--- tags: - generated_from_trainer datasets: - liputan6 model-index: - name: IndoRetNet-Liputan6 results: [] license: apache-2.0 language: - id --- # IndoRetNet-Liputan6 This model is a Indonesian RetNet model train using the Liputan6 dataset. Using Tokenizer from [IndoBERT](https://huggingface.co/indolem/indobert-base-uncased) It achieves the following results on the evaluation set: - Loss: 3.4936 ## Model description Demonstrate training and recurrent inference using a retentive network (https://arxiv.org/pdf/2307.08621.pdf). The code utilizes Sehyun Choi's implementation of retentive network (https://github.com/syncdoth/RetNet). - **License:** Apache 2.0. ## Intended uses & limitations Intended to demonstrate training and (recurrent O(1)) inference using a retentive network in Indonesian language. ## Training and evaluation data Using Train and validation set from Liputan6 dataset provided by [NusaCrowd](https://github.com/IndoNLP/nusa-crowd). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.5053 | 0.17 | 1000 | 4.5145 | | 4.1281 | 0.34 | 2000 | 4.1702 | | 3.9452 | 0.52 | 3000 | 4.0094 | | 3.8302 | 0.69 | 4000 | 3.8972 | | 3.6955 | 0.86 | 5000 | 3.8144 | | 3.589 | 1.03 | 6000 | 3.7600 | | 3.5279 | 1.21 | 7000 | 3.7088 | | 3.4598 | 1.38 | 8000 | 3.6670 | | 3.4445 | 1.55 | 9000 | 3.6259 | | 3.4098 | 1.72 | 10000 | 3.5904 | | 3.3455 | 1.9 | 11000 | 3.5610 | | 3.2306 | 2.07 | 12000 | 3.5406 | | 3.261 | 2.24 | 13000 | 3.5216 | | 3.2204 | 2.41 | 14000 | 3.5111 | | 3.2321 | 2.59 | 15000 | 3.5001 | | 3.2514 | 2.76 | 16000 | 3.4941 | | 3.233 | 2.93 | 17000 | 3.4936 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0