File size: 20,359 Bytes
96ed3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# Dataloader of Gidaris & Komodakis, CVPR 2018
# Adapted from:
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
from __future__ import print_function
import os
import os.path
import numpy as npw
import random
import pickle
import json
import math
import torch
import torch.utils.data as data
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchnet as tnt
import numpy as np
import pandas as pd
import h5py
import cv2
from PIL import Image
from PIL import ImageEnhance
import matplotlib.pyplot as plt
from torchvision.transforms.transforms import ToPILImage
# Set the appropriate paths of the datasets here.
# _CIFAR_FS_DATASET_DIR = './cifar/CIFAR-FS/'
_CHEST_DATASET_DIR = './NIH'
image_path = './NIH/images'
label_dict = {'Cardiomegaly': 0, 'Edema': 1, 'Effusion': 2, 'Emphysema': 3, 'Infiltration': 4, 'Mass': 5, 'Atelectasis': 6, 'Consolidation': 7,
'Pleural_Thickening': 8, 'Fibrosis': 9, 'Hernia': 10, 'Pneumonia': 11, 'Nodule': 12, 'Pneumothorax': 13, 'No Finding': 14}
def buildLabelIndex(labels):
label2inds = {}
for idx, label in enumerate(labels):
label = label_dict[label]
if label not in label2inds:
label2inds[label] = []
label2inds[label].append(idx)
return label2inds
def load_data(file):
try:
with open(file, 'rb') as fo:
data = pickle.load(fo)
return data
except:
with open(file, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
data = u.load()
return data
class Chest(data.Dataset):
def __init__(self, phase='train', do_not_use_random_transf=False):
assert(phase == 'train' or phase == 'val' or phase ==
'test' or phase == 'trainval')
self.phase = phase
# self.name = phase + '.csv'
idx = 1 # represents group for experimentation
print('Loading Chest-XRay dataset - phase {0}'.format(phase))
train_path = os.path.join(_CHEST_DATASET_DIR, f'train{idx}.csv')
val_path = os.path.join(_CHEST_DATASET_DIR, f'val{idx}.csv')
test_path = os.path.join(_CHEST_DATASET_DIR, f'test{idx}.csv')
if self.phase == 'train':
# # During training phase we only load the training phase images
# # of the training categories (aka base categories).
# data_train = load_data(file_train_categories_train_phase)
# # self.data = data_train['data']
# self.labels = data_train['labels']
file = pd.read_csv(train_path)
self.data = file['image_id'].values
self.labels = file['class_name'].values
self.label2ind = buildLabelIndex(self.labels)
self.labelIds = sorted(self.label2ind.keys())
self.num_cats = len(self.labelIds)
self.labelIds_base = self.labelIds
self.num_cats_base = len(self.labelIds_base)
# elif self.phase == 'trainval':
# # During training phase we only load the training phase images
# # of the training categories (aka base categories).
# data_train = load_data(file_train_categories_train_phase)
# self.data = data_train['data']
# self.labels = data_train['labels']
# data_base = load_data(file_train_categories_val_phase)
# data_novel = load_data(file_val_categories_val_phase)
# self.data = np.concatenate(
# [self.data, data_novel['data']], axis=0)
# self.data = np.concatenate(
# [self.data, data_base['data']], axis=0)
# self.labels = np.concatenate(
# [self.labels, data_novel['labels']], axis=0)
# self.labels = np.concatenate(
# [self.labels, data_base['labels']], axis=0)
# self.label2ind = buildLabelIndex(self.labels)
# self.labelIds = sorted(self.label2ind.keys())
# self.num_cats = len(self.labelIds)
# self.labelIds_base = self.labelIds
# self.num_cats_base = len(self.labelIds_base)
elif self.phase == 'val' or self.phase == 'test':
if self.phase == 'test':
# # load data that will be used for evaluating the recognition
# # accuracy of the base categories.
# data_base = load_data(file_train_categories_test_phase)
# # load data that will be use for evaluating the few-shot recogniton
# # accuracy on the novel categories.
# data_novel = load_data(file_test_categories_test_phase)
train_file = pd.read_csv(train_path)
file = pd.read_csv(test_path)
else: # phase=='val'
