File size: 193,814 Bytes
e0c2d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Inference acceleration of `T5` for large batch size / long sequence length / > large models\n",
"\n",
"Every week or so, a new impressive few shots learning work taking advantage of autoregressive models is released by some team around the world. \n",
"Still `LLM` inference is rarely discussed and few projects are focusing on this aspect. \n",
"In this notebook, we describe our take to significantly improve autoregressive model latency.\n",
"\n",
"We plan to intensively test large autoregressive models, so we want something:\n",
"\n",
"* which **scales**: the improvement exists on small and large models, for short and long sequences, in greedy and beam search;\n",
" * This is very important in a few shots learning where sequences are most of the time hundreds or thousands tokens long and beam search is used to improve text quality.\n",
"* that has **no hidden cost**: no big increase in memory usage, no degradation in quality of generated text, support state-of-the-art decoding algorithms;\n",
"* that is **generic**: works for any transformer based architecture, and not specific to an inference engine;\n",
"* that is **easy to maintain**: no hard-coded behaviors or other technical debt if it doesn't bring a clear advantage.\n",
"\n",
"To be clear, **we are not targeting the best performance ever but the right trade off** (for us at least) between simplicity to use/maintain and acceptable latency.\n",
"\n",
"## The challenge\n",
"\n",
"In most situations, performing inference with `ONNX Runtime` or `TensorRT` usually bring large improvement over `Pytorch` implementations.\n",
"It's very true with `transformer` based models.\n",
"\n",
"The main reason is that these tools will perform `kernel fusions` (merging several operations into a single one) and therefore reduce the number of memory bounded operations. Sometimes they also replace some operations by a much faster approximation.\n",
"In the very specific case of autoregressive languages, things are a bit more complicated.\n",
"\n",
"On most `Pytorch` implementations of these models, there is a `cache` of `K` and `V` values.\n",
"Let's remind us that in attention blocks, each token is projected on 3 matrices called `Query`, `Key`, and `Value`.\n",
"Then, those projections will be used to compute a representation of each token which takes into account the information from the related other tokens of the sequence.\n",
"\n",
"As autoregressive models generate the sequence one token at a time, they should recompute final representation of all past tokens for each new token to generate.\n",
"Because each token can only attend to the past, the result of these computations never changes; therefore one simple trick to reduce latency is to just memorize them and reuse them later, avoiding lots of computation.\n",
"\n",
"Out of the box, the cache mechanism can't be exported to `ONNX` from `Hugging Face` models (and all other `Pytorch` implementations we are aware of).\n",
"The reason is that those models are not `torchscript` scripting compliant (it requires `Pytorch` code to follow some [restrictive rules](https://pytorch.org/docs/stable/jit_builtin_functions.html)).\n",
"Because of that, `ONNX` export is done through `tracing` which erases any control flow instructions (including the `If` instruction to enable or not a cache).\n",
"\n",
"## Existing solutions\n",
"\n",
"Some interesting solutions targeting inference latency that we have considered and/or tested:\n",
"\n",
"* [TensorRT](https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-`TensorRT`/), which targets `GPU`, heavily optimizes the computation graph, making `T5` inference very fast (they report X10 speedup on `small-T5`). The trick is that it doesn't use any cache (see below for more details), so it's very fast on short sequence and small models, as it avoids many memory bounded operations by redoing full computation again and again... but as several users have already found ([1](https://github.com/NVIDIA/TensorRT/issues/1807), [2](https://github.com/NVIDIA/TensorRT/issues/1642), [3](https://github.com/NVIDIA/TensorRT/issues/1799), [4](https://github.com/NVIDIA/TensorRT/issues/1845), ...), this approach doesn't scale when the computation intensity increases, i.e., when base or large models are used instead of a small one, when generation is done on moderately long sequence of few hundred of tokens or if beam search is used instead of a greedy search;\n",
"* [FastT5](https://github.com/Ki6an/fastT5), which targets `CPU`, exports 2 versions of the decoder, one with cache and one without. You need the `no cache` version to compute the first token and the first `past state` tensors (aka the cached tensors), and for all the other tokens you use the `cache` version of the computation graph. Basically, it makes the memory foot print 2 times bigger as all weights are duplicated. As generative models tend to be huge, they work around the memory issue by using dynamic `int-8` quantization, the final memory foot print of the decoders is now the same as `Hugging Face` in `FP16`... but 1/ dynamic quantization only works on `CPU`, and 2/ according to several reports dynamic quantization degrades significantly generative model output, to a point where it may make them useless ([1](https://github.com/huggingface/transformers/issues/2466#issuecomment-572781378), [2](https://github.com/huggingface/transformers/issues/2466#issuecomment-982710520), and [here](https://github.com/microsoft/onnxruntime/issues/6549#issuecomment-1016948837) you can find a report in the `GPT-2` context from a Microsoft engineer: \"*int8 quantization are not recommended due to accuracy loss*\").\n",
"* [ONNX Runtime T5 export tool](https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers/models/t5) targets both `GPU` and `CPU`. It works in a similar way than `FastT5`: `decoder` module is exported 2 times. Like `FastT5`, the memory footprint of the decoder part is doubled (this time there is no `int-8` quantization).\n",
"* [FasterTransformer](https://github.com/NVIDIA/FasterTransformer/blob/main/docs/t5_guide.md#translation-process) targets `GPU` and is a mix of `Pytorch` and `CUDA`/`C++` dedicated code. The performance boost is huge on `T5`, they report a 10X speedup like `TensorRT`. However, it may significantly decrease the accuracy of the model ([here](https://github.com/NVIDIA/FasterTransformer/blob/main/docs/t5_guide.md#translation-process) when sampling is enabled, it reduces BLEU score of translation task by 8 points, the cause may be a bug in the decoding algorithm or an approximation a bit too aggressive) plus the speedup is computed on a [translation task](https://github.com/NVIDIA/FasterTransformer/blob/main/examples/pytorch/decoding/utils/translation/test.en) where sequences are 25 tokens long on average. In our experience, improvement on very short sequences tends to decrease by large margins on longer sequences. It seems to us that their objectives are different from ours.\n",
"\n",
"With the existing solutions, you need to choose one or two items of the following:\n",
"\n",
"* double decoder memory footprint;\n",
"* be slower than `Hugging Face` for moderately long sequence length / beam search;\n",
"* degrade output quality.\n",
"\n",
"## Our approach\n",
"\n",
"Our approach to make autoregressive `transformer` based models 2.8X faster than `Hugging Face` `Pytorch` implementation (the base line) is based on 3 key ingredients:\n",
"\n",
"* storing 2 computation graphs in a single `ONNX` file: this let us have both cache and no cache support without having any duplicated weights,\n",
"* `zero copy` to retrieve output from `ONNX Runtime`: we built over our past work to connect in the most efficient way `Pytorch` tensors (used in the decoding part) and `ONNX Runtime`. Our previous work was to avoid `host` <-> `GPU` tensor copy, but it still required a `GPU` <-> `GPU`. It is now part of the official `ONNX Runtime` documentation (apparently [thanks of our project](https://github.com/microsoft/onnxruntime/pull/10651)!). This time we found out a way to directly expose the internal state of `ONNX Runtime` through a `Pytorch` tensor in zero copy way. Combined with cache mechanism, this is responsible for most of the speedup we have obtained.\n",
"* a generic tool to convert any model (whatever the architecture) to `FP16` without any risk of having out of range values or rounding to zero: `FP16` is still the way to reduce memory footprint of a model. The main issue is that some nodes may output values outside of `FP16` range or round others to zero, resulting in `NaN` output; moreover, very small values may be rounded to zero which is an issue for log and div operations. We have built a tool which detect those nodes so we can keep their precision in `FP32`. It's quite important to reduce memory footprint of these models, not just because they tend to be huge, but also because past states (that we cache) and internal buffers can be even bigger than the weights of the model itself.\n",
