[paths] train = null dev = null vectors = "/opt/anaconda3/envs/spacy/lib/python3.9/site-packages/en_core_sci_md/en_core_sci_md-0.5.4" init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "en" pipeline = ["tok2vec","tagger","attribute_ruler","lemmatizer","parser","ner","textcat_multilabel"] tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} disabled = [] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 1000 vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.attribute_ruler] factory = "attribute_ruler" scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"} validate = false [components.lemmatizer] factory = "lemmatizer" mode = "rule" model = null overwrite = false scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [components.ner.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 96 attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,1000,2500,2500] include_static_vectors = "True" [components.ner.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 [components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 moves = null scorer = {"@scorers":"spacy.parser_scorer.v1"} update_with_oracle_cut_size = 100 [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 96 upstream = "tok2vec" [components.tagger] factory = "tagger" label_smoothing = 0.0 neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null normalize = "False" [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 96 upstream = "*" [components.textcat_multilabel] factory = "textcat_multilabel" scorer = {"@scorers":"spacy.textcat_multilabel_scorer.v2"} threshold = 0.5 [components.textcat_multilabel.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_multilabel.model.linear_model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = false length = 262144 ngram_size = 1 no_output_layer = false nO = null [components.textcat_multilabel.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 96 upstream = "*" [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 96 attrs = ["NORM","PREFIX","SUFFIX","SHAPE","SPACY","IS_SPACE"] rows = [5000,1000,2500,2500,50,50] include_static_vectors = "True" [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 [corpora] @readers = "prodigy.MergedCorpus.v1" eval_split = 0.2 sample_size = 1.0 ner = null textcat = null parser = null tagger = null senter = null spancat = null experimental_coref = null [corpora.textcat_multilabel] @readers = "prodigy.TextCatCorpus.v1" datasets = ["prodigy_vasc_class"] eval_datasets = [] exclusive = false [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = "pytorch" dropout = 0.1 accumulate_gradient = 1 patience = 0 max_epochs = 20 max_steps = 0 eval_frequency = 200 frozen_components = ["parser","tagger","attribute_ruler","lemmatizer","ner"] before_to_disk = null annotating_components = ["tok2vec","textcat_multilabel"] before_update = null [training.batcher] @batchers = "spacy.batch_by_sequence.v1" get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 4 stop = 64 compound = 1.001 t = 0.0 [training.logger] @loggers = "prodigy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] tag_acc = null lemma_acc = 0.33 dep_uas = null dep_las = null dep_las_per_type = null sents_p = null sents_r = null sents_f = null ents_f = null ents_p = null ents_r = null ents_per_type = null cats_score = 0.67 cats_score_desc = null cats_micro_p = null cats_micro_r = null cats_micro_f = null cats_macro_p = null cats_macro_r = null cats_macro_f = null cats_macro_auc = null cats_f_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null after_init = null [initialize.before_init] @callbacks = "spacy.copy_from_base_model.v1" tokenizer = "/opt/anaconda3/envs/spacy/lib/python3.9/site-packages/en_core_sci_md/en_core_sci_md-0.5.4" vocab = "/opt/anaconda3/envs/spacy/lib/python3.9/site-packages/en_core_sci_md/en_core_sci_md-0.5.4" [initialize.components] [initialize.tokenizer]