# # load data that will be used for evaluating the recognition
# # accuracy of the base categories.
# data_base = load_data(file_train_categories_val_phase)
# # load data that will be use for evaluating the few-shot recogniton
# # accuracy on the novel categories.
# data_novel = load_data(file_val_categories_val_phase)
train_file = pd.read_csv(train_path)
file = pd.read_csv(val_path)
# self.data = np.concatenate(
# [data_base['data'], data_novel['data']], axis=0)
# self.labels = data_base['labels'] + data_novel['labels']
train_labels = train_file['class_name'].values
novel_labels = file['class_name'].values
self.data = np.concatenate(
[train_file['image_id'].values, file['image_id'].values], axis=0)
self.labels = np.concatenate(
[train_file['class_name'].values, file['class_name'].values], axis=0)
self.label2ind = buildLabelIndex(self.labels)
self.labelIds = sorted(self.label2ind.keys())
self.num_cats = len(self.labelIds)
# self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
# self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
self.labelIds_base = buildLabelIndex(train_labels).keys()
self.labelIds_novel = buildLabelIndex(novel_labels).keys()
print('='*60)
print(self.labelIds_novel)
print('='*60)
self.num_cats_base = len(self.labelIds_base)
self.num_cats_novel = len(self.labelIds_novel)
# print(self.labelIds_novel)
# print(self.num_cats_novel)
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
assert(len(intersection) == 0)
else:
raise ValueError('Not valid phase {0}'.format(self.phase))
# mean_pix = [x/255.0 for x in [129.37731888,
# 124.10583864, 112.47758569]]
# std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
mean_pix = [0.52024849, 0.52024849, 0.52024849]
std_pix = [0.22699496, 0.22699496, 0.22699496]
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
if (self.phase == 'test' or self.phase == 'val') or (do_not_use_random_transf == True):
self.transform = transforms.Compose([
transforms.ToPILImage(),
# lambda x: np.asarray(x),
transforms.ToTensor(),
# lambda x: x/255.0,
normalize
])
else:
self.transform = transforms.Compose([
transforms.ToPILImage(),
# transforms.RandomCrop(32, padding=4),
# transforms.ColorJitter(
# brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# lambda x: np.asarray(x),
# lambda x: x/255.0,
normalize
])
def __getitem__(self, index):
img, label = cv2.imread(os.path.join(
image_path, self.data[index]))[:,:,::-1], self.labels[index]
img = cv2.resize(img,(128,128)) # resize by Garvit
# img = cv2.resize(img,(84, 84)) # resize by kshitiz
# img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
return img, label, self.data[index]
# return img, label
def __len__(self):
return len(self.data)
class FewShotDataloader():
def __init__(self,
dataset,
nKnovel=5, # number of novel categories.
nKbase=-1, # number of base categories.
# number of training examples per novel category.
nExemplars=1,
# number of test examples for all the novel categories.
nTestNovel=15*5,
# number of test examples for all the base categories.
nTestBase=15*5,
batch_size=1, # number of training episodes per batch.
num_workers=4,
epoch_size=2000, # number of batches per epoch.
):
self.dataset = dataset
self.phase = self.dataset.phase
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase == 'train' or self.phase == 'trainval'
else self.dataset.num_cats_novel)
assert(nKnovel >= 0 and nKnovel <= max_possible_nKnovel)
self.nKnovel = nKnovel
max_possible_nKbase = self.dataset.num_cats_base
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
if (self.phase == 'train' or self.phase == 'trainval') and nKbase > 0:
nKbase -= self.nKnovel
max_possible_nKbase -= self.nKnovel
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
self.nKbase = nKbase
self.nExemplars = nExemplars
self.nTestNovel = nTestNovel
self.nTestBase = nTestBase
self.batch_size = batch_size
self.epoch_size = epoch_size
self.num_workers = num_workers
self.is_eval_mode = (self.phase == 'test') or (self.phase == 'val')
def sampleImageIdsFrom(self, cat_id, sample_size=1):
"""
Samples `sample_size` number of unique image ids picked from the
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
Args:
cat_id: a scalar with the id of the category from which images will
be sampled.
sample_size: number of images that will be sampled.
Returns:
image_ids: a list of length `sample_size` with unique image ids.
"""
assert(cat_id in self.dataset.label2ind)
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
# Note: random.sample samples elements without replacement.
# seed = random.randint(1,10000000)
# random.seed(seed)
return random.sample(self.dataset.label2ind[cat_id], sample_size)
def sampleCategories(self, cat_set, sample_size=1):
"""
Samples `sample_size` number of unique categories picked from the
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
Args:
cat_set: string that specifies the set of categories from which
categories will be sampled.
sample_size: number of categories that will be sampled.
Returns:
cat_ids: a list of length `sample_size` with unique category ids.
"""
if cat_set == 'base':
labelIds = self.dataset.labelIds_base
elif cat_set == 'novel':
labelIds = self.dataset.labelIds_novel
else:
raise ValueError('Not recognized category set {}'.format(cat_set))
assert(len(labelIds) >= sample_size)
# return sample_size unique categories chosen from labelIds set of
# categories (that can be either self.labelIds_base or self.labelIds_novel)
# Note: random.sample samples elements without replacement.
return random.sample(labelIds, sample_size)
def sample_base_and_novel_categories(self, nKbase, nKnovel):
"""
Samples `nKbase` number of base categories and `nKnovel` number of novel
categories.
Args:
nKbase: number of base categories
nKnovel: number of novel categories
Returns:
Kbase: a list of length 'nKbase' with the ids of the sampled base
categories.
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
categories.
