--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: GPT2-124M-wikitext-v0.1 results: [] datasets: - wikitext pipeline_tag: text-generation co2_eq_emissions: emissions: 500 training_type: "fine-tuning" source: "mlco2" geographical_location: "Bucharest, Romania" hardware_used: "1 x RTX 4090 GPU" --- # 🧠 GPT2-124M-wikitext-v0.1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [wikitext](https://huggingface.co/datasets/wikitext). It achieves the following results on the evaluation set: - Loss: 2.9841 ## Model description This is a practical hands-on experience for better understanding 🤗 Transformers and 🤗 Datasets. This model is GPT2(124M) fine-tuned on wikitext(103-raw-v1) on 1 x RTX 4090. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.1335 | 1.0 | 57467 | 3.0363 | | 3.0643 | 2.0 | 114934 | 2.9968 | | 3.0384 | 3.0 | 172401 | 2.9841 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0