End of training
Browse files- README.md +139 -139
- model.safetensors +1 -1
- tokenizer.json +2 -14
- training_args.bin +1 -1
README.md
CHANGED
@@ -21,21 +21,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
-
- F1: 0.
|
29 |
- Classification Report: precision recall f1-score support
|
30 |
|
31 |
LOC 0.94 0.96 0.95 1837
|
32 |
-
MISC 0.
|
33 |
-
ORG 0.
|
34 |
-
PER 0.
|
35 |
|
36 |
-
micro avg 0.92 0.93 0.
|
37 |
-
macro avg 0.91 0.
|
38 |
-
weighted avg 0.92 0.93 0.
|
39 |
|
40 |
|
41 |
## Model description
|
@@ -68,209 +68,209 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
|
70 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
71 |
-
| 0.
|
72 |
|
73 |
-
LOC 0.
|
74 |
-
MISC 0.
|
75 |
-
ORG 0.81 0.
|
76 |
-
PER 0.
|
77 |
|
78 |
-
micro avg 0.
|
79 |
-
macro avg 0.
|
80 |
-
weighted avg 0.
|
81 |
|
|
82 |
-
| 0.
|
83 |
|
84 |
-
LOC 0.
|
85 |
-
MISC 0.89 0.
|
86 |
-
ORG 0.78 0.
|
87 |
-
PER 0.
|
88 |
|
89 |
-
micro avg 0.86 0.87 0.
|
90 |
macro avg 0.86 0.84 0.85 5942
|
91 |
weighted avg 0.86 0.87 0.86 5942
|
92 |
|
|
93 |
-
| 0.
|
94 |
|
95 |
-
LOC 0.
|
96 |
-
MISC 0.
|
97 |
-
ORG 0.
|
98 |
-
PER 0.96 0.
|
99 |
|
100 |
micro avg 0.89 0.88 0.88 5942
|
101 |
-
macro avg 0.
|
102 |
weighted avg 0.89 0.88 0.89 5942
|
103 |
|
|
104 |
-
| 0.
|
105 |
|
106 |
LOC 0.93 0.95 0.94 1837
|
107 |
-
MISC 0.
|
108 |
-
ORG 0.
|
109 |
-
PER 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
micro avg 0.90 0.91 0.91 5942
|
112 |
macro avg 0.89 0.89 0.89 5942
|
113 |
weighted avg 0.90 0.91 0.91 5942
|
114 |
|
|
115 |
-
| 0.
|
116 |
|
117 |
-
LOC 0.
|
118 |
-
MISC 0.
|
119 |
-
ORG 0.
|
120 |
-
PER 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
micro avg 0.91 0.91 0.91 5942
|
123 |
macro avg 0.90 0.90 0.90 5942
|
124 |
weighted avg 0.91 0.91 0.91 5942
|
125 |
|
|
126 |
-
| 0.
|
127 |
|
128 |
-
LOC 0.92 0.
|
129 |
-
MISC 0.
|
130 |
-
ORG 0.
|
131 |
-
PER 0.
|
132 |
|
133 |
-
micro avg 0.
|
134 |
-
macro avg 0.
|
135 |
-
weighted avg 0.
|
136 |
|
|
137 |
-
| 0.
|
138 |
|
139 |
-
LOC 0.
|
140 |
-
MISC 0.
|
141 |
-
ORG 0.
|
142 |
-
PER 0.
|
143 |
|
144 |
-
micro avg 0.
|
145 |
-
macro avg 0.
|
146 |
-
weighted avg 0.
|
147 |
|
|
148 |
-
| 0.
|
149 |
|
150 |
LOC 0.92 0.96 0.94 1837
|
151 |
-
MISC 0.
|
152 |
-
ORG 0.
|
153 |
-
PER 0.
|
154 |
|
155 |
-
micro avg 0.
|
156 |
-
macro avg 0.
|
157 |
-
weighted avg 0.
|
158 |
|
|
159 |
-
| 0.