"\n",
"## Results\n",
"\n",
"As demonstrated at the end of this notebook, **we are able to provide a X2.8 speedup** whatever the batch size, the sequence length or the model size.\n",
"\n",
"> For `TensorRT` we have our own implementation of our approach described above which helps to provide similar latency to `ONNX Runtime`. It's in a Python script in the same folder as this notebook. We had to work around a documented limitation. Because of that the code is slightly more complex and we wanted to keep this notebook easy to follow.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:02:20.975344Z",
"iopub.status.busy": "2022-06-25T23:02:20.974743Z",
"iopub.status.idle": "2022-06-25T23:02:21.579668Z",
"shell.execute_reply": "2022-06-25T23:02:21.578207Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sun Jun 26 01:02:21 2022 \r\n",
"+-----------------------------------------------------------------------------+\r\n",
"| NVIDIA-SMI 515.48.07 Driver Version: 515.48.07 CUDA Version: 11.7 |\r\n",
"|-------------------------------+----------------------+----------------------+\r\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n",
"| | | MIG M. |\r\n",
"|===============================+======================+======================|\r\n",
"| 0 NVIDIA GeForce ... On | 00000000:03:00.0 On | N/A |\r\n",
"| 45% 49C P8 42W / 350W | 234MiB / 24576MiB | 24% Default |\r\n",
"| | | N/A |\r\n",
"+-------------------------------+----------------------+----------------------+\r\n",
" \r\n",
"+-----------------------------------------------------------------------------+\r\n",
"| Processes: |\r\n",
"| GPU GI CI PID Type Process name GPU Memory |\r\n",
"| ID ID Usage |\r\n",
"|=============================================================================|\r\n",
"| 0 N/A N/A 2422 G /usr/lib/xorg/Xorg 96MiB |\r\n",
"| 0 N/A N/A 8156 G /usr/bin/gnome-shell 35MiB |\r\n",
"| 0 N/A N/A 9002 G ...on/Bin/AgentConnectix.bin 4MiB |\r\n",
"| 0 N/A N/A 85822 G ...458042145133945570,131072 94MiB |\r\n",
"+-----------------------------------------------------------------------------+\r\n"
]
}
],
"source": [
"! nvidia-smi"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## `ONNX Runtime`\n",
"\n",
"Version 1.11.1 of `ONNX Runtime` and older have a bug which makes them much slower when most inputs are used by subgraphs of an `If` node. \n",
"Use a version >= 1.12.0 instead."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:02:21.585535Z",
"iopub.status.busy": "2022-06-25T23:02:21.585167Z",
"iopub.status.idle": "2022-06-25T23:02:24.417678Z",
"shell.execute_reply": "2022-06-25T23:02:24.417030Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import json\n",
"import random\n",
"from transformer_deploy.backends.ort_utils import get_keep_fp32_nodes\n",
"from transformer_deploy.backends.ort_utils import convert_fp16\n",
"import time\n",
"from typing import Callable, Dict, Optional, List\n",
"import matplotlib.pylab as plt\n",
"from onnxruntime import IOBinding\n",
"import numpy as np\n",
"import torch\n",
"from pathlib import Path\n",
"from typing import Tuple\n",
"from transformer_deploy.backends.onnx_utils import save_onnx, merge_autoregressive_model_graphs\n",
"from transformer_deploy.backends.ort_utils import search_fp32_nodes\n",
"from transformer_deploy.backends.ort_utils import add_output_nodes\n",
"import onnx\n",
"\n",
"from torch.nn import Linear\n",
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PretrainedConfig, T5ForConditionalGeneration, TensorType\n",
"from transformers.generation_utils import GenerationMixin\n",
"from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput\n",
"from transformers.models.t5.modeling_t5 import T5Stack\n",
"from nvtx import nvtx\n",
"from copy import copy\n",
"\n",
"from transformer_deploy.backends.ort_utils import create_model_for_provider, inference_onnx_binding\n",
"from transformer_deploy.backends.pytorch_utils import convert_to_onnx\n",
"import seaborn as sns\n",
"import operator\n",
"from collections import defaultdict\n",
"import gc"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Loading `Hugging Face` model / tokenizer\n",
"\n",
"Below we load the model and set global variables of this notebook."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:02:24.423237Z",
"iopub.status.busy": "2022-06-25T23:02:24.422920Z",
"iopub.status.idle": "2022-06-25T23:03:19.364579Z",
"shell.execute_reply": "2022-06-25T23:03:19.364011Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"np.random.seed(123)\n",
"torch.random.manual_seed(123)\n",
"# other possible values: t5-small, t5-base, t5-large. t5-3b should work when ORT library is fixed\n",
"model_name = \"t5-3b\"\n",
"# shape of output generation for benchmarks (seqlen, batch).\n",
"# You can provide 2 tasks to benchmark.\n",
"# On 3b model, 128 tokens with batch 2 is the maximum without OOM Exception on GPU with 24Gb of RAM.\n",
"# On smaller models/more ram GPUs, use bigger values like [(1024, 1), (1024, 4)]\n",
"benchmark_tasks = [(128, 1), (128, 2)]\n",
"# T5 has no max len\n",
"# https://github.com/huggingface/transformers/issues/5204\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=512)\n",
"input_ids: torch.Tensor = tokenizer(\n",
" 'translate English to French: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new \"Colossal Clean Crawled Corpus\", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.',\n",
" return_tensors=TensorType.PYTORCH,\n",
").input_ids\n",
"input_ids = input_ids.type(torch.int32)\n",
"pytorch_model: T5ForConditionalGeneration = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
"pytorch_model = pytorch_model.eval()\n",
"\n",
"pytorch_model.config.use_cache = True # not really needed, just to make things obvious\n",
"num_layers = pytorch_model.config.num_layers\n",
"# tolerance between ONNX FP16 and Pytorch FP32.\n",
"# Rounding errors increase with number of layers: 1e-1 for t5-small, 5e-1 for large, 3 for 3b (depending of how aggressive you are on FP16, it can raises up to 5-7). 11b not tested.\n",
"# Do not impact final quality\n",
"fp16_default_tolerance = 10\n",
"\n",
"\n",
"def are_equal(a: torch.Tensor, b: torch.Tensor, atol: float = fp16_default_tolerance) -> None:\n",
" assert np.allclose(a=a.detach().cpu().numpy(), b=b.detach().cpu().numpy(), atol=atol), f\"{a}\\n\\nVS\\n\\n{b}\"\n",
"\n",
"\n",
"def prepare_folder(path: str) -> Tuple[str, str]:\n",
" p = Path(path)\n",
" p.mkdir(parents=True, exist_ok=True)\n",
" [item.unlink() for item in Path(path).glob(\"*\") if item.is_file()]\n",
" return path + \"/model.onnx\", path + \"/model_fp16.onnx\"\n",
"\n",
"\n",
"# create/clean folders where each model will be stored.\n",
"# as multiple files will be saved for T5-3B and 11B, we use different folders for the encoder and the decoders.\n",
"encoder_model_path, encoder_fp16_model_path = prepare_folder(path=\"./test-enc\")\n",
"dec_cache_model_path, dec_cache_fp16_model_path = prepare_folder(path=\"./test-dec-cache\")\n",
"dec_no_cache_model_path, dec_no_cache_fp16_model_path = prepare_folder(path=\"./test-dec-no-cache\")\n",
"dec_if_model_path, dec_if_fp16_model_path = prepare_folder(path=\"./test-dec-if\")\n",
"\n",
"# some outputs to compare with\n",
"out_enc: BaseModelOutputWithPastAndCrossAttentions = pytorch_model.encoder(input_ids=input_ids)\n",
"out_full: Seq2SeqLMOutput = pytorch_model(input_ids=input_ids, decoder_input_ids=input_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Export to ONNX\n",
"\n",
"First step is to export the model to `ONNX` graph.\n",
"`T5` is made of 2 parts, an `encoder` and a `decoder`.\n",
"\n",
"## Export encoder part\n",
"\n",
"The `encoder` part export doesn't imply any specific challenge.\n",
"We use export function built for `Bert` like model, exported model is in `FP16`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:03:19.367413Z",
"iopub.status.busy": "2022-06-25T23:03:19.367191Z",
"iopub.status.idle": "2022-06-25T23:03:52.884148Z",
"shell.execute_reply": "2022-06-25T23:03:52.883494Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"convert_to_onnx(\n",
" model_pytorch=pytorch_model.encoder,\n",
" output_path=encoder_model_path,\n",
" inputs_pytorch={\"input_ids\": input_ids},\n",
" var_output_seq=True,\n",
" quantization=False,\n",
" output_names=[\"output\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Export decoder\n",
"\n",
"The decoder export part is more challenging:\n",
"\n",
"* we first need to wrap it in a `Pytorch` model to add the final layer so it's output provide scores for each vocabulary token and can be directly used by the `Hugging Face` `decoding` algorithm\n",
"* then, we need to manipulate the `ONNX` graph to add support of `Key`/`Value` cache\n",
"\n",
