File size: 2,428 Bytes
5b02deb
 
6aa952c
 
5b02deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa952c
5b02deb
6aa952c
 
 
 
 
5b02deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa952c
 
 
5b02deb
 
 
6aa952c
bc7bc76
5b02deb
 
 
 
 
6aa952c
 
 
 
 
 
 
 
 
5b02deb
 
 
 
8125747
5b02deb
bc7bc76
5b02deb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-token-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-token-classifier

This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0728
- Precision: 0.9694
- Recall: 0.9767
- F1: 0.9730
- Accuracy: 0.9846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.0798        | 1.0   | 119  | 0.5221          | 0.5989    | 0.3881 | 0.4710 | 0.8427   |
| 0.2561        | 2.0   | 238  | 0.1148          | 0.9162    | 0.9214 | 0.9188 | 0.9716   |
| 0.0901        | 3.0   | 357  | 0.0863          | 0.9729    | 0.9584 | 0.9656 | 0.9799   |
| 0.0735        | 4.0   | 476  | 0.0699          | 0.9658    | 0.9701 | 0.9680 | 0.9827   |
| 0.0528        | 5.0   | 595  | 0.0674          | 0.9545    | 0.9761 | 0.9652 | 0.9831   |
| 0.0505        | 6.0   | 714  | 0.0659          | 0.9689    | 0.9757 | 0.9723 | 0.9841   |
| 0.0394        | 7.0   | 833  | 0.0696          | 0.9633    | 0.9771 | 0.9701 | 0.9839   |
| 0.0278        | 8.0   | 952  | 0.0728          | 0.9640    | 0.9772 | 0.9706 | 0.9837   |
| 0.0241        | 9.0   | 1071 | 0.0728          | 0.9694    | 0.9767 | 0.9730 | 0.9846   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0