQJIxLfdhy811fZQoaAZoCWgPQwjzxklh3phVQJSGlFKUaBVN6ANoFkdAklEHlS0jT3V9lChoBmgJaA9DCMPvplv2jmBAlIaUUpRoFU3oA2gWR0CSUjCf6Gg0dX2UKGgGaAloD0MI1lWBWozLYECUhpRSlGgVTegDaBZHQJJTOKvV3EB1fZQoaAZoCWgPQwjjb3uCRLJhQJSGlFKUaBVN6ANoFkdAklRn2IwdsHV9lChoBmgJaA9DCEok0cso8F9AlIaUUpRoFU3oA2gWR0CSVaXHR1HOdX2UKGgGaAloD0MIjEgUWtZQYUCUhpRSlGgVTegDaBZHQJJY2s4ku6F1fZQoaAZoCWgPQwie7jzxnBJTQJSGlFKUaBVN6ANoFkdAklkgvL5h0HV9lChoBmgJaA9DCKoM426QnWRAlIaUUpRoFU3oA2gWR0CSWm9Vmz0IdX2UKGgGaAloD0MI41MAjGe+WECUhpRSlGgVTegDaBZHQJJd9dNWU8p1fZQoaAZoCWgPQwirs1pgj8NTQJSGlFKUaBVN6ANoFkdAkl4WkN4JNXV9lChoBmgJaA9DCHpTkQpjwl5AlIaUUpRoFU3oA2gWR0CSXjCgbp/xdX2UKGgGaAloD0MIB9Dv+zfNYUCUhpRSlGgVTegDaBZHQJJeoQjD8+B1fZQoaAZoCWgPQwi2ateEtLpbQJSGlFKUaBVN6ANoFkdAkl8ra7EpAnV9lChoBmgJaA9DCFWKHY1DTFlAlIaUUpRoFU3oA2gWR0CSYGB+WnjydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b23ae59e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b23ae5a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b23ae5b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b23ae5b90>", "_build": "<function ActorCriticPolicy._build at 0x7f0b23ae5c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b23ae5cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b23ae5d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b23ae5dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b23ae5e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b23ae5ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b23ae5f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b23abd2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1392640, "_total_timesteps": 1379518, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660854444.8348734, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjZU3PhTZ1D6bQPS9isPEvvIWwj3qSgi+AAAAAAAAAABNVQ4+PU+KPhcwjb7R2Zy+n/+LPIq4V7wAAAAAAAAAAG1sKD4VeQU/AkhNvlEPwL7sYso9MmOevAAAAAAAAAAAImKavrIQzj7mVhc+Ueqjvnn7Mb5lOeI9AAAAAAAAAAAznbM8Cvwdu2CTnzsXl6M860z4u4ZkjD0AAIA/AACAP4B2N76yPZU+2QtLPqJUdr5XwVO8xvsMvgAAAAAAAAAAM50bvCYH5T5rR2e9mqffvrgsD7sT+WI8AAAAAAAAAADNJNC9GKftPmyuBD6/5L2+aFM8vUKmuj0AAAAAAAAAAE0qvT0UMJK6