File size: 6,771 Bytes
e0c2d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Benchmarks

Most `Transformer` encoder based models are supported like Bert, Roberta, miniLM, Camembert, Albert, XLM-R, Distilbert, Electra, etc.  
**Best results are obtained with TensorRT 8.2.**  
Below examples are representative of the performance gain to expect from this library.  
Other improvements not shown here include GPU memory usage decrease, multi-stream, etc.

## Small architecture

<details><summary>batch 1, seq length 16 on T4/RTX 3090 GPUs (up to 10X faster with TensorRT vs Pytorch)</summary>

command:

```shell
convert_model -m philschmid/MiniLM-L6-H384-uncased-sst2 --backend tensorrt onnx pytorch --seq-len 16 16 16 --batch-size 1 1 1
```

### GPU Nvidia T4

```log
Inference done on Tesla T4
latencies:
[TensorRT (FP16)] mean=0.65ms, sd=0.11ms, min=0.57ms, max=0.96ms, median=0.59ms, 95p=0.93ms, 99p=0.94ms
[ONNX Runtime (vanilla)] mean=1.31ms, sd=0.05ms, min=1.27ms, max=1.48ms, median=1.30ms, 95p=1.44ms, 99p=1.45ms
[ONNX Runtime (optimized)] mean=0.71ms, sd=0.01ms, min=0.69ms, max=0.74ms, median=0.70ms, 95p=0.73ms, 99p=0.74ms
[Pytorch (FP32)] mean=5.01ms, sd=0.06ms, min=4.94ms, max=6.72ms, median=5.01ms, 95p=5.07ms, 99p=5.13ms
[Pytorch (FP16)] mean=5.44ms, sd=0.07ms, min=5.36ms, max=6.80ms, median=5.43ms, 95p=5.49ms, 99p=5.55ms
```

### GPU Nvidia RTX 3090

```log
Inference done on NVIDIA GeForce RTX 3090
latencies:
[TensorRT (FP16)] mean=0.45ms, sd=0.05ms, min=0.41ms, max=0.78ms, median=0.45ms, 95p=0.55ms, 99p=0.73ms
[ONNX Runtime (vanilla)] mean=1.32ms, sd=0.11ms, min=1.24ms, max=2.36ms, median=1.30ms, 95p=1.50ms, 99p=1.74ms
[ONNX Runtime (optimized)] mean=0.84ms, sd=0.11ms, min=0.76ms, max=2.03ms, median=0.81ms, 95p=1.10ms, 99p=1.25ms
[Pytorch (FP32)] mean=4.68ms, sd=0.28ms, min=4.38ms, max=7.83ms, median=4.65ms, 95p=4.97ms, 99p=6.16ms
[Pytorch (FP16)] mean=5.25ms, sd=0.60ms, min=4.83ms, max=8.54ms, median=5.03ms, 95p=6.54ms, 99p=7.77ms
```

</details>

<details><summary>batch 16, seq length 384 on T4/RTX 3090 GPUs (up to 5X faster with TensorRT vs Pytorch)</summary>

command:

```shell
convert_model -m philschmid/MiniLM-L6-H384-uncased-sst2 --backend tensorrt onnx pytorch --seq-len 384 384 384 --batch-size 16 16 16
```

### GPU Nvidia T4

```log
Inference done on Tesla T4
latencies:
[TensorRT (FP16)] mean=16.38ms, sd=0.30ms, min=15.45ms, max=17.42ms, median=16.42ms, 95p=16.83ms, 99p=17.09ms
[ONNX Runtime (vanilla)] mean=65.12ms, sd=1.53ms, min=61.74ms, max=68.51ms, median=65.21ms, 95p=67.46ms, 99p=67.90ms
[ONNX Runtime (optimized)] mean=26.75ms, sd=0.30ms, min=25.96ms, max=27.71ms, median=26.73ms, 95p=27.23ms, 99p=27.52ms
[Pytorch (FP32)] mean=82.22ms, sd=1.02ms, min=78.83ms, max=85.02ms, median=82.28ms, 95p=83.80ms, 99p=84.43ms
[Pytorch (FP16)] mean=46.29ms, sd=0.41ms, min=45.23ms, max=47.56ms, median=46.30ms, 95p=46.98ms, 99p=47.37ms
```

### GPU Nvidia RTX 3090

```log
Inference done on NVIDIA GeForce RTX 3090
latencies:
[TensorRT (FP16)] mean=5.44ms, sd=0.45ms, min=5.03ms, max=8.91ms, median=5.20ms, 95p=6.11ms, 99p=7.39ms
[ONNX Runtime (vanilla)] mean=16.87ms, sd=2.15ms, min=15.38ms, max=26.03ms, median=15.82ms, 95p=22.63ms, 99p=24.20ms
[ONNX Runtime (optimized)] mean=8.07ms, sd=0.58ms, min=7.59ms, max=13.63ms, median=7.93ms, 95p=8.71ms, 99p=11.45ms
[Pytorch (FP32)] mean=17.09ms, sd=0.21ms, min=16.87ms, max=18.99ms, median=17.04ms, 95p=17.49ms, 99p=18.08ms
[Pytorch (FP16)] mean=14.77ms, sd=1.83ms, min=13.50ms, max=20.97ms, median=13.87ms, 95p=19.15ms, 99p=20.01ms
```

