File size: 16,629 Bytes
e0c2d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# Copyright 2022, Lefebvre Dalloz Services
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from time import time
from typing import Optional, Tuple
import numpy as np
import onnx
import tensorrt as trt
import torch
from onnx import GraphProto, ModelProto, helper
from tensorrt import ICudaEngine, Logger, Runtime
from torch.nn import Linear
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5ForConditionalGeneration, TensorType
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput
from transformers.models.t5.modeling_t5 import T5Stack
from transformer_deploy.backends.ort_utils import create_model_for_provider, inference_onnx_binding
from transformer_deploy.backends.pytorch_utils import convert_to_onnx
from transformer_deploy.backends.trt_utils import TensorRTShape, build_engine, load_engine, save_engine
# TODO pre allocate the largest possible past states and reuse it with tensorrt
# https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#reusing-input-buffers
# https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#empty-tensors
# load_external_data should be set to True for large models (> 2Gb)
load_external_data = False
model_name = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_ids: torch.Tensor = tokenizer(
"translate English to French: This model is now very fast!", return_tensors=TensorType.PYTORCH
).input_ids
input_ids = input_ids.to("cuda")
model: T5ForConditionalGeneration = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model = model.eval()
model = model.to("cuda")
model.config.use_cache = True
out_enc: BaseModelOutputWithPastAndCrossAttentions = model.encoder(input_ids=input_ids)
out_full: Seq2SeqLMOutput = model(input_ids=input_ids, decoder_input_ids=input_ids)
num_layers = model.config.num_layers
model = model.to("cuda")
def are_equal(a: torch.Tensor, b: torch.Tensor, atol: float = 5e-1) -> None:
assert np.allclose(a=a.detach().cpu().numpy(), b=b.detach().cpu().numpy(), atol=atol), f"{a}\n\nVS\n\n{b}"
convert_to_onnx(
model_pytorch=model.encoder,
output_path="test-enc.onnx",
inputs_pytorch={"input_ids": input_ids},
var_output_seq=True,
quantization=False,
output_names=["output"],
load_external_data=load_external_data,
)
enc_onnx = create_model_for_provider("test-enc.onnx", "CUDAExecutionProvider")
enc_onnx_out = inference_onnx_binding(
model_onnx=enc_onnx,
inputs={"input_ids": input_ids},
device=input_ids.device.type,
)["output"]
are_equal(a=enc_onnx_out, b=out_enc.last_hidden_state)
class ExportT5(torch.nn.Module):
def __init__(self, decoder: T5Stack, lm_head: Linear):
super(ExportT5, self).__init__()
self.decoder = decoder
self.lm_head = lm_head
def forward(
self,
input_ids: torch.Tensor,
encoder_hidden_states: torch.Tensor,
final_seq_len: Optional[torch.Tensor],
past_key_values: Tuple = None,
):
out_dec = self.decoder.forward(
input_ids=input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values
)
# Rescale output before projecting on vocab
out_dec["last_hidden_state"] = out_dec["last_hidden_state"] * (model.model_dim**-0.5)
out_dec["last_hidden_state"] = self.lm_head(out_dec["last_hidden_state"])
out_dec["past_key_values"] = list(out_dec["past_key_values"])
for i, layer_out in enumerate(out_dec["past_key_values"]): # type: int, Tuple
assert len(layer_out) == 4
layer_out_l = list(layer_out)
for j, l in enumerate(layer_out): # type: int, torch.Tensor
if j <= 1:
layer_out_l[j] = l[:, :, : final_seq_len[0], :]
else:
layer_out_l[j] = l
out_dec["past_key_values"][i] = tuple(layer_out_l)
out_dec["past_key_values"] = tuple(out_dec["past_key_values"])
return out_dec
model.cuda()
model_decoder = ExportT5(decoder=model.decoder, lm_head=model.lm_head).eval()
out_model_export: torch.Tensor = model_decoder(
input_ids=input_ids,
encoder_hidden_states=out_enc.last_hidden_state,
final_seq_len=torch.tensor([input_ids.shape[1]], dtype=torch.int32),
)
are_equal(a=out_model_export["last_hidden_state"], b=out_full.logits)
model_decoder.cuda()
# decoder output one step before
out_dec_pytorch = model_decoder(
input_ids=input_ids[:, :-1],
encoder_hidden_states=out_enc.last_hidden_state,
final_seq_len=torch.tensor([1], dtype=torch.int32),
)
model_inputs = {
"input_ids": input_ids[:, -1:].type(torch.int32),
"encoder_hidden_states": out_enc.last_hidden_state,
"past_key_values": out_dec_pytorch.past_key_values,
"final_seq_len": torch.tensor([1], dtype=torch.int32), # make it a 1 dim array
}
input_names = ["input_ids", "encoder_hidden_states", "final_seq_len"]
for i in range(num_layers):
input_names.append(f"past_key_values.{i}.decoder.key")
input_names.append(f"past_key_values.{i}.decoder.value")
input_names.append(f"past_key_values.{i}.encoder.key")