iauiNxXWjjJLC3q6KpS8tgAAgD8AAAAAc2qvvTQigj+7/S2+jQAUv1cio73TvQc9AAAAAAAAAACmcag9jx5Suo5XCDqrov0y3COXuyhWHrkAAIA/AAAAAM2M6jp1QLU/dN+LPFHCPb5CYIS83fEhvQAAAAAAAAAAsw4UPk8EhD+j+aY+cesTv1ekfj7lLFA9AAAAAAAAAAAzYWY8uLbRuY6hgrOGXOwuFpPJO63evDMAAIA/AACAP41RBb5c7Cc9ljYNPpHxQL5qnBq9lcbBPQAAAAAAAAAAzV2zvXuyNj/eq328KgPDvpIqar3i8pc9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00951201796569534, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuqRqu4lJc0CUhpRSlIwBbJRL/YwBdJRHQKBp4VVxS511fZQoaAZoCWgPQwjFdvcA3dRsQJSGlFKUaBVL2mgWR0Cgae5VwPy1dX2UKGgGaAloD0MIatswCgLucUCUhpRSlGgVS9poFkdAoGrAv+OwPnV9lChoBmgJaA9DCMUbmUc+p3JAlIaUUpRoFUvaaBZHQKBqzHVf/m11fZQoaAZoCWgPQwhzZyYYjgxyQJSGlFKUaBVL42gWR0CgatA9vCMxdX2UKGgGaAloD0MIIoyfxv35ckCUhpRSlGgVS/BoFkdAoGsSzPa+OHV9lChoBmgJaA9DCJG0G33M/nFAlIaUUpRoFUvdaBZHQKBrQy+HrQh1fZQoaAZoCWgPQwg83uS36DdxQJSGlFKUaBVNAgFoFkdAoGthradtmHV9lChoBmgJaA9DCP0xrU2jAXJAlIaUUpRoFUvNaBZHQKBrap3HJcR1fZQoaAZoCWgPQwgVNgNc0NBxQJSGlFKUaBVL1WgWR0Cga5CSA6MjdX2UKGgGaAloD0MIOh4zUNkqckCUhpRSlGgVS9FoFkdAoGud+PRzBHV9lChoBmgJaA9DCAtFup9TYnNAlIaUUpRoFUvbaBZHQKBsFdNWU8p1fZQoaAZoCWgPQwj8byU7NnVzQJSGlFKUaBVLzGgWR0CgbHBz3h4udX2UKGgGaAloD0MImyFVFG+VckCUhpRSlGgVS/NoFkdAoGzetwJgLXV9lChoBmgJaA9DCPUrnQ8P7XJAlIaUUpRoFUvQaBZHQKBs3ta6jFh1fZQoaAZoCWgPQwj5u3fUWHNxQJSGlFKUaBVL4GgWR0CgbQugg5imdX2UKGgGaAloD0MIVI80uK1oc0CUhpRSlGgVTcsCaBZHQKBtm938n/l1fZQoaAZoCWgPQwgouFhRAz9wQJSGlFKUaBVL3WgWR0CgbfoOQQtjdX2UKGgGaAloD0MIOQ68Wq4Ec0CUhpRSlGgVS/RoFkdAoG5FKEnLJXV9lChoBmgJaA9DCPBS6pIxoXFAlIaUUpRoFUvwaBZHQKBukWEbo8p1fZQoaAZoCWgPQwgtzEI7p41vQJSGlFKUaBVL4mgWR0CgbrRx95QhdX2UKGgGaAloD0MI2sngKHneb0CUhpRSlGgVS+doFkdAoG6/r6ciGHV9lChoBmgJaA9DCB79L9eigXFAlIaUUpRoFUvfaBZHQKBu0foRqXZ1fZQoaAZoCWgPQwiOrPwymFFyQJSGlFKUaBVL32gWR0Cgbt8QyylfdX2UKGgGaAloD0MICRfyCG48c0CUhpRSlGgVTQoBaBZHQKBvG/O+qR51fZQoaAZoCWgPQwiLTwEw3l1xQJSGlFKUaBVL1WgWR0Cgb4hw++uedX2UKGgGaAloD0MI+BdBYyZzc0CUhpRSlGgVS/BoFkdAoG+Tkhib2HV9lChoBmgJaA9DCNzZVx6khHNAlIaUUpRoFU0nAmgWR0Cgb5nmJWNndX2UKGgGaAloD0MI071O6ksXbUCUhpRSlGgVS9NoFkdAoG/ba9K28nV9lChoBmgJaA9DCKw8gbBT83BAlIaUUpRoFUv4aBZHQKB50qbSZ0F1fZQoaAZoCWgPQwhJ88e0dkpyQJSGlFKUaBVL/GgWR0CgegTNUwSKdX2UKGgGaAloD0MIu16aIkBNc0CUhpRSlGgVS/FoFkdAoHpfoq0+knV9lChoBmgJaA9DCOurqwJ1KXFAlIaUUpRoFUvcaBZHQKB6bRHf/FR1fZQoaAZoCWgPQwgIyJdQgelxQJSGlFKUaBVLyGgWR0Cgem1LzwtrdX2UKGgGaAloD0MInGnC9tNFcECUhpRSlGgVS9RoFkdAoHrp6dDpknV9lChoBmgJaA9DCKa3PxcNIW9AlIaUUpRoFUvgaBZHQKB685myxA11fZQoaAZoCWgPQwjWdD3RdZxvQJSGlFKUaBVL12gWR0Cgev28RL9NdX2UKGgGaAloD0MIXVFKCNanc0CUhpRSlGgVS+FoFkdAoHs2Dxsl9nV9lChoBmgJaA9DCMsvgzFirXJAlIaUUpRoFUvZaBZHQKB7VMRHww11fZQoaAZoCWgPQwh6ck2BzP1wQJSGlFKUaBVL/2gWR0Cge4ZgogFHdX2UKGgGaAloD0MImPp5U5HacECUhpRSlGgVS/RoFkdAoHwoCSzPbHV9lChoBmgJaA9DCNApyM/GzXNAlIaUUpRoFU0KAWgWR0CgfGTgEU0vdX2UKGgGaAloD0MIzGJi87GKc0CUhpRSlGgVTQ4BaBZHQKB8fW912aF1fZQoaAZoCWgPQwh6bqErkRJxQJSGlFKUaBVL3WgWR0CgfKWJ79hrdX2UKGgGaAloD0MISNxj6YP+cECUhpRSlGgVTRMBaBZHQKB84UliSaF1fZQoaAZoCWgPQwhljXqIxj5yQJSGlFKUaBVL1WgWR0CgfR/KISDidX2UKGgGaAloD0MIFOrpI3BzckCUhpRSlGgVS/JoFkdAoH0nQa72+XV9lChoBmgJaA9DCDBntis0B3BAlIaUUpRoFUvWaBZHQKB9MYYR/Vl1fZQoaAZoCWgPQwiyKy0jdUdxQJSGlFKUaBVL22gWR0CgfUF3IMjNdX2UKGgGaAloD0MIEeD0Lt5RckCUhpRSlGgVS95oFkdAoH3IVuaWonV9lChoBmgJaA9DCLzplh1ibnBAlIaUUpRoFUvVaBZHQKB9/mGucMF1fZQoaAZoCWgPQwjaykv+J79uQJSGlFKUaBVL7WgWR0CgfhBttQ9BdX2UKGgGaAloD0MIdbFppdCycECUhpRSlGgVS9hoFkdAoH4sRUWEb3V9lChoBmgJaA9DCG8Sg8DKUHNAlIaUUpRoFUv7aBZHQKB+NQLux8l1fZQoaAZoCWgPQwiR8/4/DjtyQJSGlFKUaBVL02gWR0CgfkyeiBXkdX2UKGgGaAloD0MIM2/VdSjicUCUhpRSlGgVS9FoFkdAoH8VvXK8tnV9lChoBmgJaA9DCJsff2mR/XBAlIaUUpRoFUvLaBZHQKB/GfHPu5V1fZQoaAZoCWgPQwg+k/3zdEVxQJSGlFKUaBVL7WgWR0Cgfzk/r0J4dX2UKGgGaAloD0MIz6J3KuAscECUhpRSlGgVS99oFkdAoH+Fwm3OOnV9lChoBmgJaA9DCDCca5ghvnJAlIaUUpRoFU1QA2gWR0Cgf6r74zrNdX2UKGgGaAloD0MIvtpRnCPTcUCUhpRSlGgVS9poFkdAoH+tyWAwwnV9lChoBmgJaA9DCE5+i06Wg3JAlIaUUpRoFUvgaBZHQKB/9xJd0JZ1fZQoaAZoCWgPQwiLUGwFTRJxQJSGlFKUaBVL4GgWR0CggAYJ3PiUdX2UKGgGaAloD0MIH0q05DFxcUCUhpRSlGgVS+ZoFkdAoIAOd7OVxHV9lChoBmgJaA9DCInS3uBL0XBAlIaUUpRoFUvkaBZHQKCAHbN8ma91fZQoaAZoCWgPQwh+yFuufkRxQJSGlFKUaBVLxGgWR0CggGTRplBhdX2UKGgGaAloD0MIHT7pRMIccUCUhpRSlGgVS8loFkdAoIB/yqdYn3V9lChoBmgJaA9DCKfK94zE8W9AlIaUUpRoFUvjaBZHQKCAjTmW+oN1fZQoaAZoCWgPQwi/84sStBRwQJSGlFKUaBVL3WgWR0CggNRbbDdhdX2UKGgGaAloD0MIMGghAaN6ckCUhpRSlGgVS+5oFkdAoID6c9W6snV9lChoBmgJaA9DCEj7H2DtkXBAlIaUUpRoFUvtaBZHQKCBFesPrfN1fZQoaAZoCWgPQwgzb9V16NZwQJSGlFKUaBVL0mgWR0CggXw1zhgmdX2UKGgGaAloD0MI02ndBrUcc0CUhpRSlGgVS85oFkdAoIGQY1pCbHV9lChoBmgJaA9DCNJu9DGf921AlIaUUpRoFUvraBZHQKCBypw0fo11fZQoaAZoCWgPQwgD6WLTiphxQJSGlFKUaBVLv2gWR0CggiqSowVTdX2UKGgGaAloD0MIZktWRXiacUCUhpRSlGgVS+5oFkdAoIJWpXIU8HV9lChoBmgJaA9DCKQzMPIyi3JAlIaUUpRoFUv/aBZHQKCCbFkxyn11fZQoaAZoCWgPQwjzOXe7HshyQJSGlFKUaBVL+GgWR0CggntpdrwfdX2UKGgGaAloD0MI6Q5iZwoycUCUhpRSlGgVS+VoFkdAoIKaVhTfi3V9lChoBmgJaA9DCN4f71WrXHBAlIaUUpRoFUvjaBZHQKCCrk/bCaZ1fZQoaAZoCWgPQwh81F+vMBJxQJSGlFKUaBVL92gWR0Cggr8CYCyRdX2UKGgGaAloD0MI46jcRG19cUCUhpRSlGgVS+doFkdAoIMCZ6Uqx3V9lChoBmgJaA9DCE6aBkVzWnBAlIaUUpRoFUvhaBZHQKCDDlCCz1N1fZQoaAZoCWgPQwhxOzQsBndyQJSGlFKUaBVL82gWR0Cgg01NYbKidX2UKGgGaAloD0MIfEj43h+zcECUhpRSlGgVS9FoFkdAoINdTR6WxHV9lChoBmgJaA9DCF97ZklA93BAlIaUUpRoFUvlaBZHQKCDsnQY1pF1fZQoaAZoCWgPQwiwyoXKv6RyQJSGlFKUaBVL/WgWR0Cgg7HbItDldX2UKGgGaAloD0MI4zWv6mxMc0CUhpRSlGgVS9BoFkdAoIPcGcFyJnV9lChoBmgJaA9DCGGnWDWIVXNAlIaUUpRoFUv3aBZHQKCEaR5kbxV1fZQoaAZoCWgPQwigcHZrmR1yQJSGlFKUaBVL72gWR0CghI+NkvsadX2UKGgGaAloD0MIkpGzsKeobkCUhpRSlGgVS9NoFkdAoIScYGdI5HV9lChoBmgJaA9DCHC044ZfpnBAlIaUUpRoFUvYaBZHQKCFHK6Fuel1fZQoaAZoCWgPQwjjNa/qrChwQJSGlFKUaBVL7WgWR0CghTJUgjhUdX2UKGgGaAloD0MIRzoDI29+ckCUhpRSlGgVS9RoFkdAoIU7zAeq73V9lChoBmgJaA9DCDuKc9RRmG9AlIaUUpRoFUvaaBZHQKCFPDKHO8l1fZQoaAZoCWgPQwgai6az00RxQJSGlFKUaBVL92gWR0CghT/h2nsLdX2UKGgGaAloD0MIAfkSKjiucECUhpRSlGgVTQYBaBZHQKCFiKk2xY91fZQoaAZoCWgPQwi53jZTYeVwQJSGlFKUaBVL3WgWR0CghagH3UQTdX2UKGgGaAloD0MIpwhwepdPc0CUhpRSlGgVS+xoFkdAoIXHrD63zHV9lChoBmgJaA9DCNmZQuc1SG5AlIaUUpRoFUvfaBZHQKCGAYRdyDJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 340, "n_steps": 1024, "gamma": 0.9924500724639644, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 240.08849236416208, "std_reward": 48.50028810750223, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-05T22:29:42.044972"}
 
1
+ {"mean_reward": 277.8911088361313, "std_reward": 25.461522282444456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-18T20:57:27.618203"}