|
160 |
|
161 |
-
LOC 0.
|
162 |
MISC 0.88 0.84 0.86 922
|
163 |
-
ORG 0.
|
164 |
-
PER 0.
|
165 |
|
166 |
-
micro avg 0.
|
167 |
-
macro avg 0.
|
168 |
-
weighted avg 0.
|
169 |
|
|
170 |
-
| 0.
|
171 |
|
172 |
-
LOC 0.
|
173 |
-
MISC 0.
|
174 |
ORG 0.86 0.87 0.87 1341
|
175 |
-
PER 0.94 0.
|
176 |
|
177 |
-
micro avg 0.
|
178 |
-
macro avg 0.91 0.
|
179 |
-
weighted avg 0.
|
180 |
|
|
181 |
-
| 0.
|
182 |
|
183 |
-
LOC 0.
|
184 |
-
MISC 0.89 0.86 0.
|
185 |
-
ORG 0.
|
186 |
-
PER 0.
|
187 |
|
188 |
-
micro avg 0.
|
189 |
-
macro avg 0.
|
190 |
-
weighted avg 0.
|
191 |
|
|
192 |
-
| 0.
|
193 |
|
194 |
-
LOC 0.
|
195 |
-
MISC 0.
|
196 |
-
ORG 0.
|
197 |
PER 0.95 0.97 0.96 1842
|
198 |
|
199 |
-
micro avg 0.
|
200 |
-
macro avg 0.
|
201 |
-
weighted avg 0.
|
202 |
-
|
|
203 |
-
| 0.0112 | 3.4685 | 6500 | 0.0845 | 0.9835 | 0.9131 | 0.9265 | 0.9197 | precision recall f1-score support
|
204 |
-
|
205 |
-
LOC 0.93 0.96 0.94 1837
|
206 |
-
MISC 0.85 0.88 0.86 922
|
207 |
-
ORG 0.87 0.88 0.87 1341
|
208 |
-
PER 0.96 0.96 0.96 1842
|
209 |
-
|
210 |
-
micro avg 0.91 0.93 0.92 5942
|
211 |
-
macro avg 0.90 0.92 0.91 5942
|
212 |
-
weighted avg 0.91 0.93 0.92 5942
|
213 |
|
|
214 |
-
| 0.
|
215 |
|
216 |
-
LOC 0.
|
217 |
-
MISC 0.
|
218 |
-
ORG 0.
|
219 |
PER 0.95 0.96 0.96 1842
|
220 |
|
221 |
-
micro avg 0.
|
222 |
macro avg 0.92 0.91 0.91 5942
|
223 |
-
weighted avg 0.
|
224 |
|
|
225 |
-
| 0.
|
226 |
|
227 |
-
LOC 0.
|
228 |
-
MISC 0.
|
229 |
-
ORG 0.
|
230 |
PER 0.95 0.96 0.96 1842
|
231 |
|
232 |
-
micro avg 0.
|
233 |
-
macro avg 0.92 0.91 0.
|
234 |
-
weighted avg 0.
|
235 |
|
|
236 |
-
| 0.
|
237 |
|
238 |
LOC 0.94 0.96 0.95 1837
|
239 |
-
MISC 0.
|
240 |
-
ORG 0.88 0.
|
241 |
-
PER 0.
|
242 |
|
243 |
micro avg 0.92 0.93 0.93 5942
|
244 |
macro avg 0.92 0.92 0.92 5942
|
245 |
weighted avg 0.92 0.93 0.93 5942
|
246 |
|
|
247 |
-
| 0.