input_names.append(f"past_key_values.{i}.encoder.value")
output_names = ["logits"]
for i in range(num_layers):
output_names.append(f"present.{i}.decoder.key")
output_names.append(f"present.{i}.decoder.value")
output_names.append(f"present.{i}.encoder.key")
output_names.append(f"present.{i}.encoder.value")
dynamic_axis = {
"input_ids": {0: "batch", 1: "decoder_sequence"},
"encoder_hidden_states": {0: "batch", 1: "encoder_sequence_length"},
"logits": {0: "batch", 1: "decoder_sequence"},
}
for i in range(num_layers):
dynamic_axis[f"past_key_values.{i}.decoder.key"] = {0: "batch", 2: "past_decoder_sequence"}
dynamic_axis[f"past_key_values.{i}.decoder.value"] = {0: "batch", 2: "past_decoder_sequence"}
dynamic_axis[f"past_key_values.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"past_key_values.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"present.{i}.decoder.key"] = {0: "batch", 2: "decoder_sequence"}
dynamic_axis[f"present.{i}.decoder.value"] = {0: "batch", 2: "decoder_sequence"}
dynamic_axis[f"present.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"present.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"}
with torch.no_grad():
model.config.return_dict = True
model.eval()
# export can works with named args but the dict containing named args as to be last element of the args tuple
torch.onnx.export(
model_decoder,
(model_inputs,),
f="test-dec-cache.onnx",
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axis,
do_constant_folding=True,
opset_version=13,
)
model_inputs_no_cache = {
"input_ids": input_ids.type(dtype=torch.int32),
"encoder_hidden_states": out_enc.last_hidden_state,
"final_seq_len": torch.tensor([input_ids.shape[1]], dtype=torch.int32),
}
with torch.no_grad():
model.config.return_dict = True
model.eval()
# export can works with named args but the dict containing named args as to be last element of the args tuple
torch.onnx.export(
model_decoder,
(model_inputs_no_cache,),
f="test-dec-no-cache.onnx",
input_names=list(model_inputs_no_cache.keys()),
output_names=output_names,
dynamic_axes={k: v for k, v in dynamic_axis.items() if "past_key_values" not in k},
do_constant_folding=True,
opset_version=13,
)
_ = model_decoder.cpu() # free cuda memory
onnx_model_no_cache_fp16 = onnx.load("test-dec-no-cache.onnx")
onnx_model_cache_fp16 = onnx.load("test-dec-cache.onnx")
assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output)
final_output = list()
for node in onnx_model_cache_fp16.graph.output:
new_output = onnx.helper.make_empty_tensor_value_info(node.name)
new_output.CopyFrom(node)
final_output.append(new_output)
final_node_names = [n.name for n in final_output]
for node in onnx_model_cache_fp16.graph.output:
node.name += "-cache"
for node in onnx_model_cache_fp16.graph.node:
assert len(node.output) == 1
if node.output[0] in final_node_names:
node.output[0] += "-cache"
for idx, i in enumerate(node.input):
if i in final_node_names:
node.input[idx] += "-cache"
for node in onnx_model_no_cache_fp16.graph.output:
node.name += "-no-cache"
for node in onnx_model_no_cache_fp16.graph.node:
assert len(node.output) == 1
if node.output[0] in final_node_names:
node.output[0] += "-no-cache"
for idx, i in enumerate(node.input):
if i in final_node_names:
node.input[idx] += "-no-cache"
onnx.checker.check_model(onnx_model_cache_fp16)
onnx.checker.check_model(onnx_model_no_cache_fp16)
prefix = "cache_node_"
mapping_initializer_cache_to_no_cache = dict()
to_add = list()
for node_cache in onnx_model_cache_fp16.graph.initializer:
found = False
for node_no_cache in onnx_model_no_cache_fp16.graph.initializer:
if node_cache.raw_data == node_no_cache.raw_data:
found = True
mapping_initializer_cache_to_no_cache[node_cache.name] = node_no_cache.name
break
if not found:
node_cache.name = prefix + node_cache.name
to_add.append(node_cache)
mapping_initializer_cache_to_no_cache[node_cache.name] = node_cache.name
print(f"name: {node_cache.name} - size: {len(node_cache.raw_data)/1024:.2f}")
onnx_model_no_cache_fp16.graph.initializer.extend(to_add)
# I/O model names should not be prefixed
model_io_names = [
n.name
for n in list(onnx_model_cache_fp16.graph.input)
+ list(onnx_model_cache_fp16.graph.output)
+ list(onnx_model_no_cache_fp16.graph.input)
+ list(onnx_model_no_cache_fp16.graph.output)
]
for node in onnx_model_cache_fp16.graph.node:
for index, input_name in enumerate(node.input):
if input_name in model_io_names:
continue
node.input[index] = mapping_initializer_cache_to_no_cache.get(input_name, prefix + input_name)
for index, output_name in enumerate(node.output):
if output_name in model_io_names:
continue
node.output[index] = prefix + output_name
node.name = prefix + node.name
prefix = "init_"
cache = dict()
for node in onnx_model_no_cache_fp16.graph.initializer:
