dannashao commited on
Commit
4db9438
·
verified ·
1 Parent(s): cf0af70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -7
README.md CHANGED
@@ -6,14 +6,19 @@ tags:
6
  model-index:
7
  - name: bert-base-uncased-finetuned-negation_scope
8
  results: []
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
  # bert-base-uncased-finetuned-negation_scope
15
 
16
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.0618
19
  - Token Precision: 0.9190
@@ -25,15 +30,20 @@ It achieves the following results on the evaluation set:
25
 
26
  ## Model description
27
 
28
- More information needed
 
 
 
 
 
29
 
30
  ## Intended uses & limitations
31
 
32
- More information needed
33
 
34
  ## Training and evaluation data
35
 
36
- More information needed
37
 
38
  ## Training procedure
39
 
@@ -62,4 +72,4 @@ The following hyperparameters were used during training:
62
  - Transformers 4.37.0
63
  - Pytorch 2.0.1+cu117
64
  - Datasets 2.16.1
65
- - Tokenizers 0.15.1
 
6
  model-index:
7
  - name: bert-base-uncased-finetuned-negation_scope
8
  results: []
9
+ datasets:
10
+ - dannashao/sem2012forNegbert
11
+ language:
12
+ - en
13
+ metrics:
14
+ - dannashao/span_metric
15
+ pipeline_tag: token-classification
16
  ---
17
 
 
 
18
 
19
  # bert-base-uncased-finetuned-negation_scope
20
 
21
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [SEM 2012 shared task](http://www.clips.ua.ac.be/sem2012-st-neg/) corpus (cd-sco).
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.0618
24
  - Token Precision: 0.9190
 
30
 
31
  ## Model description
32
 
33
+ We follow the Augment method described in [NegBERT (Khandelwal, et al. 2020)](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.704.pdf).
34
+ That is, adding a special token ([NEG]) immediately before the predicate:
35
+ > This is [NEG] not a sentence.
36
+
37
+ Note that **the special token and the predicate is considered a whole**. That is, the actual sentence is like
38
+ > 'This' 'is' **'[NEG] not'** 'a' 'sentence' '.'
39
 
40
  ## Intended uses & limitations
41
 
42
+ See details at https://github.com/dannashao/portfolio-NLP/blob/main/NEG/Fine%20tune%20BERT.ipynb
43
 
44
  ## Training and evaluation data
45
 
46
+ See details at https://www.clips.ua.ac.be/sem2012-st-neg/
47
 
48
  ## Training procedure
49
 
 
72
  - Transformers 4.37.0
73
  - Pytorch 2.0.1+cu117
74
  - Datasets 2.16.1
75
+ - Tokenizers 0.15.1