|
248 |
-
|
249 |
-
LOC 0.95 0.96 0.95 1837
|
250 |
-
MISC 0.90 0.85 0.87 922
|
251 |
-
ORG 0.90 0.88 0.89 1341
|
252 |
-
PER 0.95 0.97 0.96 1842
|
253 |
-
|
254 |
-
micro avg 0.93 0.93 0.93 5942
|
255 |
-
macro avg 0.92 0.91 0.92 5942
|
256 |
-
weighted avg 0.93 0.93 0.93 5942
|
257 |
-
|
|
258 |
-
| 0.0062 | 4.8026 | 9000 | 0.0887 | 0.9845 | 0.9232 | 0.9286 | 0.9259 | precision recall f1-score support
|
259 |
|
260 |
LOC 0.94 0.96 0.95 1837
|
261 |
-
MISC 0.
|
262 |
-
ORG 0.
|
263 |
-
PER 0.
|
264 |
|
265 |
-
micro avg 0.92 0.93 0.
|
266 |
-
macro avg 0.91 0.
|
267 |
-
weighted avg 0.92 0.93 0.
|
268 |
|
|
269 |
|
270 |
|
271 |
### Framework versions
|
272 |
|
273 |
- Transformers 4.47.1
|
274 |
-
- Pytorch 2.
|
275 |
- Datasets 3.2.0
|
276 |
- Tokenizers 0.21.0
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0922
|
25 |
+
- Accuracy: 0.9840
|
26 |
+
- Precision: 0.9221
|
27 |
+
- Recall: 0.9260
|
28 |
+
- F1: 0.9240
|
29 |
- Classification Report: precision recall f1-score support
|
30 |
|
31 |
LOC 0.94 0.96 0.95 1837
|
32 |
+
MISC 0.88 0.87 0.87 922
|
33 |
+
ORG 0.88 0.87 0.88 1341
|
34 |
+
PER 0.96 0.96 0.96 1842
|
35 |
|
36 |
+
micro avg 0.92 0.93 0.92 5942
|
37 |
+
macro avg 0.91 0.91 0.91 5942
|
38 |
+
weighted avg 0.92 0.93 0.92 5942
|
39 |
|
40 |
|
41 |
## Model description
|
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
|
70 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
71 |
+
| 0.1354 | 0.2668 | 500 | 0.1185 | 0.9686 | 0.8405 | 0.8304 | 0.8354 | precision recall f1-score support
|
72 |
|
73 |
+
LOC 0.83 0.94 0.88 1837
|
74 |
+
MISC 0.78 0.70 0.74 922
|
75 |
+
ORG 0.81 0.62 0.70 1341
|
76 |
+
PER 0.90 0.94 0.92 1842
|
77 |
|
78 |
+
micro avg 0.84 0.83 0.84 5942
|
79 |
+
macro avg 0.83 0.80 0.81 5942
|
80 |
+
weighted avg 0.84 0.83 0.83 5942
|
81 |
|
|
82 |
+
| 0.0971 | 0.5336 | 1000 | 0.1045 | 0.9744 | 0.8578 | 0.8721 | 0.8649 | precision recall f1-score support
|
83 |
|
84 |
+
LOC 0.86 0.96 0.91 1837
|
85 |
+
MISC 0.89 0.71 0.79 922
|
86 |
+
ORG 0.78 0.74 0.76 1341
|
87 |
+
PER 0.89 0.96 0.93 1842
|
88 |
|
89 |
+
micro avg 0.86 0.87 0.86 5942
|
90 |
macro avg 0.86 0.84 0.85 5942
|
91 |
weighted avg 0.86 0.87 0.86 5942
|
92 |
|
|
93 |
+
| 0.097 | 0.8004 | 1500 | 0.0849 | 0.9776 | 0.8884 | 0.8812 | 0.8848 | precision recall f1-score support
|
94 |
|
95 |
+
LOC 0.93 0.91 0.92 1837
|
96 |
+
MISC 0.77 0.82 0.79 922
|
97 |
+
