File size: 13,662 Bytes
86a4d79
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ac45e01360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ac45e013f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ac45e01480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ac45e01510>", "_build": "<function ActorCriticPolicy._build at 0x79ac45e015a0>", "forward": "<function ActorCriticPolicy.forward at 0x79ac45e01630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ac45e016c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ac45e01750>", "_predict": "<function ActorCriticPolicy._predict at 0x79ac45e017e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ac45e01870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ac45e01900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ac45e01990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ac45d9f8c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717433398265262830, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM35qr1U+JQ/PDDIvpUtOL8hsSm+Gn1uvgAAAAAAAAAAza2nvR+lhbncT4c7MtGOuLLrfTv+kJ23AACAPwAAgD/azek9qZECvBgf273jPHU8WxRRPZvCU7wAAIA/AACAP80YND5/jQk+lhijvty7/76jJkm9M/uSvQAAAAAAAAAAjYy/vYhyuT+jasK+tRFyvgag5r1a9ei9AAAAAAAAAACa2EQ+IuEiPn3pgb4tM9e+4zgbvA8ZpL0AAAAAAAAAAOCsOD48wpo+QXUYvjKS4r4HUos9DVamvQAAAAAAAAAAjV3PvbRv4z3l2W8+qrHWvlmdzTvV8+U9AAAAAAAAAABNI0G9LmS8P/B0174x1Rk+9K4KvXOtg74AAAAAAAAAAABlrTzgask++PNqPIzxT79Yqzo9JYNoPAAAAAAAAAAAmjc3vIzClD+mjZC9yR1Xv+ZRqLyXVpC8AAAAAAAAAACWwoA+pG/oPiuvEr6CFQS/0BmyPsaQCb4AAAAAAAAAAOAYJz6sx5c/aXofPzR7L78W8ko+FpuKPgAAAAAAAAAAs318vcOpZLooHeeyBgQ4sRkqSLuVcoEzAACAPwAAgD9NWg4+g8YGvKtBmjxCJBy7JwVUvce5ArwAAIA/AACAP/roLb4UHJ28vp8Yu8N3drlImQY+Fm1OOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDMRgE2YOWMAWyUS7aMAXSUR0C0dFGR7qptdX2UKGgGR0BviMkpqh11aAdLqGgIR0C0dFTlxOtXdX2UKGgGR0Bywt9ph4MXaAdL3mgIR0C0dGw3cYZVdX2UKGgGR0ByP0ssg+yJaAdL9GgIR0C0dIY0Q9RrdX2UKGgGR0By2OKdhAnlaAdLo2gIR0C0dKbmuDBedX2UKGgGR0BxPZ9H+ZPVaAdLuGgIR0C0dM1M/QjVdX2UKGgGR0BydvHGS6lMaAdL0GgIR0C0dOH5JsfrdX2UKGgGR0ByOkV2zOX3aAdLmWgIR0C0dPWTPjXGdX2UKGgGR0Bwz5cSoOx0aAdLsmgIR0C0dRBTKkmAdX2UKGgGR0BxjW1ndweeaAdL6GgIR0C0dRHh0hePdX2UKGgGR0BxFzHFPznSaAdL2mgIR0C0dRXPVurIdX2UKGgGR0Bx+H6ZYxL1aAdLh2gIR0C0dSOUUwi8dX2UKGgGR0Bwl92r4nF6aAdLqWgIR0C0dVSKR+z/dX2UKGgGR0BxkAliSaE0aAdLu2gIR0C0dV2QCCBgdX2UKGgGR0BlpgEwFkhBaAdN6ANoCEdAtHVttxdY4nV9lChoBkdAchtKK508vGgHS8NoCEdAtHVvl90A93V9lChoBkdAcLP59Vmz0GgHS8NoCEdAtHV1OWSlnHV9lChoBkdAcwNs+3YthGgHS8VoCEdAtHWW7L+xW3V9lChoBkdAc7RxhUipvWgHS8ZoCEdAtHWxJz1bq3V9lChoBkdAcVZ9ECvHLmgHS41oCEdAtHXI2rGR3nV9lChoBkdAcKKhw2l2vGgHS6RoCEdAtHXXp2U0N3V9lChoBkdAcqf0gbIcR2gHS9hoCEdAtHXv4pMHr3V9lChoBkdAcm77fHggo2gHS8FoCEdAtHXwd+5OJ3V9lChoBkdAcIvst03fh2gHS5toCEdAtHX4QbuMM3V9lChoBkdAbq9+BpYcN2gHS6RoCEdAtHYFyuIRAnV9lChoBkdAcTIhmXgLqmgHS7RoCEdAtHYtMWXTmXV9lChoBkdAciuYNy5qd2gHS5VoCEdAtHY13FDOT3V9lChoBkdAcJcPo3aSLmgHS5JoCEdAtHZAAAAAAHV9lChoBkdAcnLqp97Wu2gHS9ZoCEdAtHZPhfjS5XV9lChoBkdAceXgwoLG72gHS7hoCEdAtHZ4FbFCLXV9lChoBkdAZBNF3pwCKmgHTegDaAhHQLR2euIhyKh1fZQoaAZHQHI27ncL0BhoB0vdaAhHQLR2lOARTS91fZQoaAZHQHJDhtYSxqxoB0u2aAhHQLR2niwSrYJ1fZQoaAZHQHI5by6MBIZoB0vdaAhHQLR2skauOjt1fZQoaAZHQHKeL52yLQ5oB0u1aAhHQLR2tsSTQmh1fZQoaAZHQG94HGKhtchoB0uPaAhHQLR2wPHktEp1fZQoaAZHQHIpIcWCVbBoB0ulaAhHQLR2wzK9wm51fZQoaAZHQHFyHezlcQloB0u3aAhHQLR2zssxwhp1fZQoaAZHQHF+AdwNsnBoB0udaAhHQLR2zoE0SAZ1fZQoaAZHQHFvh2wFC9hoB0uraAhHQLR28d/8VHp1fZQoaAZHQHHKPsu3+ddoB0vJaAhHQLR3BkDIRyx1fZQoaAZHQG+sxjjJdSloB0ucaAhHQLR3FfapPyl1fZQoaAZHQHJhifYjB2xoB0vAaAhHQLR3PBQvYe11fZQoaAZHQHJK7DhtLthoB0vNaAhHQLR3RXko4Mp1fZQoaAZHQHIwKJqIrOJoB0u2aAhHQLR3Rz3h4t91fZQoaAZHQHHXcfV7QcBoB0ufaAhHQLR3UGvOhTR1fZQoaAZHQHKNMwL3K0VoB0u0aAhHQLR3aMnqmj11fZQoaAZHQHAMWcFyJbdoB0upaAhHQLR3fO1OTJR1fZQoaAZHQHHenJLdvbZoB0u9aAhHQLR3jneBQN11fZQoaAZHQHH4VuvUz9FoB0uWaAhHQLR3kMx46fd1fZQoaAZHQHICp6Uqx1RoB0uzaAhHQLR3nDgZTAF1fZQoaAZHQHNwsb3oLXtoB0u7aAhHQLR3qk3CKrJ1fZQoaAZHQHN5GUGFBY5oB0u2aAhHQLR3r1loUSJ1fZQoaAZHQHB