"The second point is the key ingredient of the observed acceleration of `ONNX` vs `Hugging Face` inference.\n",
"\n",
"\n",
"### Wrapper to include some post-processing on the decoder output\n",
"\n",
"The post-processing is mainly a projection of the decoder output on a matrix with one of its dimensions equal to model vocabulary size, so we have scores for each possible token."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:03:52.889647Z",
"iopub.status.busy": "2022-06-25T23:03:52.889304Z",
"iopub.status.idle": "2022-06-25T23:03:55.282126Z",
"shell.execute_reply": "2022-06-25T23:03:55.281480Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"class ExportT5(torch.nn.Module):\n",
" def __init__(self, decoder: T5Stack, lm_head: Linear):\n",
" super(ExportT5, self).__init__()\n",
" self.decoder = decoder\n",
" self.lm_head = lm_head\n",
"\n",
" def forward(self, input_ids: torch.Tensor, encoder_hidden_states: torch.Tensor, past_key_values: Tuple = None):\n",
" out_dec = self.decoder.forward(\n",
" input_ids=input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values\n",
" )\n",
" # weight tying -> rescale output before projecting on vocab\n",
" # to comment for T0 for instance\n",
" out_dec[\"last_hidden_state\"] = out_dec[\"last_hidden_state\"] * (pytorch_model.model_dim**-0.5)\n",
" out_dec[\"last_hidden_state\"] = self.lm_head(out_dec[\"last_hidden_state\"])\n",
" return out_dec\n",
"\n",
"\n",
"model_decoder = ExportT5(decoder=pytorch_model.decoder, lm_head=pytorch_model.lm_head).eval()\n",
"out_model_export: torch.Tensor = model_decoder(input_ids=input_ids, encoder_hidden_states=out_enc.last_hidden_state)\n",
"\n",
"are_equal(a=out_model_export[\"last_hidden_state\"], b=out_full.logits)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Export decoder part to `ONNX`\n",
"\n",
"Below we export 2 versions of the decoder, one without cache support and one with it.\n",
"\n",
"Model inputs with past states (cache support):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:03:55.286261Z",
"iopub.status.busy": "2022-06-25T23:03:55.285980Z",
"iopub.status.idle": "2022-06-25T23:03:57.600567Z",
"shell.execute_reply": "2022-06-25T23:03:57.599993Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# decoder output one step before\n",
"out_dec_pytorch = model_decoder(input_ids=input_ids[:, :-1], encoder_hidden_states=out_enc.last_hidden_state)\n",
"\n",
"model_inputs = {\n",
" \"input_ids\": input_ids[:, -1:].type(torch.int32),\n",
" \"encoder_hidden_states\": out_enc.last_hidden_state,\n",
" \"past_key_values\": out_dec_pytorch.past_key_values,\n",
"}\n",
"\n",
"input_names = [\"input_ids\", \"encoder_hidden_states\"]\n",
"\n",
"for i in range(num_layers):\n",
" input_names.append(f\"past_key_values.{i}.decoder.key\")\n",
" input_names.append(f\"past_key_values.{i}.decoder.value\")\n",
" input_names.append(f\"past_key_values.{i}.encoder.key\")\n",
" input_names.append(f\"past_key_values.{i}.encoder.value\")\n",
"\n",
"output_names = [\"logits\"]\n",
"\n",
"for i in range(num_layers):\n",
" output_names.append(f\"present.{i}.decoder.key\")\n",
" output_names.append(f\"present.{i}.decoder.value\")\n",
" output_names.append(f\"present.{i}.encoder.key\")\n",
" output_names.append(f\"present.{i}.encoder.value\")\n",
"\n",
"dynamic_axis = {\n",
" \"input_ids\": {0: \"batch\", 1: \"encoder_sequence\"},\n",
" \"encoder_hidden_states\": {0: \"batch\", 1: \"encoder_sequence\"},\n",
" \"logits\": {0: \"batch\", 1: \"decoder_sequence\"},\n",
"}\n",
"\n",
"\n",
"for i in range(num_layers):\n",
" dynamic_axis[f\"past_key_values.{i}.decoder.key\"] = {0: \"batch\", 2: \"past_decoder_sequence\"}\n",
" dynamic_axis[f\"past_key_values.{i}.decoder.value\"] = {0: \"batch\", 2: \"past_decoder_sequence\"}\n",
" dynamic_axis[f\"past_key_values.{i}.encoder.key\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
" dynamic_axis[f\"past_key_values.{i}.encoder.value\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
"\n",
" dynamic_axis[f\"present.{i}.decoder.key\"] = {0: \"batch\", 2: \"decoder_sequence\"}\n",
" dynamic_axis[f\"present.{i}.decoder.value\"] = {0: \"batch\", 2: \"decoder_sequence\"}\n",
" dynamic_axis[f\"present.{i}.encoder.key\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
" dynamic_axis[f\"present.{i}.encoder.value\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Export of the model with cache support:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:03:57.603501Z",
"iopub.status.busy": "2022-06-25T23:03:57.603304Z",
"iopub.status.idle": "2022-06-25T23:04:51.077733Z",
"shell.execute_reply": "2022-06-25T23:04:51.077086Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/geantvert/.local/share/virtualenvs/fast_transformer/lib/python3.9/site-packages/transformers/modeling_utils.py:781: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" if causal_mask.shape[1] < attention_mask.shape[1]:\n",
"In-place op on output of tensor.shape. See https://pytorch.org/docs/master/onnx.html#avoid-inplace-operations-when-using-tensor-shape-in-tracing-mode\n",
"In-place op on output of tensor.shape. See https://pytorch.org/docs/master/onnx.html#avoid-inplace-operations-when-using-tensor-shape-in-tracing-mode\n"
]
}
],
"source": [
"with torch.no_grad():\n",
" pytorch_model.config.return_dict = True\n",
" pytorch_model.eval()\n",
"\n",
" # export can works with named args but the dict containing named args as to be last element of the args tuple\n",
" torch.onnx.export(\n",
" model_decoder,\n",
" (model_inputs,),\n",
" f=dec_cache_model_path,\n",
" input_names=input_names,\n",
" output_names=output_names,\n",
" dynamic_axes=dynamic_axis,\n",
" do_constant_folding=True,\n",
" opset_version=13,\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Export of the model computing Key/Values for the whole sequence (we basically just remove past states from the input, the `Pytorch` code will recompute them):"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:04:51.080696Z",
"iopub.status.busy": "2022-06-25T23:04:51.080503Z",
"iopub.status.idle": "2022-06-25T23:05:52.002319Z",
"shell.execute_reply": "2022-06-25T23:05:52.001626Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"model_inputs_no_cache = {\n",
" \"input_ids\": input_ids,\n",
" \"encoder_hidden_states\": out_enc.last_hidden_state,\n",
"}\n",
"\n",
"with torch.no_grad():\n",
" pytorch_model.config.return_dict = True\n",
" pytorch_model.eval()\n",
"\n",
" # export can works with named args but the dict containing named args as to be last element of the args tuple\n",
" torch.onnx.export(\n",
" model_decoder,\n",
" (model_inputs_no_cache,),\n",
" f=dec_no_cache_model_path,\n",
" input_names=list(model_inputs_no_cache.keys()),\n",
" output_names=output_names,\n",
" dynamic_axes={k: v for k, v in dynamic_axis.items() if \"past_key_values\" not in k},\n",
" do_constant_folding=True,\n",
" opset_version=13,\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Conversion to mixed precision\n",
"\n",
"### Why mixed precision?\n",
"\n",
"As `T5` can have up to 11 billion parameters, it requires lots of computation, and even more important, it takes lots of space in device memory.\n",
"We convert the `encoder` to half precision.\n",
"\n",
"If we blindly convert the whole graph to `FP16`, we will have 2 issues:\n",
"* `overflow`: some nodes, like exponential nodes, will try to output values out of the `FP16` range, at the end you get some `NaN`.\n",
"* `underflow`: values very close to 0 will be rounded to 0, which may be an issue for some operations like `Div` and `Log` .\n",
"\n",
"### The challenge\n",
"\n",
"Mixed precision is done out of the box by `Pytorch` and follow some strict rules described in https://pytorch.org/docs/stable/amp.html\n",
"\n",
"Those rules are generic and quite conservative. Many nodes will be kept in `FP32` even if their output is always in the `FP16` range.\n",
"\n",
"Other approaches we have found:\n",
"* `ONNX Runtime T5` [demo](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/models/t5/t5_helper.py): provide a list of operations to keep in `FP32` (Pow, ReduceMean, Add, Sqrt, Div, Mul, Softmax, Relu). We have found this approach to need more an more tweaking on larger networks and encoder part (decoder part seems simpler to manage, https://github.com/microsoft/onnxruntime/issues/11119);\n",
"* `TensorRT T5` [demo](https://github.com/NVIDIA/TensorRT/tree/main/demo/HuggingFace/notebooks): provide the exact pattern of nodes to keep in `FP32`. This approach is much more effective, but imply lots of code to describe the patterns and may not generalize well, basically what works for a `base` model may not work for 11 billion parameters model. And it does not scale to other architectures without adaptations, for a library like `transformer-deploy`, it would lead to unmaintainable technical debt.\n",
"\n",
"\n",
"### Our approach\n",
"\n",