ORG 0.82 0.83 0.82 1341
|
98 |
+
PER 0.96 0.92 0.94 1842
|
99 |
|
100 |
micro avg 0.89 0.88 0.88 5942
|
101 |
+
macro avg 0.87 0.87 0.87 5942
|
102 |
weighted avg 0.89 0.88 0.89 5942
|
103 |
|
|
104 |
+
| 0.0522 | 1.0672 | 2000 | 0.0838 | 0.9791 | 0.9014 | 0.8955 | 0.8984 | precision recall f1-score support
|
105 |
|
106 |
LOC 0.93 0.95 0.94 1837
|
107 |
+
MISC 0.82 0.81 0.82 922
|
108 |
+
ORG 0.88 0.79 0.83 1341
|
109 |
+
PER 0.93 0.97 0.95 1842
|
110 |
+
|
111 |
+
micro avg 0.90 0.90 0.90 5942
|
112 |
+
macro avg 0.89 0.88 0.88 5942
|
113 |
+
weighted avg 0.90 0.90 0.90 5942
|
114 |
+
|
|
115 |
+
| 0.0491 | 1.3340 | 2500 | 0.0734 | 0.9814 | 0.9021 | 0.9088 | 0.9054 | precision recall f1-score support
|
116 |
+
|
117 |
+
LOC 0.92 0.95 0.93 1837
|
118 |
+
MISC 0.86 0.82 0.84 922
|
119 |
+
ORG 0.84 0.85 0.84 1341
|
120 |
+
PER 0.95 0.96 0.96 1842
|
121 |
|
122 |
micro avg 0.90 0.91 0.91 5942
|
123 |
macro avg 0.89 0.89 0.89 5942
|
124 |
weighted avg 0.90 0.91 0.91 5942
|
125 |
|
|
126 |
+
| 0.0435 | 1.6009 | 3000 | 0.0891 | 0.9776 | 0.8685 | 0.8972 | 0.8826 | precision recall f1-score support
|
127 |
|
128 |
+
LOC 0.93 0.94 0.94 1837
|
129 |
+
MISC 0.78 0.82 0.80 922
|
130 |
+
ORG 0.74 0.90 0.81 1341
|
131 |
+
PER 0.97 0.89 0.93 1842
|
132 |
+
|
133 |
+
micro avg 0.87 0.90 0.88 5942
|
134 |
+
macro avg 0.86 0.89 0.87 5942
|
135 |
+
weighted avg 0.88 0.90 0.89 5942
|
136 |
+
|
|
137 |
+
| 0.0341 | 1.8677 | 3500 | 0.0777 | 0.9813 | 0.9072 | 0.9111 | 0.9092 | precision recall f1-score support
|
138 |
+
|
139 |
+
LOC 0.91 0.96 0.94 1837
|
140 |
+
MISC 0.87 0.84 0.85 922
|
141 |
+
ORG 0.86 0.83 0.85 1341
|
142 |
+
PER 0.95 0.96 0.95 1842
|
143 |
|
144 |
micro avg 0.91 0.91 0.91 5942
|
145 |
macro avg 0.90 0.90 0.90 5942
|
146 |
weighted avg 0.91 0.91 0.91 5942
|
147 |
|
|
148 |
+
| 0.0246 | 2.1345 | 4000 | 0.0838 | 0.9813 | 0.8991 | 0.9174 | 0.9081 | precision recall f1-score support
|
149 |
|
150 |
+
LOC 0.92 0.96 0.94 1837
|
151 |
+
MISC 0.86 0.82 0.84 922
|
152 |
+
ORG 0.87 0.85 0.86 1341
|
153 |
+
PER 0.92 0.97 0.95 1842
|
154 |
|
155 |
+
micro avg 0.90 0.92 0.91 5942
|
156 |
+
macro avg 0.89 0.90 0.90 5942
|
157 |
+
weighted avg 0.90 0.92 0.91 5942
|
158 |
|
|
159 |
+
| 0.0205 | 2.4013 | 4500 | 0.0764 | 0.9830 | 0.9104 | 0.9204 | 0.9154 | precision recall f1-score support
|
160 |
|
161 |
+
LOC 0.96 0.94 0.95 1837
|
162 |
+
MISC 0.84 0.86 0.85 922
|
163 |
