--- tags: - tabular-classification - sklearn - tensorflow dataset: - titanic widget: structuredData: PassengerId: - 1191 Pclass: - 1 Name: - Sherlock Holmes Sex: - male SibSp: - 0 Parch: - 0 Ticket: - C.A.29395 Fare: - 12 Cabin: - F44 Embarked: - S --- ## Titanic (Survived/Not Survived) - Binary Classification ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd import numpy as np from tensorflow.keras.models import load_model REPO_ID = 'danupurnomo/dummy-titanic' PIPELINE_FILENAME = 'final_pipeline.pkl' TF_FILENAME = 'titanic_model.h5' model_pipeline = joblib.load(cached_download( hf_hub_url(REPO_ID, PIPELINE_FILENAME) )) model_seq = load_model(cached_download( hf_hub_url(REPO_ID, TF_FILENAME) )) ``` ### Example A New Data ```python new_data = { 'PassengerId': 1191, 'Pclass': 1, 'Name': 'Sherlock Holmes', 'Sex': 'male', 'Age': 30, 'SibSp': 0, 'Parch': 0, 'Ticket': 'C.A.29395', 'Fare': 12, 'Cabin': 'F44', 'Embarked': 'S' } new_data = pd.DataFrame([new_data]) ``` ### Transform Inference-Set ```python new_data_transform = model_pipeline.transform(new_data) ``` ### Predict using Neural Networks ```python y_pred_inf_single = model_seq.predict(new_data_transform) y_pred_inf_single = np.where(y_pred_inf_single >= 0.5, 1, 0) print('Result : ', y_pred_inf_single) # [[0]] ```