7vYSQHRloB0u7aAhHQLR3tDr7fpF1fZQoaAZHQHEcSnYQJ5VoB0vDaAhHQLR3zHqeK9B1fZQoaAZHQHJRS2Yv38JoB0usaAhHQLR32lQ/HHZ1fZQoaAZHQHF3FZgXuVpoB0uQaAhHQLR4L1Iy0rt1fZQoaAZHQHG44ao/A0toB0u9aAhHQLR4MbMX7+F1fZQoaAZHQHDLNSydFv1oB0vWaAhHQLR4SwudwvR1fZQoaAZHQHMBXrUsnRdoB0unaAhHQLR4TP6be/J1fZQoaAZHQHKrlCojv/loB0vHaAhHQLR4euvllsh1fZQoaAZHQHENyqp97WxoB0uIaAhHQLR4fL/jsD51fZQoaAZHQHMYy5qdpZhoB0uuaAhHQLR4jUSqU/x1fZQoaAZHQHER1Fx4pttoB0vPaAhHQLR4mRO1v2p1fZQoaAZHQHGNjiS7oStoB0ueaAhHQLR4p9mHxjJ1fZQoaAZHQHMpjP8hs69oB0u6aAhHQLR4vJwsGxF1fZQoaAZHQHCaOf29L6FoB0ueaAhHQLR40PM0P6N1fZQoaAZHQHCwCW/rSmZoB0u/aAhHQLR5A2H+Idl1fZQoaAZHQHMSqbF0gbJoB0u+aAhHQLR5D5sTFl11fZQoaAZHQHNbQco6S1VoB0vUaAhHQLR5FJlrdnF1fZQoaAZHQG+U1lXiiqRoB0uuaAhHQLR5HEAHVwx1fZQoaAZHQG81qRMewLVoB0uKaAhHQLR5KjhUBGR1fZQoaAZHQHBoHtrsSkFoB0uZaAhHQLR5RgGbCrN1fZQoaAZHQHEuDdk8RthoB0uTaAhHQLR5hYmsvIx1fZQoaAZHQHIiT238XN1oB0u0aAhHQLR5lDFId2h1fZQoaAZHQHFyyeAd4mloB0uoaAhHQLR5shVENON1fZQoaAZHQHAuoPkJa7poB0ukaAhHQLR5u4L1EmZ1fZQoaAZHQHLre23KB/ZoB0vIaAhHQLR5vjesPrh1fZQoaAZHQHFqhQm/nGNoB0ueaAhHQLR5zJKaodd1fZQoaAZHQHHh3HJcPe5oB0utaAhHQLR52JQcghd1fZQoaAZHQHDIWrKeTV5oB0uiaAhHQLR6BQe3hGZ1fZQoaAZHQHGzg/PgNw1oB0vfaAhHQLR6bL/S6Ud1fZQoaAZHQHP8bel9BrxoB0uwaAhHQLR6fbOeJ551fZQoaAZHQHOyhfrrxAloB0u8aAhHQLR6iJrLyMF1fZQoaAZHQHLTo7A+IM1oB0vIaAhHQLR6lDw6QvJ1fZQoaAZHQHIwBxxT851oB0uuaAhHQLR6p0r9VFR1fZQoaAZHQHHoQ44p+c9oB0vHaAhHQLR6psF+uvF1fZQoaAZHQHNcsRQJokBoB0vAaAhHQLR6r99c8kl1fZQoaAZHQHLpeUILPUtoB0uqaAhHQLR678jzI3l1fZQoaAZHQHHETujRD1JoB0u0aAhHQLR69UIsyzp1fZQoaAZHQHIO/EKmbb1oB0ueaAhHQLR7EVENOM51fZQoaAZHQHPNduUD+zdoB0vBaAhHQLR7JrM1TBJ1fZQoaAZHQHNJLfpD/l1oB0vFaAhHQLR7NfOlfqp1fZQoaAZHQHNg77fpD/loB0vOaAhHQLR7Tq2jO9p1fZQoaAZHQHFRIvN/vv1oB0vCaAhHQLR7ZxiobXJ1fZQoaAZHQG/m3qZ+hGpoB0umaAhHQLR7kjghr311fZQoaAZHQHBjbfgrH2hoB0uvaAhHQLR7lK8L8aZ1fZQoaAZHQHEabPldTpBoB0uUaAhHQLR7mzfrKNh1fZQoaAZHQHA3THCGetloB0uqaAhHQLR7oCrLhaV1fZQoaAZHQHMWScCo0hxoB0uraAhHQLR7qZ8rqdJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}