+
ORG 0.82 0.88 0.85 1341
|
164 |
+
PER 0.96 0.96 0.96 1842
|
165 |
|
166 |
+
micro avg 0.91 0.92 0.92 5942
|
167 |
+
macro avg 0.90 0.91 0.90 5942
|
168 |
+
weighted avg 0.91 0.92 0.92 5942
|
169 |
|
|
170 |
+
| 0.022 | 2.6681 | 5000 | 0.0856 | 0.9819 | 0.9051 | 0.9192 | 0.9121 | precision recall f1-score support
|
171 |
|
172 |
LOC 0.92 0.96 0.94 1837
|
173 |
+
MISC 0.87 0.84 0.85 922
|
174 |
+
ORG 0.85 0.85 0.85 1341
|
175 |
+
PER 0.95 0.97 0.96 1842
|
176 |
|
177 |
+
micro avg 0.91 0.92 0.91 5942
|
178 |
+
macro avg 0.90 0.90 0.90 5942
|
179 |
+
weighted avg 0.90 0.92 0.91 5942
|
180 |
|
|
181 |
+
| 0.0244 | 2.9349 | 5500 | 0.0850 | 0.9829 | 0.9142 | 0.9194 | 0.9168 | precision recall f1-score support
|
182 |
|
183 |
+
LOC 0.94 0.96 0.95 1837
|
184 |
MISC 0.88 0.84 0.86 922
|
185 |
+
ORG 0.86 0.85 0.86 1341
|
186 |
+
PER 0.95 0.96 0.95 1842
|
187 |
|
188 |
+
micro avg 0.91 0.92 0.92 5942
|
189 |
+
macro avg 0.91 0.91 0.91 5942
|
190 |
+
weighted avg 0.91 0.92 0.92 5942
|
191 |
|
|
192 |
+
| 0.0166 | 3.2017 | 6000 | 0.0861 | 0.9834 | 0.9187 | 0.9191 | 0.9189 | precision recall f1-score support
|
193 |
|
194 |
+
LOC 0.94 0.96 0.95 1837
|
195 |
+
MISC 0.90 0.84 0.87 922
|
196 |
ORG 0.86 0.87 0.87 1341
|
197 |
+
PER 0.94 0.96 0.95 1842
|
198 |
|
199 |
+
micro avg 0.92 0.92 0.92 5942
|
200 |
+
macro avg 0.91 0.91 0.91 5942
|
201 |
+
weighted avg 0.92 0.92 0.92 5942
|
202 |
|
|
203 |
+
| 0.0094 | 3.4685 | 6500 | 0.0905 | 0.9840 | 0.9202 | 0.9236 | 0.9219 | precision recall f1-score support
|
204 |
|
205 |
+
LOC 0.95 0.96 0.95 1837
|
206 |
+
MISC 0.89 0.86 0.88 922
|
207 |
+
ORG 0.85 0.88 0.86 1341
|
208 |
+
PER 0.96 0.95 0.96 1842
|
209 |
|
210 |
+
micro avg 0.92 0.92 0.92 5942
|
211 |
+
macro avg 0.91 0.91 0.91 5942
|
212 |
+
weighted avg 0.92 0.92 0.92 5942
|
213 |
|
|
214 |
+
| 0.0123 | 3.7353 | 7000 | 0.0927 | 0.9837 | 0.9239 | 0.9219 | 0.9229 | precision recall f1-score support
|
215 |
|
216 |
+
LOC 0.95 0.95 0.95 1837
|
217 |
+
MISC 0.86 0.85 0.86 922
|
218 |
+
ORG 0.90 0.87 0.88 1341
|
219 |
PER 0.95 0.97 0.96 1842
|
220 |
|
221 |
+
micro avg 0.92 0.92 0.92 5942
|
222 |
+
macro avg 0.91 0.91 0.91 5942
|
223 |
+
weighted avg 0.92 0.92 0.92 5942
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
|
225 |
+
| 0.0097 | 4.0021 | 7500 | 0.0947 | 0.9839 | 0.9279 | 0.9221 | 0.9250 | precision recall f1-score support
|
226 |
|
227 |
+
LOC 0.95 0.96 0.95 1837