</details>

## Base architecture

<details><summary>batch 16, seq length 384 on T4/RTX 3090 GPUs (up to 5X faster with TensorRT vs Pytorch)</summary>

command:

```shell
convert_model -m cardiffnlp/twitter-roberta-base-sentiment --backend tensorrt onnx pytorch --seq-len 384 384 384 --batch-size 16 16 16
```

### GPU Nvidia T4

```log
Inference done on Tesla T4
latencies:
[TensorRT (FP16)] mean=80.57ms, sd=1.00ms, min=76.23ms, max=83.16ms, median=80.53ms, 95p=82.14ms, 99p=82.53ms
[ONNX Runtime (vanilla)] mean=353.81ms, sd=14.79ms, min=335.54ms, max=390.86ms, median=348.41ms, 95p=382.09ms, 99p=386.84ms
[ONNX Runtime (optimized)] mean=97.94ms, sd=1.66ms, min=93.83ms, max=102.11ms, median=97.84ms, 95p=100.73ms, 99p=101.57ms
[Pytorch (FP32)] mean=398.49ms, sd=25.76ms, min=369.81ms, max=454.55ms, median=387.17ms, 95p=445.52ms, 99p=450.81ms
[Pytorch (FP16)] mean=134.18ms, sd=1.16ms, min=131.60ms, max=138.48ms, median=133.80ms, 95p=136.57ms, 99p=137.39ms
```

### GPU Nvidia RTX 3090

```log
Inference done on NVIDIA GeForce RTX 3090
latencies:
[TensorRT (FP16)] mean=27.52ms, sd=1.61ms, min=24.49ms, max=33.78ms, median=28.01ms, 95p=30.33ms, 99p=31.22ms
[ONNX Runtime (vanilla)] mean=65.95ms, sd=6.18ms, min=60.84ms, max=99.75ms, median=62.97ms, 95p=81.02ms, 99p=89.10ms
[ONNX Runtime (optimized)] mean=32.73ms, sd=4.80ms, min=28.84ms, max=48.84ms, median=30.15ms, 95p=43.03ms, 99p=44.78ms
[Pytorch (FP32)] mean=69.18ms, sd=4.79ms, min=65.97ms, max=97.74ms, median=67.16ms, 95p=77.88ms, 99p=92.43ms
[Pytorch (FP16)] mean=48.78ms, sd=2.02ms, min=47.02ms, max=61.37ms, median=47.67ms, 95p=52.34ms, 99p=55.56ms
```

</details>

## Large architecture

<details><summary>batch 16, seq length 384 on T4/RTX 3090 GPUs (up to 5X faster with TensorRT vs Pytorch)</summary>

command:

```shell
convert_model -m roberta-large-mnli --backend tensorrt onnx pytorch --seq-len 384 384 384 --batch-size 16 16 16
```

### GPU Nvidia T4

```log
Inference done on Tesla T4
latencies:
[TensorRT (FP16)] mean=240.39ms, sd=11.01ms, min=217.59ms, max=259.57ms, median=242.68ms, 95p=255.03ms, 99p=257.04ms
[ONNX Runtime (vanilla)] mean=1176.73ms, sd=63.51ms, min=1020.00ms, max=1225.03ms, median=1210.08ms, 95p=1217.54ms, 99p=1220.25ms
[ONNX Runtime (optimized)] mean=295.03ms, sd=19.69ms, min=255.74ms, max=314.78ms, median=307.07ms, 95p=311.20ms, 99p=312.47ms
[Pytorch (FP32)] mean=1220.41ms, sd=75.93ms, min=1119.93ms, max=1342.10ms, median=1216.23ms, 95p=1329.08ms, 99p=1336.47ms
[Pytorch (FP16)] mean=438.26ms, sd=13.71ms, min=398.29ms, max=459.97ms, median=442.36ms, 95p=453.96ms, 99p=457.57ms
```

### GPU Nvidia RTX 3090

```log
Inference done on NVIDIA GeForce RTX 3090
latencies:
[TensorRT (FP16)] mean=79.54ms, sd=5.99ms, min=74.47ms, max=113.25ms, median=76.87ms, 95p=88.02ms, 99p=104.48ms
[ONNX Runtime (vanilla)] mean=202.88ms, sd=16.21ms, min=187.91ms, max=277.85ms, median=194.80ms, 95p=239.58ms, 99p=261.44ms
[ONNX Runtime (optimized)] mean=97.04ms, sd=5.55ms, min=90.83ms, max=121.88ms, median=94.04ms, 95p=104.81ms, 99p=107.75ms
[Pytorch (FP32)] mean=202.80ms, sd=11.16ms, min=194.47ms, max=284.70ms, median=198.46ms, 95p=221.72ms, 99p=257.31ms
[Pytorch (FP16)] mean=142.63ms, sd=6.35ms, min=136.24ms, max=189.95ms, median=139.90ms, 95p=154.10ms, 99p=160.16ms
```

</details>

--8<-- "resources/abbreviations.md"