"We have chosen an architecture agnostic approach: we inject random input sequences and audit the output of each computation graph node; finally, we make a list of all nodes that have output values out of the `FP16` range /close to zero values and perform some cleaning (to avoid unnecessary casting).\n",
"\n",
"We have chosen to use random values only for the `input_ids` field as the search space is limited: positive integers lower than the vocabulary size.\n",
"You can also decide to send real data from a dataset you want to work on.\n",
"\n",
"To finish, we provide the list of nodes to keep in `FP32` to the conversion function."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:05:52.007617Z",
"iopub.status.busy": "2022-06-25T23:05:52.007426Z",
"iopub.status.idle": "2022-06-25T23:09:26.776124Z",
"shell.execute_reply": "2022-06-25T23:09:26.775503Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"3790"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def get_random_input_encoder() -> Dict[str, torch.Tensor]:\n",
" max_seq = 128\n",
" seq_len = random.randint(a=1, b=max_seq)\n",
" batch = max_seq // seq_len\n",
" random_input_ids = torch.randint(\n",
" low=0, high=tokenizer.vocab_size, size=(batch, seq_len), dtype=torch.int32, device=\"cuda\"\n",
" )\n",
" inputs = {\"input_ids\": random_input_ids}\n",
" return inputs\n",
"\n",
"\n",
"keep_fp32_encoder = get_keep_fp32_nodes(onnx_model_path=encoder_model_path, get_input=get_random_input_encoder)\n",
"assert len(keep_fp32_encoder) > 0\n",
"enc_model_onnx = convert_fp16(onnx_model=encoder_model_path, nodes_to_exclude=keep_fp32_encoder)\n",
"save_onnx(proto=enc_model_onnx, model_path=encoder_fp16_model_path, clean=False)\n",
"\n",
"del enc_model_onnx\n",
"torch.cuda.empty_cache()\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:09:26.781118Z",
"iopub.status.busy": "2022-06-25T23:09:26.780819Z",
"iopub.status.idle": "2022-06-25T23:09:26.786044Z",
"shell.execute_reply": "2022-06-25T23:09:26.785319Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20 first nodes to keep in FP32 (total 1255):\n"
]
},
{
"data": {
"text/plain": [
"['Pow_29',\n",
" 'Log_89',\n",
" 'Div_91',\n",
" 'Mul_93',\n",
" 'Softmax_109',\n",
" 'MatMul_110',\n",
" 'Transpose_111',\n",
" 'Reshape_115',\n",
" 'Pow_120',\n",
" 'Mul_128',\n",
" 'Pow_135',\n",
" 'Mul_143',\n",
" 'Softmax_168',\n",
" 'Pow_179',\n",
" 'Pow_194',\n",
" 'Softmax_227',\n",
" 'Pow_238',\n",
" 'Mul_246',\n",
" 'Pow_253',\n",
" 'Softmax_286']"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_encoder)}):\")\n",
"keep_fp32_encoder[:20]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Compare the output of the `ONNX` `FP16` model with `Pytorch` one"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:09:26.792026Z",
"iopub.status.busy": "2022-06-25T23:09:26.791846Z",
"iopub.status.idle": "2022-06-25T23:09:28.357582Z",
"shell.execute_reply": "2022-06-25T23:09:28.356930Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
"enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
"enc_onnx_out = inference_onnx_binding(\n",
" model_onnx=enc_fp16_onnx,\n",
" binding=enc_fp16_onnx_binding,\n",
" inputs={\"input_ids\": input_ids},\n",
" device=input_ids.device.type,\n",
")[\"output\"]\n",
"are_equal(a=enc_onnx_out, b=out_enc.last_hidden_state)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Conversion of decoder module to mixed precision\n",
"\n",
"Decoder module has different kinds of inputs, `input_ids` but also some float tensors.\n",
"It would a bit more complicated to generate random values for those tensors: in theory it can be of any value in the FP32 range, but because of how models are initialized and trained, most of them are close to 0.\n",
"\n",
"To avoid too much guessing, we have decided to just take the output of the real model being fed with random `input_ids`.\n",
"\n",
"### Conversion of the decoder module without cache support\n",
"\n",
"This is the easiest part, it takes as input encoder output and `input_ids`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:09:28.360273Z",
"iopub.status.busy": "2022-06-25T23:09:28.360078Z",
"iopub.status.idle": "2022-06-25T23:21:19.962781Z",
"shell.execute_reply": "2022-06-25T23:21:19.962002Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"def get_random_input_no_cache() -> Dict[str, torch.Tensor]:\n",
" inputs = get_random_input_encoder()\n",
" encoder_hidden_states = inference_onnx_binding(\n",
" model_onnx=enc_fp16_onnx,\n",
" binding=enc_fp16_onnx_binding,\n",
" inputs=inputs,\n",
" device=\"cuda\",\n",
" clone_tensor=False,\n",
" )[\"output\"]\n",
" # it will serve as input of a FP32 model\n",
" inputs[\"encoder_hidden_states\"] = encoder_hidden_states.type(torch.float32)\n",
" return inputs\n",
"\n",
"\n",
"keep_fp32_no_cache = get_keep_fp32_nodes(onnx_model_path=dec_no_cache_model_path, get_input=get_random_input_no_cache)\n",
"\n",
"onnx_model_no_cache_fp16 = convert_fp16(onnx_model=dec_no_cache_model_path, nodes_to_exclude=keep_fp32_no_cache)\n",
"save_onnx(proto=onnx_model_no_cache_fp16, model_path=dec_no_cache_fp16_model_path, clean=False)\n",
"del onnx_model_no_cache_fp16"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:21:19.967983Z",
"iopub.status.busy": "2022-06-25T23:21:19.967479Z",
"iopub.status.idle": "2022-06-25T23:21:19.973357Z",
"shell.execute_reply": "2022-06-25T23:21:19.972838Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20 first nodes to keep in FP32 (total 2063):\n"
]
},
{
"data": {
"text/plain": [
"['Constant_74',\n",
" 'Pow_78',\n",
" 'Log_135',\n",
" 'Div_137',\n",
" 'Mul_139',\n",
" 'Softmax_154',\n",
" 'Pow_165',\n",
" 'Softmax_212',\n",
" 'Pow_223',\n",
" 'Pow_238',\n",
" 'MatMul_250',\n",
" 'Reshape_254',\n",
" 'Transpose_255',\n",
" 'Softmax_272',\n",
" 'Pow_283',\n",
" 'Softmax_317',\n",
" 'Pow_328',\n",
" 'Pow_343',\n",
" 'Softmax_377',\n",
" 'Pow_388']"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_no_cache)}):\")\n",
"keep_fp32_no_cache[:20]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Conversion of the decoder module with cache support\n",
"\n",
"This module requires output from `encoder` but also from `decoder` module without cache support (as the cache is supposed not to be empty).\n",
"\n",
"It introduces a new challenge: memory footprint. Indeed, we need to load 3 `Onnx` files in RAM: \n",
"\n",
"* encoder: to generate module input;\n",
"* decoder without cache support: to generate module input;\n",
"* decoder with cache support: to perform the search of nodes to keep in `FP32`.\n",
"\n",
"To limit RAM usage, we will use a trick explained in detail below where we share weights between the 2 decoder modules.\n",
"\n",
"Below we perform this merge:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:21:19.975670Z",
"iopub.status.busy": "2022-06-25T23:21:19.975468Z",
"iopub.status.idle": "2022-06-25T23:22:13.229475Z",
"shell.execute_reply": "2022-06-25T23:22:13.228253Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"6775"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dec_cache_model: onnx.ModelProto = onnx.load_model(f=dec_cache_model_path, load_external_data=False)\n",
"dec_no_cache_model: onnx.ModelProto = onnx.load_model(f=dec_no_cache_model_path, load_external_data=False)\n",
"assert len(dec_cache_model.graph.output) == len(dec_no_cache_model.graph.output)\n",
"original_nb_output_nodes = len(dec_cache_model.graph.output)\n",
"\n",
"dec_cache_model_fp32_all_nodes = add_output_nodes(model=dec_cache_model)\n",
"dec_cache_model_fp32_all_nodes_path = dec_cache_model_path + \"_all_nodes.onnx\"\n",
"save_onnx(proto=dec_cache_model_fp32_all_nodes, model_path=dec_cache_model_fp32_all_nodes_path, clean=False)\n",
"# reload after shape inference\n",
"dec_cache_model_fp32_all_nodes = onnx.load_model(f=dec_cache_model_fp32_all_nodes_path, load_external_data=False)\n",
"\n",
"ort_np_type_mapping = {\n",
" onnx.TensorProto.FLOAT: float,\n",
" onnx.TensorProto.INT64: np.int64,\n",
" onnx.TensorProto.INT32: np.int32,\n",
" onnx.TensorProto.BOOL: bool,\n",
"}\n",
"\n",
"\n",
"# If node requires that the 2 models merged have the exact same number/type of output nodes\n",
"# Above we added many output nodes to the model with cache support...\n",
"# ... we need to add fake output nodes to the other decoder model.\n",
"no_cache_output_nodes = {item.name: item for item in dec_no_cache_model.graph.output}\n",
"\n",
"while dec_no_cache_model.graph.output:\n",
" dec_no_cache_model.graph.output.pop()\n",
"\n",
"nb_outputs_to_create = len(dec_cache_model_fp32_all_nodes.graph.output)\n",
"nodes_to_be_added = list()\n",
"for i in range(nb_outputs_to_create):\n",
" node_name = dec_cache_model_fp32_all_nodes.graph.output[i].name\n",
" if node_name in no_cache_output_nodes:\n",
" node_to_insert = no_cache_output_nodes[node_name]\n",
" nodes_to_be_added.append(node_to_insert)\n",
" else:\n",
" fake_node_name = f\"output_{node_name}\"\n",
" fake_node_ort_type = dec_cache_model_fp32_all_nodes.graph.output[i].type.tensor_type.elem_type\n",
