File size: 2,428 Bytes
5b02deb 6aa952c 5b02deb 6aa952c 5b02deb 6aa952c 5b02deb 6aa952c 5b02deb 6aa952c bc7bc76 5b02deb 6aa952c 5b02deb 8125747 5b02deb bc7bc76 5b02deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-token-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-token-classifier
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0728
- Precision: 0.9694
- Recall: 0.9767
- F1: 0.9730
- Accuracy: 0.9846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.0798 | 1.0 | 119 | 0.5221 | 0.5989 | 0.3881 | 0.4710 | 0.8427 |
| 0.2561 | 2.0 | 238 | 0.1148 | 0.9162 | 0.9214 | 0.9188 | 0.9716 |
| 0.0901 | 3.0 | 357 | 0.0863 | 0.9729 | 0.9584 | 0.9656 | 0.9799 |
| 0.0735 | 4.0 | 476 | 0.0699 | 0.9658 | 0.9701 | 0.9680 | 0.9827 |
| 0.0528 | 5.0 | 595 | 0.0674 | 0.9545 | 0.9761 | 0.9652 | 0.9831 |
| 0.0505 | 6.0 | 714 | 0.0659 | 0.9689 | 0.9757 | 0.9723 | 0.9841 |
| 0.0394 | 7.0 | 833 | 0.0696 | 0.9633 | 0.9771 | 0.9701 | 0.9839 |
| 0.0278 | 8.0 | 952 | 0.0728 | 0.9640 | 0.9772 | 0.9706 | 0.9837 |
| 0.0241 | 9.0 | 1071 | 0.0728 | 0.9694 | 0.9767 | 0.9730 | 0.9846 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|