"""
if self.is_eval_mode:
assert(nKnovel <= self.dataset.num_cats_novel)
# sample from the set of base categories 'nKbase' number of base
# categories.
Kbase = sorted(self.sampleCategories('base', nKbase))
# sample from the set of novel categories 'nKnovel' number of novel
# categories.
Knovel = sorted(self.sampleCategories('novel', nKnovel))
else:
# sample from the set of base categories 'nKnovel' + 'nKbase' number
# of categories.
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
assert(len(cats_ids) == (nKnovel+nKbase))
# Randomly pick 'nKnovel' number of fake novel categories and keep
# the rest as base categories.
random.shuffle(cats_ids)
Knovel = sorted(cats_ids[:nKnovel])
Kbase = sorted(cats_ids[nKnovel:])
return Kbase, Knovel
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
"""
Sample `nTestBase` number of images from the `Kbase` categories.
Args:
Kbase: a list of length `nKbase` with the ids of the categories from
where the images will be sampled.
nTestBase: the total number of images that will be sampled.
Returns:
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
element of each tuple is the image id that was sampled and the
2nd elemend is its category label (which is in the range
[0, len(Kbase)-1]).
"""
Tbase = []
if len(Kbase) > 0:
# Sample for each base category a number images such that the total
# number sampled images of all categories to be equal to `nTestBase`.
KbaseIndices = np.random.choice(
np.arange(len(Kbase)), size=nTestBase, replace=True)
KbaseIndices, NumImagesPerCategory = np.unique(
KbaseIndices, return_counts=True)
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
imd_ids = self.sampleImageIdsFrom(
Kbase[Kbase_idx], sample_size=NumImages)
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
assert(len(Tbase) == nTestBase)
return Tbase
def sample_train_and_test_examples_for_novel_categories(
self, Knovel, nTestNovel, nExemplars, nKbase):
"""Samples train and test examples of the novel categories.
Args:
Knovel: a list with the ids of the novel categories.
nTestNovel: the total number of test images that will be sampled
from all the novel categories.
nExemplars: the number of training examples per novel category that
will be sampled.
nKbase: the number of base categories. It is used as offset of the
category index of each sampled image.
Returns:
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
1st element of each tuple is the image id that was sampled and
the 2nd element is its category label (which is in the range
[nKbase, nKbase + len(Knovel) - 1]).
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
tuples. The 1st element of each tuple is the image id that was
sampled and the 2nd element is its category label (which is in
the ragne [nKbase, nKbase + len(Knovel) - 1]).
"""
if len(Knovel) == 0:
return [], []
nKnovel = len(Knovel)
Tnovel = []
Exemplars = []
assert((nTestNovel % nKnovel) == 0)
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
for Knovel_idx in range(len(Knovel)):
imd_ids = self.sampleImageIdsFrom(
Knovel[Knovel_idx],
sample_size=(nEvalExamplesPerClass + nExemplars))
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
Exemplars += [(img_id, nKbase+Knovel_idx)
for img_id in imds_ememplars]
assert(len(Tnovel) == nTestNovel)
assert(len(Exemplars) == len(Knovel) * nExemplars)
# random.shuffle(Exemplars)
return Tnovel, Exemplars
def sample_episode(self):
"""Samples a training episode."""
nKnovel = self.nKnovel
nKbase = self.nKbase
nTestNovel = self.nTestNovel
nTestBase = self.nTestBase
nExemplars = self.nExemplars
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
Knovel, nTestNovel, nExemplars, nKbase)
# concatenate the base and novel category examples.
Test = Tbase + Tnovel
# random.shuffle(Test)
Kall = Kbase + Knovel
return Exemplars, Test, Kall, nKbase
def createExamplesTensorData(self, examples):
"""
Creates the examples image and label tensor data.
Args:
examples: a list of 2-element tuples, each representing a
train or test example. The 1st element of each tuple
is the image id of the example and 2nd element is the
category label of the example, which is in the range
[0, nK - 1], where nK is the total number of categories
(both novel and base).
Returns:
images: a tensor of shape [nExamples, Height, Width, 3] with the
example images, where nExamples is the number of examples
(i.e., nExamples = len(examples)).
labels: a tensor of shape [nExamples] with the category label
of each example.
"""
images = torch.stack(
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
names = np.stack(
[self.dataset[img_idx][-1] for img_idx, _ in examples], axis=0)
print(names)
labels = torch.LongTensor([label for _, label in examples])
return images, labels
def get_iterator(self, epoch=0):
rand_seed = epoch
random.seed(rand_seed)
np.random.seed(rand_seed)
def load_function(iter_idx):
Exemplars, Test, Kall, nKbase = self.sample_episode()
Xt, Yt = self.createExamplesTensorData(Test)
Kall = torch.LongTensor(Kall)
if len(Exemplars) > 0:
Xe, Ye = self.createExamplesTensorData(Exemplars)
return Xe, Ye, Xt, Yt, Kall, nKbase
else:
return Xt, Yt, Kall, nKbase
tnt_dataset = tnt.dataset.ListDataset(
elem_list=range(self.epoch_size), load=load_function)
data_loader = tnt_dataset.parallel(
batch_size=self.batch_size,
num_workers=(0 if self.is_eval_mode else self.num_workers),
shuffle=(False if self.is_eval_mode else True),)
return data_loader
def __call__(self, epoch=0):
return self.get_iterator(epoch)
def __len__(self):
return int(self.epoch_size / self.batch_size)
|