|
228 |
+
MISC 0.88 0.85 0.87 922
|
229 |
+
ORG 0.90 0.86 0.88 1341
|
230 |
PER 0.95 0.96 0.96 1842
|
231 |
|
232 |
+
micro avg 0.93 0.92 0.92 5942
|
233 |
macro avg 0.92 0.91 0.91 5942
|
234 |
+
weighted avg 0.93 0.92 0.92 5942
|
235 |
|
|
236 |
+
| 0.0049 | 4.2689 | 8000 | 0.0903 | 0.9840 | 0.9248 | 0.9251 | 0.9250 | precision recall f1-score support
|
237 |
|
238 |
+
LOC 0.94 0.96 0.95 1837
|
239 |
+
MISC 0.90 0.85 0.87 922
|
240 |
+
ORG 0.87 0.88 0.88 1341
|
241 |
PER 0.95 0.96 0.96 1842
|
242 |
|
243 |
+
micro avg 0.92 0.93 0.92 5942
|
244 |
+
macro avg 0.92 0.91 0.91 5942
|
245 |
+
weighted avg 0.92 0.93 0.92 5942
|
246 |
|
|
247 |
+
| 0.0037 | 4.5358 | 8500 | 0.0903 | 0.9843 | 0.9235 | 0.9283 | 0.9259 | precision recall f1-score support
|
248 |
|
249 |
LOC 0.94 0.96 0.95 1837
|
250 |
+
MISC 0.89 0.86 0.88 922
|
251 |
+
ORG 0.88 0.88 0.88 1341
|
252 |
+
PER 0.95 0.96 0.96 1842
|
253 |
|
254 |
micro avg 0.92 0.93 0.93 5942
|
255 |
macro avg 0.92 0.92 0.92 5942
|
256 |
weighted avg 0.92 0.93 0.93 5942
|
257 |
|
|
258 |
+
| 0.0038 | 4.8026 | 9000 | 0.0922 | 0.9840 | 0.9221 | 0.9260 | 0.9240 | precision recall f1-score support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
LOC 0.94 0.96 0.95 1837
|
261 |
+
MISC 0.88 0.87 0.87 922
|
262 |
+
ORG 0.88 0.87 0.88 1341
|
263 |
+
PER 0.96 0.96 0.96 1842
|
264 |
|
265 |
+
micro avg 0.92 0.93 0.92 5942
|
266 |
+
macro avg 0.91 0.91 0.91 5942
|
267 |
+
weighted avg 0.92 0.93 0.92 5942
|
268 |
|
|
269 |
|
270 |
|
271 |
### Framework versions
|
272 |
|
273 |
- Transformers 4.47.1
|
274 |
+
- Pytorch 2.3.1+cpu
|
275 |
- Datasets 3.2.0
|
276 |
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435617620
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89373e3b40383ce7f986f11010c12cdcb2533e018535bf5322bd87e01e6fc723
|
3 |
size 435617620
|
tokenizer.json
CHANGED
@@ -1,19 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
5 |
-
"max_length": 512,
|
6 |
-
"strategy": "LongestFirst",
|
7 |
-
"stride": 0
|
8 |
-
},
|
9 |
-
"padding": {
|
10 |
-
"strategy": "BatchLongest",
|
11 |
-
"direction": "Right",
|
12 |
-
"pad_to_multiple_of": null,
|
13 |
-
"pad_id": 0,
|
14 |
-
"pad_type_id": 0,
|
15 |
-
"pad_token": "[PAD]"
|
16 |
-
},
|
17 |
"added_tokens": [
|
18 |
{
|
19 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de62d8b0544990b5fcec003768f11a8e0d76bce15990c4e2726cf84bd5d6df80
|
3 |
size 5304
|