" fake_node_np_type = ort_np_type_mapping[fake_node_ort_type]\n",
" fake_data = np.array([1.0], dtype=fake_node_np_type)\n",
" fake_node = onnx.helper.make_node(\n",
" op_type=\"Constant\",\n",
" inputs=[],\n",
" outputs=[fake_node_name],\n",
" value=onnx.helper.make_tensor(\n",
" name=\"const_tensor\",\n",
" data_type=fake_node_ort_type,\n",
" dims=fake_data.shape,\n",
" vals=fake_data.flatten(),\n",
" ),\n",
" name=fake_node_name,\n",
" )\n",
" dec_no_cache_model.graph.node.append(fake_node)\n",
" nodes_to_be_added.append(onnx.ValueInfoProto(name=fake_node_name))\n",
"\n",
"\n",
"dec_no_cache_model.graph.output.extend(nodes_to_be_added)\n",
"\n",
"dec_no_cache_model_fp32_all_nodes_path = dec_no_cache_model_path + \"_all_nodes.onnx\"\n",
"save_onnx(proto=dec_no_cache_model, model_path=dec_no_cache_model_fp32_all_nodes_path, clean=False)\n",
"\n",
"# now that each model has the same number of output nodes, we can merge them!\n",
"merge_autoregressive_model_graphs(\n",
" model_cache_path=dec_cache_model_fp32_all_nodes_path,\n",
" model_no_cache_path=dec_no_cache_model_fp32_all_nodes_path,\n",
" output_path=dec_if_model_path,\n",
")\n",
"del dec_cache_model_fp32_all_nodes, dec_no_cache_model, dec_cache_model\n",
"\n",
"torch.cuda.empty_cache()\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:22:13.233449Z",
"iopub.status.busy": "2022-06-25T23:22:13.233130Z",
"iopub.status.idle": "2022-06-25T23:30:20.275528Z",
"shell.execute_reply": "2022-06-25T23:30:20.274874Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"dec_if_ort_model = create_model_for_provider(dec_if_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
"\n",
"# use info from tokenizer size and max shape provided through the command line\n",
"\n",
"\n",
"def get_random_input_cache() -> Dict[str, torch.Tensor]:\n",
" inputs = get_random_input_no_cache()\n",
" inputs[\"enable_cache\"] = torch.tensor([False], device=\"cuda\")\n",
" dec_past_states = inference_onnx_binding(\n",
" model_onnx=dec_if_ort_model,\n",
" inputs=inputs,\n",
" device=\"cuda\",\n",
" clone_tensor=False,\n",
" )\n",
" for k, v in dec_past_states.items():\n",
" if \"present\" not in k:\n",
" continue\n",
" new_k = k.replace(\"present\", \"past_key_values\")\n",
" inputs[new_k] = v\n",
" batch, _ = inputs[\"input_ids\"].shape\n",
" complement = torch.randint(low=0, high=tokenizer.vocab_size, size=(batch, 1), dtype=torch.int32, device=\"cuda\")\n",
" inputs[\"input_ids\"] = torch.concat(tensors=[inputs[\"input_ids\"], complement], dim=1)\n",
" inputs[\"enable_cache\"] = torch.tensor([True], device=\"cuda\")\n",
" return inputs\n",
"\n",
"\n",
"keep_fp32_cache = search_fp32_nodes(\n",
" original_model=dec_if_model_path,\n",
" modified_model_session=dec_if_ort_model,\n",
" get_input=get_random_input_cache,\n",
" early_stop=100,\n",
")\n",
"\n",
"\n",
"# the output node names are those from the decoder module without cache support\n",
"# basically it's the fake node names we added above, we need to remove the output_ prefix to their names\n",
"keep_fp32_cache = [item.replace(\"output_\", \"\") for item in keep_fp32_cache]\n",
"\n",
"\n",
"del dec_if_ort_model, enc_fp16_onnx, enc_fp16_onnx_binding\n",
"torch.cuda.empty_cache()\n",
"gc.collect()\n",
"\n",
"onnx_model_cache_fp16 = convert_fp16(onnx_model=dec_cache_model_path, nodes_to_exclude=keep_fp32_cache)\n",
"save_onnx(proto=onnx_model_cache_fp16, model_path=dec_cache_fp16_model_path, clean=False)\n",
"\n",
"del onnx_model_cache_fp16\n",
"gc.collect()\n",
"torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:30:20.279738Z",
"iopub.status.busy": "2022-06-25T23:30:20.279249Z",
"iopub.status.idle": "2022-06-25T23:30:20.284321Z",
"shell.execute_reply": "2022-06-25T23:30:20.283807Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20 first nodes to keep in FP32 (total 1306):\n"
]
},
{
"data": {
"text/plain": [
"['onnx::Mul_515',\n",
" 'onnx::ReduceMean_519',\n",
" 'onnx::Div_612',\n",
" 'onnx::Mul_614',\n",
" 'onnx::Cast_616',\n",
" 'onnx::MatMul_645',\n",
" 'onnx::ReduceMean_666',\n",
" 'onnx::MatMul_732',\n",
" 'onnx::ReduceMean_750',\n",
" 'onnx::ReduceMean_767',\n",
" 'onnx::Add_768',\n",
" 'onnx::Sqrt_770',\n",
" 'onnx::MatMul_833',\n",
" 'onnx::ReduceMean_851',\n",
" 'onnx::Add_852',\n",
" 'onnx::Sqrt_854',\n",
" 'onnx::MatMul_883',\n",
" 'onnx::ReduceMean_901',\n",
" 'onnx::Add_902',\n",
" 'onnx::Sqrt_904']"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_cache)}):\")\n",
"keep_fp32_cache[:20]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Merge `ONNX` computation graph to deduplicate weights\n",
"\n",
"Finally, we will merge the 2 decoders together.\n",
"The idea is simple:\n",
"\n",
"* we prefix the node / edge names of one of them to avoid naming collision\n",
"* we deduplicate the weights (the same weight matrix will have different names in the 2 models)\n",
"* we join the 2 computation graphs through an `If` node\n",
"* we generate the `ONNX` file\n",
"\n",
"The new model will take a new input, `enable_cache`. When it contains a `True` value, computation graph with cache support is used.\n",
"\n",
"> code below is written to be easy to read, but could be made much faster to run"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:30:20.287722Z",
"iopub.status.busy": "2022-06-25T23:30:20.287499Z",
"iopub.status.idle": "2022-06-25T23:30:55.187877Z",
"shell.execute_reply": "2022-06-25T23:30:55.187290Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merge_autoregressive_model_graphs(\n",
" model_cache_path=dec_cache_fp16_model_path,\n",
" model_no_cache_path=dec_no_cache_fp16_model_path,\n",
" output_path=dec_if_fp16_model_path,\n",
")\n",
"\n",
"torch.cuda.empty_cache()\n",
"gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Check `ONNX` decoder output\n",
"\n",
"Compare `ONNX` output with and without cache, plus compare with `Pytorch` output."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:30:55.192078Z",
"iopub.status.busy": "2022-06-25T23:30:55.191597Z",
"iopub.status.idle": "2022-06-25T23:30:56.622668Z",
"shell.execute_reply": "2022-06-25T23:30:56.621901Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"pytorch_model = pytorch_model.cuda()\n",
"model_decoder = model_decoder.cuda()\n",
"input_ids = input_ids.cuda()\n",
"pytorch_model = pytorch_model.eval()\n",
"model_decoder = model_decoder.eval()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Zero copy output\n",
"\n",
"Below, we check that the new model output is similar to the ones from `Pytorch`.\n",
"\n",
"We use our new implementation of inference call. \n",
"The idea is the following:\n",
"\n",
"* we ask `ONNX Runtime` to output a pointer to the `CUDA` array containing the result of the inference;\n",
"* we use `Cupy` API to wrap the array and provide information regarding tensor shape and type. `Cupy` doesn't own the data;\n",
"* we use `Dlpack` support to convert the `Cupy` tensor to `Pytorch`, another zero copy process.\n",
"\n",
"This pipeline is unsafe, as the content of the tensor may change or disappear silently: only `ONNX Runtime` has the control of the array containing the data. It will happen at the next inference call. Because we know that during the text generation we discard each output before recalling `ONNX Runtime`, it works well in our case.\n",
"\n",
"A second benefit of this approach is that we do not have anymore to guess the output shape. \n",
"Before using this approach, to avoid the output to be stored on host memory (RAM) which made inference slower, we had to provide `ONNX Runtime` with a pointer to `Pytorch` tensor with the right size. As the size change with the sequence length (so it changes for each generated token), we had to store the logic to guess the size somewhere in the code. The new approach frees us from this burden."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:30:56.627680Z",
"iopub.status.busy": "2022-06-25T23:30:56.627098Z",
"iopub.status.idle": "2022-06-25T23:30:58.826841Z",
"shell.execute_reply": "2022-06-25T23:30:58.826297Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"with torch.inference_mode():\n",
" out_enc_pytorch: BaseModelOutputWithPastAndCrossAttentions = pytorch_model.encoder(input_ids=input_ids)\n",
" previous_step_pytorch: BaseModelOutputWithPastAndCrossAttentions = model_decoder(\n",
" input_ids=input_ids[:, :-1], encoder_hidden_states=out_enc_pytorch.last_hidden_state\n",
" )\n",
" out_dec_pytorch: BaseModelOutputWithPastAndCrossAttentions = model_decoder(\n",
" input_ids=input_ids, encoder_hidden_states=out_enc_pytorch.last_hidden_state\n",
" )\n",
"pytorch_model = pytorch_model.cpu()\n",
"model_decoder = model_decoder.cpu()\n",
"torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:30:58.830668Z",
"iopub.status.busy": "2022-06-25T23:30:58.830474Z",
"iopub.status.idle": "2022-06-25T23:31:28.358065Z",
"shell.execute_reply": "2022-06-25T23:31:28.357374Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
"enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
"dec_onnx = create_model_for_provider(dec_if_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
"dec_onnx_binding: IOBinding = dec_onnx.io_binding()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:28.362691Z",
"iopub.status.busy": "2022-06-25T23:31:28.362409Z",
"iopub.status.idle": "2022-06-25T23:31:29.072363Z",
"shell.execute_reply": "2022-06-25T23:31:29.071563Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"def decoder_pytorch_inference(decoder_input_ids: torch.Tensor, encoder_hidden_states: torch.Tensor, **_):\n",
" with torch.inference_mode():\n",
" return model_decoder(input_ids=decoder_input_ids, encoder_hidden_states=encoder_hidden_states)\n",
"\n",
"\n",
"def decoder_onnx_inference(\n",
" decoder_input_ids: torch.Tensor,\n",
" encoder_hidden_states: torch.Tensor,\n",
" enable_cache: torch.Tensor,\n",
" past_key_values: Optional[torch.Tensor],\n",
"):\n",
" inputs_onnx_dict = {\n",
" \"input_ids\": decoder_input_ids,\n",
" \"encoder_hidden_states\": encoder_hidden_states,\n",
" \"enable_cache\": enable_cache,\n",
" }\n",
"\n",
" if past_key_values is not None:\n",
" for index, (k_dec, v_dec, k_enc, v_enc) in enumerate(past_key_values):\n",
" inputs_onnx_dict[f\"past_key_values.{index}.decoder.key\"] = k_dec\n",
" inputs_onnx_dict[f\"past_key_values.{index}.decoder.value\"] = v_dec\n",
" inputs_onnx_dict[f\"past_key_values.{index}.encoder.key\"] = k_enc\n",
" inputs_onnx_dict[f\"past_key_values.{index}.encoder.value\"] = v_enc\n",
"\n",
" result_dict = inference_onnx_binding(\n",
" model_onnx=dec_onnx,\n",
" inputs=inputs_onnx_dict,\n",
" binding=dec_onnx_binding, # recycle the binding\n",
" device=decoder_input_ids.device.type,\n",
" clone_tensor=False, # no memory copy -> best perf and lowest memory footprint!\n",
" )\n",
" past_states = list()\n",
" for index in range(pytorch_model.config.num_layers):\n",
" kv = (\n",
" result_dict[f\"present.{index}.decoder.key\"],\n",
" result_dict[f\"present.{index}.decoder.value\"],\n",
" result_dict[f\"present.{index}.encoder.key\"],\n",
" result_dict[f\"present.{index}.encoder.value\"],\n",
" )\n",
" past_states.append(kv)\n",
" return BaseModelOutputWithPastAndCrossAttentions(\n",
" last_hidden_state=result_dict[\"logits\"],\n",
" past_key_values=past_states,\n",
" )\n",
"\n",
"\n",
"out_dec_onnx_no_cache = decoder_onnx_inference(\n",
" decoder_input_ids=input_ids,\n",
" encoder_hidden_states=out_enc_pytorch.last_hidden_state.half(),\n",
" enable_cache=torch.tensor([False], device=\"cuda\", dtype=torch.bool),\n",
" past_key_values=None,\n",
")\n",
"are_equal(a=out_dec_onnx_no_cache.last_hidden_state[:, -1:, :], b=out_dec_pytorch.last_hidden_state[:, -1:, :])\n",
"\n",
"# check that past states are identical between ONNX and Pytorch\n",
"assert len(out_dec_onnx_no_cache.past_key_values) == len(out_dec_pytorch.past_key_values)\n",
"for (o_dec_k, o_dev_v, o_enc_k, o_enc_v), (p_dec_k, p_dev_v, p_enc_k, p_enc_v) in zip(\n",
" out_dec_onnx_no_cache.past_key_values, out_dec_pytorch.past_key_values\n",
"):\n",
" are_equal(a=o_dec_k, b=p_dec_k)\n",
" are_equal(a=o_dev_v, b=p_dev_v)\n",
" are_equal(a=o_enc_k, b=p_enc_k)\n",
" are_equal(a=o_enc_v, b=p_enc_v)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:29.077196Z",
"iopub.status.busy": "2022-06-25T23:31:29.076902Z",
"iopub.status.idle": "2022-06-25T23:31:29.758912Z",
"shell.execute_reply": "2022-06-25T23:31:29.758374Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# convert ONNX inputs to FP16\n",
"previous_step_pytorch.past_key_values = tuple(\n",
" [tuple([past.half() for past in layer_state]) for layer_state in previous_step_pytorch.past_key_values]\n",
")\n",
"out_enc_pytorch.last_hidden_state = out_enc_pytorch.last_hidden_state.half()\n",
"\n",
"out_dec_onnx_cache = decoder_onnx_inference(\n",
" decoder_input_ids=input_ids[:, -1:],\n",
" encoder_hidden_states=out_enc_pytorch.last_hidden_state,\n",
" enable_cache=torch.tensor([True], device=\"cuda\", dtype=torch.bool),\n",
" past_key_values=previous_step_pytorch.past_key_values,\n",
")\n",
"\n",
"are_equal(a=out_dec_onnx_cache.last_hidden_state[:, -1:, :], b=out_dec_pytorch.last_hidden_state[:, -1:, :])\n",
"\n",
"# check that past states are identical between ONNX and Pytorch\n",
"assert len(out_dec_onnx_cache.past_key_values) == len(out_dec_pytorch.past_key_values)\n",
"for (o_dec_k, o_dev_v, o_enc_k, o_enc_v), (p_dec_k, p_dev_v, p_enc_k, p_enc_v) in zip(\n",
" out_dec_onnx_cache.past_key_values, out_dec_pytorch.past_key_values\n",
"):\n",
" are_equal(a=o_dec_k, b=p_dec_k)\n",
" are_equal(a=o_dev_v, b=p_dev_v)\n",
" are_equal(a=o_enc_k, b=p_enc_k)\n",
" are_equal(a=o_enc_v, b=p_enc_v)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Benchmarks!\n",
"\n",
"Finally, we will compare the performances of 4 setup in end-to-end scenarii:\n",
"\n",
"* `Pytorch`\n",
"* `Pytorch` + cache\n",
"* `ONNX`\n",
"* `ONNX` + cache\n",
"\n",
"For the comparison, we first do a sanity check by just generating a short sequence (we already have checked that output tensors are OK).\n",
"\n",
"Then we force each model to generate:\n",
"\n",
"* 256 tokens + batch size 1 (similar to `TensorRT` demo)\n",
"* 1000 tokens + batch size 4\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:29.763346Z",
"iopub.status.busy": "2022-06-25T23:31:29.763084Z",
"iopub.status.idle": "2022-06-25T23:31:31.363367Z",
"shell.execute_reply": "2022-06-25T23:31:31.362735Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"text generated by ONNX:\n",
"L'apprentissage par transfert, où un modèle est d'abord préentraîné sur une tâche riche en données avant sa mise au point à l'égard de tâches ultérieures, est devenue une technique puissante dans le domaine du traitement de langue naturelle (PLN).\n",
"\n",
"\n"
]
}
],
"source": [
"def encoder_onnx_inference(input_ids: torch.Tensor, **_) -> BaseModelOutputWithPastAndCrossAttentions:\n",
" last_hidden_state = inference_onnx_binding(\n",
" model_onnx=enc_fp16_onnx, # noqa: F821\n",
" inputs={\"input_ids\": input_ids},\n",
" device=input_ids.device.type,\n",
" binding=enc_fp16_onnx_binding,\n",
" )[\"output\"]\n",
" return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=last_hidden_state.type(torch.float16))\n",
"\n",
"\n",
"def encoder_pytorch_inference(input_ids, **_) -> BaseModelOutputWithPastAndCrossAttentions:\n",
" with torch.inference_mode():\n",
" res = pytorch_model.encoder(input_ids=input_ids).type(torch.float16)\n",
" return res\n",
"\n",
"\n",
"# https://github.com/NVIDIA/TensorRT/blob/main/demo/HuggingFace/T5/export.py\n",
"class ExtT5(torch.nn.Module, GenerationMixin):\n",
" def __init__(self, config: PretrainedConfig, device: torch.device, encoder_func: Callable, decoder_func: Callable):\n",
" super(ExtT5, self).__init__()\n",
" self.main_input_name = \"input_ids\" # https://github.com/huggingface/transformers/pull/14803\n",
" self.config: PretrainedConfig = config\n",
" self.device: torch.device = device\n",
"\n",
" self.encoder_func = encoder_func\n",
" self.decoder_func = decoder_func\n",
" self.use_cache = True\n",
" self.timings = list()\n",
"\n",
" def get_encoder(self):\n",
" return self.encoder_func\n",
"\n",
" def get_decoder(self):\n",
" return self.decoder_func\n",
"\n",
" def set_cache(self, enable: bool) -> None:\n",
" self.use_cache = enable\n",
"\n",
" # from transformers library (modeling_t5.py)\n",
" def _reorder_cache(self, past, beam_idx):\n",
" reordered_decoder_past = ()\n",
" for layer_past_states in past:\n",
" # get the correct batch idx from layer past batch dim\n",
" # batch dim of `past` is at 2nd position\n",
" reordered_layer_past_states = ()\n",
" for layer_past_state in layer_past_states:\n",
" # need to set correct `past` for each of the four key / value states\n",
" reordered_layer_past_states = reordered_layer_past_states + (\n",
" layer_past_state.index_select(0, beam_idx),\n",
" )\n",
"\n",
" assert reordered_layer_past_states[0].shape == layer_past_states[0].shape\n",
" assert len(reordered_layer_past_states) == len(layer_past_states)\n",
"\n",
" reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)\n",
" return reordered_decoder_past\n",
"\n",
" def prepare_inputs_for_generation(self, input_ids, past=None, use_cache=None, **kwargs) -> Dict[str, torch.Tensor]:\n",
" params = {\n",
" \"encoder_hidden_states\": kwargs[\"encoder_outputs\"][\"last_hidden_state\"],\n",
" }\n",
" if past is None: # this is the 1st inferred token\n",
" self.timings = list()\n",
" if not self.use_cache:\n",
" past = None\n",
" if past is None:\n",
" params[self.main_input_name] = input_ids\n",
" params[\"enable_cache\"] = torch.tensor([False], device=\"cuda\", dtype=torch.bool)\n",
" else:\n",
" params[self.main_input_name] = input_ids[:, -1:]\n",
" params[\"enable_cache\"] = torch.tensor([True], device=\"cuda\", dtype=torch.bool)\n",
" params[\"past_key_values\"] = past\n",
"\n",
" return params\n",
"\n",
" def forward(\n",