if node.name in model_io_names:
new_name = prefix + node.name
cache[node.name] = new_name
node.name = new_name
for node in onnx_model_no_cache_fp16.graph.node:
for input_index, n in enumerate(node.input):
node.input[input_index] = cache.get(n, n)
# mandatory for subgraph in if/else node
assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output)
graph_cache: onnx.GraphProto = onnx.helper.make_graph(
nodes=list(onnx_model_cache_fp16.graph.node),
name="graph-cache",
inputs=[],
outputs=list(onnx_model_cache_fp16.graph.output),
initializer=[],
)
graph_no_cache: onnx.GraphProto = onnx.helper.make_graph(
nodes=list(onnx_model_no_cache_fp16.graph.node),
name="graph-no-cache",
inputs=[],
outputs=list(onnx_model_no_cache_fp16.graph.output),
initializer=[],
)
enable_cache_input = onnx.helper.make_tensor_value_info(name="enable_cache", elem_type=onnx.TensorProto.BOOL, shape=[1])
if_node = onnx.helper.make_node(
op_type="If",
inputs=["enable_cache"],
outputs=[o.name for o in final_output],
then_branch=graph_cache,
else_branch=graph_no_cache,
)
if_graph_def: GraphProto = helper.make_graph(
nodes=[if_node],
name="if-model",
inputs=list(onnx_model_cache_fp16.graph.input) + [enable_cache_input],
outputs=final_output,
initializer=list(onnx_model_no_cache_fp16.graph.initializer),
)
model_def: ModelProto = helper.make_model(
if_graph_def, producer_name="onnx-example", opset_imports=[helper.make_opsetid(onnx.defs.ONNX_DOMAIN, 13)]
)
onnx.save(model_def, "test-dec-if.onnx")
trt_logger: Logger = trt.Logger(trt.Logger.ERROR)
runtime: Runtime = trt.Runtime(trt_logger)
trt_model_name = "trt-t5-dec.plan"
# 768 for base model, 512 for small, make it dependent from the Pytorch model configuration
shape, seq_len = input_ids.shape
input_id_shape = TensorRTShape(min_shape=[4, 1], optimal_shape=[4, 1], max_shape=[4, 200], input_name="input_ids")
encoder_hidden_states_shape = TensorRTShape(
min_shape=[4, 1, 512],
optimal_shape=[4, 10, 512],
max_shape=[4, 200, 512],
input_name="encoder_hidden_states",
)
final_seq_len = TensorRTShape(
min_shape=[1],
optimal_shape=[1],
max_shape=[1],
input_name="final_seq_len",
)
shape_tensors = [final_seq_len]
input_shapes = [input_id_shape, encoder_hidden_states_shape, final_seq_len]
for i in range(num_layers):
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 100, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.decoder.key",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 100, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.decoder.value",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 10, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.encoder.key",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 10, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.encoder.value",
)
)
command_line_min = []
command_line_opt = []
command_line_max = []
for i in input_shapes:
command_line_min.append(f"{i.input_name}:{'x'.join([str(s) for s in i.min_shape])}")
command_line_opt.append(f"{i.input_name}:{'x'.join([str(s) for s in i.optimal_shape])}")
command_line_max.append(f"{i.input_name}:{'x'.join([str(s) for s in i.max_shape])}")
print(
"/usr/src/tensorrt/bin/trtexec --onnx=test-dec-if.onnx --useSpinWait --verbose --dumpLayerInfo "
"--profilingVerbosity=detailed --minShapes="
+ ",".join(command_line_min)
+ " --optShapes="
+ ",".join(command_line_opt)
+ " --maxShapes="
+ ",".join(command_line_max)
+ f"--saveEngine='{trt_model_name}' |& > logs.txt"
)
engine: ICudaEngine = build_engine(
runtime=runtime,
onnx_file_path="test-dec-if.onnx",
logger=trt_logger,
workspace_size=20000 * 1024**2,
fp16=False, # for tests only
int8=False,
input_shapes=input_shapes,
shape_tensors=shape_tensors,
# fp16_fix=get_fix_fp16_network_func(keep_fp32=keep_fp32),
)
save_engine(engine, trt_model_name)
tensorrt_model = load_engine(runtime=runtime, engine_file_path=trt_model_name)
c = {
"input_ids": torch.ones((4, 1), dtype=torch.int32, device="cuda"),
"encoder_hidden_states": torch.ones((4, 10, 512), dtype=torch.float32, device="cuda"),
"final_seq_len": torch.tensor([1], dtype=torch.int32, device="cuda"),
"enable_cache": torch.tensor([True], dtype=torch.bool, device="cuda"),
}
for i in range(num_layers):
c[f"past_key_values.{i}.decoder.key"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32)
c[f"past_key_values.{i}.decoder.value"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32)
c[f"past_key_values.{i}.encoder.key"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32)
c[f"past_key_values.{i}.encoder.value"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32)
for _ in range(100):
_ = tensorrt_model(c)
start = time()
for _ in range(100):
_ = tensorrt_model(c)
print((time() - start) / 100)
a = tensorrt_model(c)
print(a)
|