--- datasets: - danjacobellis/LSDIR_540 --- # Wavelet Learned Lossy Compression (WaLLoC) WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images. ## Installation 1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/) 2. Install WaLLoC and other dependencies via pip ```pip install walloc PyWavelets pytorch-wavelets``` ## Pre-trained checkpoints Pre-trained checkpoints are available on [Hugging Face](https://huggingface.co/danjacobellis/walloc). ## Training Access to training code is provided by request via [email.](mailto:danjacobellis@utexas.edu) ## Usage example ```python import os import torch import matplotlib.pyplot as plt import numpy as np from PIL import Image, ImageEnhance from IPython.display import display from torchvision.transforms import ToPILImage, PILToTensor from walloc import walloc from walloc.walloc import latent_to_pil, pil_to_latent class Config: pass ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_Li_27c_J3_nf4_v1.0.2.pth``` ```python device = "cpu" checkpoint = torch.load("RGB_Li_27c_J3_nf4_v1.0.2.pth",map_location="cpu",weights_only=False) codec_config = checkpoint['config'] codec = walloc.Codec2D( channels = codec_config.channels, J = codec_config.J, Ne = codec_config.Ne, Nd = codec_config.Nd, latent_dim = codec_config.latent_dim, latent_bits = codec_config.latent_bits, lightweight_encode = codec_config.lightweight_encode ) codec.load_state_dict(checkpoint['model_state_dict']) codec = codec.to(device) codec.eval(); ``` ### Load an example image ```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"``` ```python img = Image.open("kodim05.png") img ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_6_0.png) ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x = PILToTensor()(img).to(torch.float) x = (x/255 - 0.5).unsqueeze(0).to(device) x_hat, _, _ = codec(x) ToPILImage()(x_hat[0]+0.5) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_8_0.png) ### Accessing latents ```python with torch.no_grad(): codec.eval() X = codec.wavelet_analysis(x,J=codec.J) Y = codec.encoder(X) X_hat = codec.decoder(Y) x_hat = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/Y.numel()}×") ``` dimensionality reduction: 7.111111111111111× ```python Y.unique() ``` tensor([-7., -6., -5., -4., -3., -2., -1., -0., 1., 2., 3., 4., 5., 6., 7.]) ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( Y.flatten().numpy(), range=(-7.5,7.5), bins=15, density=True, width=0.9); plt.title("Histogram of latents") plt.xticks(range(-7,8,1)); plt.xlim([-7.5,7.5]) ``` (-7.5, 7.5) ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_12_1.png) # Lossless compression of latents ```python def scale_for_display(img, n_bits): scale_factor = (2**8 - 1) / (2**n_bits - 1) lut = [int(i * scale_factor) for i in range(2**n_bits)] channels = img.split() scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels] return Image.merge(img.mode, scaled_channels) ``` ### Single channel PNG (L) ```python Y_padded = torch.nn.functional.pad(Y, (0, 0, 0, 0, 0, 9)) Y_pil = latent_to_pil(Y_padded,codec.latent_bits,1) display(scale_for_display(Y_pil[0], codec.latent_bits)) Y_pil[0].save('latent.png') png = [Image.open("latent.png")] Y_rec = pil_to_latent(png,36,codec.latent_bits,1) assert(Y_rec.equal(Y_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.png")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_16_0.png) compression_ratio: 15.171345894154717 ### Three channel WebP (RGB) ```python Y_pil = latent_to_pil(Y,codec.latent_bits,3) display(scale_for_display(Y_pil[0], codec.latent_bits)) Y_pil[0].save('latent.webp',lossless=True) webp = [Image.open("latent.webp")] Y_rec = pil_to_latent(webp,27,codec.latent_bits,3) assert(Y_rec.equal(Y)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_18_0.png) compression_ratio: 16.451175633838172 ### Four channel TIF (CMYK) ```python Y_padded = torch.nn.functional.pad(Y, (0, 0, 0, 0, 0, 9)) Y_pil = latent_to_pil(Y_padded,codec.latent_bits,4) display(scale_for_display(Y_pil[0], codec.latent_bits)) Y_pil[0].save('latent.tif',compression="tiff_adobe_deflate") tif = [Image.open("latent.tif")] Y_rec = pil_to_latent(tif,36,codec.latent_bits,4) assert(Y_rec.equal(Y_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif")) ``` ![jpeg](README_files/README_20_0.jpg) compression_ratio: 12.40611656815935 ```python !jupyter nbconvert --to markdown README.ipynb ``` [NbConvertApp] Converting notebook README.ipynb to markdown [NbConvertApp] Support files will be in README_files/ [NbConvertApp] Making directory README_files [NbConvertApp] Writing 6024 bytes to README.md ```python !sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md ```