" self,\n",
" input_ids: torch.Tensor,\n",
" encoder_hidden_states: torch.Tensor,\n",
" enable_cache: torch.Tensor,\n",
" past_key_values: Optional[torch.Tensor] = None,\n",
" **_,\n",
" ):\n",
" start_timer = time.monotonic()\n",
" dec_output = self.get_decoder()(\n",
" decoder_input_ids=input_ids,\n",
" encoder_hidden_states=encoder_hidden_states,\n",
" enable_cache=enable_cache,\n",
" past_key_values=past_key_values,\n",
" )\n",
" self.timings.append(time.monotonic() - start_timer)\n",
" return Seq2SeqLMOutput(logits=dec_output.last_hidden_state, past_key_values=dec_output.past_key_values)\n",
"\n",
"\n",
"model_gen = (\n",
" ExtT5(\n",
" config=pytorch_model.config,\n",
" device=pytorch_model.device,\n",
" encoder_func=encoder_onnx_inference, # encoder_pytorch_inference\n",
" decoder_func=decoder_onnx_inference, # decoder_pytorch_inference\n",
" )\n",
" .cuda()\n",
" .eval()\n",
")\n",
"\n",
"torch.cuda.synchronize()\n",
"with torch.inference_mode():\n",
" print(\"text generated by ONNX:\")\n",
" onnx_tokens = model_gen.generate(\n",
" inputs=input_ids,\n",
" min_length=10,\n",
" max_length=128,\n",
" num_beams=2,\n",
" no_repeat_ngram_size=2,\n",
" )[0]\n",
" print(tokenizer.decode(onnx_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True))\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:31.367833Z",
"iopub.status.busy": "2022-06-25T23:31:31.367648Z",
"iopub.status.idle": "2022-06-25T23:31:42.820566Z",
"shell.execute_reply": "2022-06-25T23:31:42.820023Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"seq len: 128 / # beam (batch size): 1\n",
"ONNX: 2.9, including inference: 2.8 (97.2%)\n",
"ONNX + cache: 1.4, including inference: 1.3 (94.4%)\n",
"seq len: 128 / # beam (batch size): 2\n",
"ONNX: 4.7, including inference: 4.4 (94.5%)\n",
"ONNX + cache: 1.7, including inference: 1.4 (85.1%)\n"
]
}
],
"source": [
"def print_timings(name: str, total: float, inference: float):\n",
" percent_inference = 100 * inference / total\n",
" print(f\"{name}: {total:.1f}, including inference: {inference:.1f} ({percent_inference:.1f}%)\")\n",
"\n",
"\n",
"all_timings: Dict[str, Dict[str, List[float]]] = defaultdict(dict)\n",
"for seq_len, num_beam in benchmark_tasks:\n",
" timings_key = f\"{seq_len} / {num_beam}\"\n",
"\n",
" print(f\"seq len: {seq_len} / # beam (batch size): {num_beam}\")\n",
" task = \"ONNX\"\n",
" with nvtx.annotate(\n",
" task, color=\"red\"\n",
" ): # nvtx is for Nvidia nsight profiler, you can remove the line or install the library\n",
" model_gen.set_cache(enable=False)\n",
" # warmup\n",
" model_gen.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
" start = time.monotonic()\n",
" model_gen.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
" total_time = time.monotonic() - start\n",
" print_timings(name=task, total=total_time, inference=sum(model_gen.timings))\n",
" all_timings[timings_key][f\"{task}\"] = model_gen.timings\n",
"\n",
" task = \"ONNX + cache\"\n",
" with nvtx.annotate(task, color=\"red\"):\n",
" model_gen.set_cache(enable=True)\n",
" # warmup\n",
" model_gen.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
" start = time.monotonic()\n",
" model_gen.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
" total_time = time.monotonic() - start\n",
" print_timings(name=task, total=total_time, inference=sum(model_gen.timings))\n",
" all_timings[timings_key][f\"{task}\"] = model_gen.timings"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:42.823167Z",
"iopub.status.busy": "2022-06-25T23:31:42.822970Z",
"iopub.status.idle": "2022-06-25T23:31:44.648023Z",
"shell.execute_reply": "2022-06-25T23:31:44.647389Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"del enc_fp16_onnx, enc_fp16_onnx_binding, dec_onnx, dec_onnx_binding\n",
"\n",
"pytorch_model = pytorch_model.cuda()\n",
"model_decoder = model_decoder.cuda()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:44.651402Z",
"iopub.status.busy": "2022-06-25T23:31:44.651208Z",
"iopub.status.idle": "2022-06-25T23:31:47.566756Z",
"shell.execute_reply": "2022-06-25T23:31:47.566232Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"text generated by Pytorch:\n",
"L'apprentissage par transfert, où un modèle est d'abord préentraîné sur une tâche riche en données avant sa mise au point à l'égard de tâches ultérieures, est devenue une technique puissante dans le domaine du traitement de la langue naturelle (PLN).\n",
"\n",
"\n"
]
}
],
"source": [
"torch.cuda.synchronize()\n",
"with torch.inference_mode():\n",
" print(\"text generated by Pytorch:\")\n",
" pytorch_tokens = pytorch_model.generate(\n",
" inputs=input_ids,\n",
" min_length=10,\n",
" max_length=128,\n",
" num_beams=2,\n",
" no_repeat_ngram_size=2,\n",
" )[0]\n",
" print(tokenizer.decode(pytorch_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True))\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:31:47.571595Z",
"iopub.status.busy": "2022-06-25T23:31:47.571410Z",
"iopub.status.idle": "2022-06-25T23:32:07.257300Z",
"shell.execute_reply": "2022-06-25T23:32:07.256672Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pytorch: 4.1, including inference: 4.0 (98.6%)\n",
"Pytorch + cache: 3.5, including inference: 3.4 (98.3%)\n",
"Pytorch: 4.3, including inference: 4.2 (97.8%)\n",
"Pytorch + cache: 3.7, including inference: 3.6 (95.7%)\n"
]
}
],
"source": [
"for seq_len, num_beam in benchmark_tasks:\n",
" timings_key = f\"{seq_len} / {num_beam}\"\n",
"\n",
" # monckey patching of forward function to add a timer per generated token\n",
" old_fw = pytorch_model.forward\n",
" timing_pytorch = list()\n",
"\n",
" def new_fw(self, *args, **kwargs):\n",
" timer_start = time.monotonic()\n",
" res = old_fw(self, *args, **kwargs)\n",
" torch.cuda.synchronize() # makes timings correct without having significant impact on e2e latency\n",
" total_time = time.monotonic() - timer_start\n",
" timing_pytorch.append(total_time)\n",
" return res\n",
"\n",
" task = \"Pytorch\"\n",
" with nvtx.annotate(task, color=\"orange\"):\n",
" pytorch_model.config.use_cache = False\n",
" with torch.inference_mode():\n",
" with torch.cuda.amp.autocast():\n",
" # warmup\n",
" pytorch_model.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
" pytorch_model.forward = new_fw.__get__(pytorch_model)\n",
" start = time.monotonic()\n",
" pytorch_model.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
" total_time = time.monotonic() - start\n",
" pytorch_model.forward = old_fw\n",
" inference_time = np.sum(timing_pytorch)\n",
" print_timings(name=\"Pytorch\", total=total_time, inference=inference_time)\n",
" timing_pytorch_no_cache = copy(timing_pytorch)\n",
" all_timings[timings_key][f\"{task}\"] = copy(timing_pytorch)\n",
" timing_pytorch.clear()\n",
" torch.cuda.empty_cache()\n",
"\n",
" task = \"Pytorch + cache\"\n",
" with nvtx.annotate(\"Pytorch + cache\", color=\"green\"):\n",
" pytorch_model.config.use_cache = True\n",
" with torch.inference_mode():\n",
" with torch.cuda.amp.autocast():\n",
" # warmup\n",
" pytorch_model.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
" pytorch_model.forward = new_fw.__get__(pytorch_model)\n",
" start = time.monotonic()\n",
" pytorch_model.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
" total_time = time.monotonic() - start\n",
" pytorch_model.forward = old_fw\n",
" print_timings(name=\"Pytorch + cache\", total=total_time, inference=sum(timing_pytorch))\n",
" all_timings[timings_key][f\"{task}\"] = copy(timing_pytorch)\n",
" timing_pytorch.clear()\n",
" torch.cuda.empty_cache()\n",
"\n",
"pytorch_model = pytorch_model.cpu()\n",
"model_decoder = model_decoder.cpu()\n",
"torch.cuda.empty_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Benchmark analysis\n",
"\n",
"Below, we plot for each setup (short and long sequence):\n",
"\n",
"* the time spent on each token generation\n",
"* the full time to generate the sequence (for each length)\n",
"\n",
"We can see that for short sequence and batch size of 1, cache or not, latency appears to be stable.\n",
"However, for longer sequences, we can see that the no cache approach (being `Pytorch` or `ONNX` based) doesn't scale well, and at some point, `ONNX` is even slower than `Hugging Face` code with cache support.\n",
"\n",
"On the other side, `ONNX` timings are mostly stable whatever the sequence length which is quite remarkable.\n",
"It's because we are working one token at a time and converted a quadratic complexity in the attention layer into a linear one."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:32:07.262946Z",
"iopub.status.busy": "2022-06-25T23:32:07.262462Z",
"iopub.status.idle": "2022-06-25T23:32:08.269837Z",
"shell.execute_reply": "2022-06-25T23:32:08.269184Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCQAAAJICAYAAAC5cDUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD7T0lEQVR4nOzdd5gURf7H8fdm0sISlhxVKAFFEDGCqKceior5Z0CCWc9w6hnu9ExnTmfOARTMOWLGdEZUUNQSVJLksLCkzb8/umdphp60OztpP6/n4WF2uqe7qid017e/VZVVU1ODiIiIiIiIiEgiZSe7ACIiIiIiIiLS+CggISIiIiIiIiIJp4CEiIiIiIiIiCScAhIiIiIiIiIiknAKSIiIiIiIiIhIwikgISIiIiIiIiIJp4CESIIZY3oaY2qMMbnu31ONMScnsTx7GWMWJGv/0TLGTDDGXJPscvhx389tkl2OWAV/FjNJfT8vxpg5xph941mmhuCtZ6zf5WR8940xVxpjJtXxtfV9T58yxhzqPj7eGPNODK+9xhiz3BizuK77TyRjTAdjzM/GmIJkl0VERCScjLsIFakrY8xQ4CagP1AF/Az83Vr7dVILJpKBjDFzgJOtte95nqsB1gM17lNPW2t9g3XGmH7A48DW7lPTgHOstT81WKHrwBgzAZhqrZ1gjBmHU+ehYdafCkyy1j7cAGWpAXpba2fHe9upzhgzANgBOA7AWjsZmBzla7sDFwA9rLVLG6yQcWStXWKM+RA4FbgrltcaY/bC+Qx2bYiyiYiIeClDQgQwxrQEXse5cGsDdAGuAsqSWS6JP2NMljGm0fz2pWH2ww7W2hbuv3CZQwuBI3G+r+2AV4GnE1FASUunAZOttTUR19xSd2BFXYIRSf69mYxT74RKw98cERFJIp00RBx9AKy1T7l/bwBq03ndO5unAF8B44GVwGj3df8BCoALrbUT3fVHAtfg3L1dDTxirb0y1kIZY3YG7nX3swHngvp8d9muwG1AP2AucK61dqq7rBcwAdgR+AKwQJG1dnQU++yME5jZE1gL/Ndae6e77Ep3fxuBw4B5wFhr7TchtnUHcDjQCpiFk3HySTTbMsYMAh4BegNvsumuud9+cnCyW8YCpcCtbh3yrLWV7l3nz4C93GOyvXvRfBcwGFgG/Nta+6y7vQLgWuBonPf2JeA8a+0Gd/mFwPlumS7zlGMITmCrs7W2yn3ucOAKa+0OPuU+ELgF6AascY/1Le6yg3A+Qz2Bn4DTrbUz3GWX4Hwe2wPzgUuttS+5y8ax6bM6BrjPGHOtu60jgSLgB2A/T1GON8b8B2jmluHaEMe5lXvMDsDJZHgIuM5aWx24+4/zeTsJKAHOtNa+5bOdJ3Aaea8ZY6qAq621N/ntMxRrbYm7D4wxWThZTcHdZtoZY94FdgW+BcZYa+eGqNsJOMeoBc73yrusALgR5/MA8CxwsbW2LHA3GfgvcLFbjn9Zax8L2kZf4H4gzxizFqi01hYFrXMtMAzY1RhzOzDBWnuWMWZbQnxWo2WM+dh9ON3NlDgJWOIuu8Cv7JG+B0Hbnwscbq2dZow53j0m21lrZxpjTgIOttYe6q6eb4x5HP/vfV/gPmAg8CfwT2vtqyHqFPI74uMAnO9D4LXj8GSruMfkDJxMiGKcxvxZwF+A14AC93173lo7LsLv71Ri+72ZAKxz67GnW5fjrLW/ucv7A7e7r60A7rDWXucGOi7C+b4XAe+7x2ClW80vga2MMT38Pvd+vz84x/4tT33BOf+sIPJ34C7gPOBd9/f7n9ba19x95QGLgP2std/5vUEiItI4KSAh4vgVqDLGTMS5y/qFtXZV0Dq7AA8DbXGyJ57GuVDdBhgOvGCMecFauxbn4nIMMBPYDucC7Xtr7csxlusOnIvPJ4wxLdxtYYzpArwBnABMwblofsEYs621dhnwJPA5sL9b7jeAVyLtzL3Afc1d91igK/CeMcZaa992VzsEJ8gwHqcxcDdOg8/P18DVOEGZc4HnjDE9rbUbw23LGJMPvIxzEX43MAp4CueC2M8pOA2OgTjH/jmfdU5w17FAc+BH4HL3ue1x3qMf3ZT/G3CCSQNxGgBPuuv+0xgzAvgHzjH/A6dRDoC19mtjzAqc4x5oiJ+A07XAzyPA0dbaT4wxrYFeUBuMeRQ4GPgGJ/j1qnHeiDLgN5yG62LgKGCSMWYba+0id7u74Hw+OwB5OI2O/sDu7mt2Aao95RgKGJyGx1fGmBettT/7lPcunODSVjjfg3dwGhmPePY7ESdj4VTgEWNMl+C70tbaE4wxwwjqsuH62P0c/g8431o7J8Sxwz1WJThBhGyc98jreGAkTsPsJpxG5hbdJdzuH/cBB7rrXo/z2Q+4FOczPhAnCPUKTiDq3+7yjjjHpQtOoOd5Y8zL1tpV1tpxnv2cTpguG9baS40xe+DpsmGMaQ68S+jPalSstXu6je4dAl023IZkyLIT5nvgs4uPcBrg03B+D3/HaVzPdP/+yLNuqO99Hs7vz6M436GhwCvGmJ2stda7syi+I951m+N8tzbbho+DgCFAS7cer1lrpxhjDsDThSGK31+I7fcG4Bh32bc436FrgWOMMYXAezjf4YNxvs/93NecDRzqHt9lwJ3APTi/3bjB2Nk4XVX8AnFb/P5Ya9cF19et89VE/g60AXrgfBfPxnlPXnOXHwgsUjBCpO6mTZv215yc3Ctqamo6oix3SQ/VWVlZi6uqKq8aPHjw26FWUkBCBLDWrjHOGBIX4zQwOxpj3gROsdYucVf7w3Pn8BmcRsrV7sXvO8aYcpzgxPeBO2WuGcaYp3AuGl+OsWgVwDbGmHbW2uU4d5/BudB701r7pvv3u8aYb4AD3X7DQ4B93bJ9bIx5bYst+xsCFFtrr3b//t0Y8xDOxXLgh+TTwH7dO91/D7Uxa6138LpbjTGX4TR8p0fY1q44F963u43Z540x54cp99E4gZsF7rZuwGkkeE2w1s50l48A5njuYn9njHkBOMq98D4VGBC402iMuQ6nMfZPd1+PWWt/dJddidsAcE3EeX/eMsa0Af4KnBmi3BVAP2PMdLcBGAiCnQo8YK39MrBNY8y/3OPykbXWG3B5xhjzT2BnNgWdFlpr73LLVw2cCOxqrf3TXf4/d1lgG1e5d72nG2Om4zRgNgtIGCcL5RhgoLW2FCg1xtyK0/AKBCTmWmsfctefiJPd0wEnCBKN4Tif8WY4DdXXjTEDrbWVoV5grS1yG5xj2bLR9Ya19mO3PJcCq40x3ay184PWOxJ43bPuv3HujgccD5wdSNk3xlwFPMCmxlgFzm9BJfCme2fZsOn7Wh8HEeKzihMYrS/fshtjviT89yDYRziBw1txgmXXA/viBHqG4wQXA8J971sAN1hrq4EPjDGv43y/rgzaX9jvSNC6Re7/pRGOxQ2BzBv3d3QgTsAhWMjfX5zvP0T5e8Om9/Ala+1X7vqT2ZSlcxCw2Fp7q/v3RpygGcDpwFme370rgXnGmBM835lST/2Dhfr98RPpO1CNkwlW5i6fBPzbGNPSWrsG53fiiTDbF5Ewpk2b9tfc3Py727btUJ6f32RVVlZWXbqfiSRUTU1NVnn5xlYrViy5e9q0aWeFCkooICHicu8IjwMwTor0JJyL6EBjc4ln9Q3ua4Kfa+G+fhecu4vbAfk46c5+d+0jOQknw+AXY8wfOA3H13HuQh1ljDnYs24e8CHQGVhlrV3nWTYXJy03kh5AZ/euc0AO8Innb2/jcj3QxBiT69doNMb8w61DZ5y7ai1x7p6H3Za7/p9Bd9Z9U+1dnXG6LgQENziDn+sB7BJUz1ycC+ZinAbxNE+DPQvnOAT2NS1MuSYBP7uN5KOBTzyZC8GOwLnLeIMxZgZwibX2c7d8Y40xZ3vWzXf3jTFmDE6XkZ7ushZsfly9dW0HNMHJqggl+H1o4bNOO5zPmLe+c3HurG+xHWvtevf4+W3LVyAgAJQbY87FSSPva4xZjZPGHlivRdDr1hlj7geWGWP62k19/ed71llrjFnJlp8Vgp9zt7ciaHlwvTt7/l4R9PkPdQzrItxnNR5ClT3S9yDYR8AtxphO7jrPAlcYY3riZGB871k33Pd+vhuMCAj+jAWE/Y4EKXH/L8Rp0IcSzfcgsO9Qv78B0f7eRNp3N0J/d3sAL7lBx4AqnCBgIPhYyKb6Bwv1++Mn0ndgmSfzDWvtQmPMZ8ARxpiXcLI/zg2xbRGJICcn94q2bTuUFxQ03aLLnEiqysrKqikoaLqhbdsOLF++6Ao23dzcjAISIj6stb8Yp19vXQcEexInDfkAa+1G4/QHbxf+Jb7lmAUc66awH46TKdAW52L3CWvtKcGvMcb0AFobY5p7ghLdCTMGg8d8nEyQ3rGW1accw3D6N/8FmGmdcQZW4TRqIlkEdDHGZHmCEt0JfWG+iM1T7P2CL976z8fJNNgveCX3WG8A+nsyCoL35d1+d+9Ca+2fxpjPcd6vE3DuEPuyzgwuo9xU9bNwGnHd3PJda33GcnDf34dwjuvn1toqY8z3bH5cvXVdjtMI25pNmSl1sRznjmoPNgUHurOp4ROraD6PNUCWtXYekRv42TgN6C5AICBR+z4Zp8tTG5zBMIMtAvp61m2G0yUlYCFOvWe6f3cPsZ1Ioq2zV8jPagNbTvjvwWastbONMetxUvU/drPOFuNkMnwaFGQIZSHQzRiT7Vm/O06XumAhvyM+ZVtnjPkNp0vSskjrRyHk769HVL83Ue7rmDDLTrTWfua30A3ybEOI732Y3x+/z2mk74DfaybijCuTi/NbVdffCpFGr6ampmN+fpNwWUwiKSs/v8lGt6uRLwUkRKjNiBgJPGOtXWCM6YaTGVHXlOtCYKUbjNgZZ6q5qOe895RrNPC2tXaZ5+5aNc5d+K+NMX/F6V+ch5OqPNtaO9dNH77KTWHeGafvse/AcEG+wknFvxinP3I5TkOtqY19+tNCoBKnAZBrnIEYW0b52s/d155jjLnXLf/ObH4H0utZ4FxjzBs4Y0hcHGH7r+PcFTyBTTMzDATWWmt/drup/NcYc5a1dqlx+oxvZ51xNJ4FHjPOoHxzgCt8tv84cAnOBfyLfgUwzjgZR+F0FVhtjFnDpnEdHsK58/keznvSDKd//sc4/dFrcBtWxpjxuGOL+HEDQY8Ct7n1XYJzLL8Nf4i22E6VMeZZ4Fo3Q6MNTpbGLbFsx2MJzlgUQO3AfXk4A242xemy8SdBXUc86++H02iegXNMrsFJOfeuf6BxumJ9hTP47Bc+3TUAnge+9Kx7NZv3z30KuMwY8zXOsb8c5zsYqyVAV2NMvrW2PMw6W3n+DvtZrcP+twIiTvvpfm7CfQ/8fITTsP2b+/dU9+//RFm+L3GyAy5yuwPtgfPdH+KzbsjviNulKNibOF1HfBvvMQr3+7vAZ/36vIev43x3/44T3MwH+rldVe7H+T6OdX/3i4HdrbWBrls743QV8RvQMtzvzxKgrTGmlbV2tftcXb4DL7Op21ZMg9aKyBay1U1D0pX72Q057okGRBFxlOIMyPelMWYdTiDiR5wR1+viTOBqY0wpzoVbTCPie4wAZrr9uu8AjrHWbnAbVaOAf+E0TOcDF7LpO32cW5+VOA3mUIMqbsY6M0MchHOx/AdOg+9hnJTrWL2N0//6V5z03o34d6XwK0c5TobBOJw6/B8hGvauh3ACPjOA73AaH5U46ct+2y/FGTTvGJy7fItxBswscFe5GKfR9oV7of4ezpgAWGfWiNuBD9x1PvDZxUu46dTW2vVhyn0CMMfdx+k4/bSxzowDp+Bk2axy9zPOXfYTTj/9z3EaDtsTuZH1D5yG/tc4x/NG6vb7fzZOwOd34FOcTKBH67AdcMYYuMwYU+J27ekAPIPTTeN3nO4oB1lrK0K8vginkbQaJ3Nma2CEN23cLd8VOHUejNP3fwtuX/+/uesvwjnm3oblNTgDJ87AOY7fus/F6gOcO8yLjTHLQ6xzB3CkMWaVMebOKD6rsbgSZ6yFEmPM0ZFWJsz3IISPcAKRH4f4Oyz3e38wTnr/cpzG7Bhr7S8+64b8joTwIM5sMtFkaEUqZ6Tf3+D16/weuq/dD+e4LMaZrWhvd/EdOIHmd9xzzRc4v/sBx+MELUIJ9fvzC85363f3s9KZOnwHrDMuzQs4A4q+CGCMecsNlOP+vdbNpsMYM8xsmtlDREQaiayaGgXbRDKdcQY728ZGMe1nJjDOKPH3W2t7JLEMvwGn2S1nkRCRJDDGPAk8a2Of7SjtGGPa4wSEBgUF6RJdjsuBPo3l3CPSUL777vs5XbtuHSqQLZLyFiz4rd2gQQN7+i1ThoSIpD1jTFNjzIHGmFw3rfwKnCyFZJXnCJy0Zr/sCRFJAmvtcY0hGAFgrV1qre2b5GBEG5xBjR9MVhlEJPXU1NTw3HNPtx079pht//KXPQbtu+/QQSefPMa8885bm2XjXnrphT2HDt1p8JVXXrrFzaUTTji676WXXtgz8Pdzzz3ddujQnQYfddQh/aurNx+y6MYbr+166KEjtg/8/cILz7YdNmzI4GnTvm7uXa+0tDT7oIP2G3Dxxef3ilddJToKSIhIJsjCmT5vFU6XjZ9xusoknDFmKk5f779FOZCfiEhGMcacgtOV5S3P7DkiIlx99b+733XXbT379Nl23eWXX/Pbv/51xW/t23cou/rqf2/zwAP3bDHw4dSp77dduPDPvGi2vWjRwiZvvvla63DrHHHE0Sv69Nl27W233dS9qmpTz9677vpvl7Kysuzzz78oqu7FEj8a1FKkEbDWXpnsMjQkd5wGv4HvEs5au1eyyyAikkzW2odwxvYREak1ZcobRe++O6X4jDPOnnf88WNrZz3aZ5/91txyy/UVkyZN6LLbbnusGTBg4HqALl26biwtXZM7YcIjHf/1r8sjBgr69u1f+tRTT3Q66KBRYWckufDCf8497bTx/Z544rH248advPSHH2Y0nTLl9fYnnXTa/A4dOm4xjb00LGVIiIiIiIiINAKlGyuzJ3+zoN0N783qMvmbBe1KN1YmrD34wgvPtu/QoWPZMceM3mIK5lNOOXNxkyZNq5599qn2gefy8/OrR406Ysl7773dbvnyZRFvpI8Zc+KiuXPnNH3vvbfDDsa+7bb9No4cecjSyZMndl648M+8W265vkf37j3Wjx49bmm410nDUEBCREREREQkw30+Z2WLAx/4Yof7PpvT7YXpizre99mcbgc+8MUOn89Z2aKh911ZWcmsWb+2GDJkl5KcnJwtlrdq1aqqf//tSn/66cfNynLccWOW5uXl1kyY8EiHSPsYNGjwuu22G7Bm0qQJnSKte+aZ5y5s2rRp9Zlnnrzt77/Pbn7eeRfN8yuXNDwFJERERERERDJY6cbK7Ite+an3xsrq7LLK6myAssrq7I2V1dkXvfJT77VlDZspsWLF8tzKyoqsDh06lYdap337juWrVq3M9z5XWFhYPXLkqKVTprzeftWqVREjBmPGjF88e/as5p988lFhuPVatGhRfeSRxyxavnxZ/rBhe60YPHjIuuhrI/GkgISIiIiIiEgGe/XHxW1qQiyrcZcnsjyxOOGE8UsAJk2a0D7SurvvPqy0T59t1z7++KNhsySqqqp4++232mVlZWHtzy3Ky8uz4lVeiY0CEiIiIiIiIhlsfsmGgkBmRLCyyurs+as2FDTk/tu2bVeZm5tXs2TJovxQ6yxduji/des2W2RQtG7dumrEiJFLX3/9lQ5r166N2H4dPXrsop9/nln49ddfNg+1zhNPPNZ+wYJ5TS+99MrfVqxYkf/ww/dH7BIiDUMBCRERSTvGmH7GmG+MMQm7o2GMmWCMuSZR+/Ps90pjzKRE7zcdGGPmGGP2DbFsgDHmf4kuk4hIKupW1LSsIDfbdzrygtzs6m6tm5Y15P5zc3Pp3bvP2m+++aqounrLYqxZsyb7p59+LOzXb7u1fq8fO/akJRUV5VlPPvl4caR97bPPfmt69dpq/YQJD/tmSSxZsjh38uSJnQ86aNTSESNGlowadfji559/ptP8+XNDBkuk4SggISISI2NMT2NMjTGmwadOdhve/3MfX22MOcezLN8Y87zbKKsxxuwV47aPNsb8zxiz3hgzNWhZH2PMK8aYZcaYlcaYt40xxrM8yxhzjTHmT2PMamPMVGNM/wj762yMWRBi2X+MMT8YYyqNMVdGUfz/ALdYa0NloKYdY8wDxphTk12OTGGtnQGUGGMOTnZZRESS7ZDtOq4MFcHPcpc3dBmOOOLopYsXLyp45pnJ7YKXPfzwfZ02bNiQc/TRx/rOdFFc3L5y333/uvzll1/oWF5eHrENe9xxYxdNn/5dq99+m9UseNltt93YrWnTptVnnHHOQoDTTz9rUcuWhZW33npjt7rUS+pHAQkRkdQ2GPjG8/jboOWfAqOBxXXY9krgduAGn2VFwKuAAToAXwGveJYfBZwIDAPaAJ8DT0TY34HAlBDLZgMXAW9EKrQxphOwN/BypHXTzAHAm8kuRCqJQ9BvMnBaPMoiIpLOCpvkVt80qt+sJrnZ1YFMiYLc7OomudnVN43qN6tFQa5v9kQ8jRgxsmS//UYsu//+u7tfd93V3T7+eGrhhx++1/Kyyy7q+eKLz3UcPXrsnwMGDFwf6vVjx560eP36dTl//rmgSeR9HVjSpUvXjT/99ONmg1t++unHhZ999kmb0047a36LFi2qAZo2bVpz+ulnz//mm6+KPvzwvZb1r6nEosHv7omIpDJjzMXAOUBLYCFwprX2fWNMNk4D+RScxvn7wOnW2pXAx+7LS9ykgf2AvwLbWGtHu9vtCfwB5FlrK90MhM+BvwDbAh8C493thbMTMM19PAj4PrDAWluOE1DAGFMVa92tte+5rz3ZZ9lXOEEI3HX+C1xmjGlrrV0B9AI+tdb+7i6fBJwXYZcHAr5dD6y1E93tHB9F0fcDvrXWbvSUry7vI8aYE4BrgBbAbe56JweOTTjGmIPc1/YEfnK3O8NdNge4GxgD9MAJxIz1ljloWwOAEmutbwYJ0MQY8wzOMZyF89mZ7r62M3AXsCewFvivtfZOd9nOwB1AX2AD8AJwvvvZwRhTA/wN573riPN5moATXNrOLffowPpBZd4GeAQYCFQA71tr/89dtq1bpsHAMuDf1tpn3WUj3eO2NbAaeMRae6W7rCfO9+Zk4ApgDrCnMeYU4HygKzDfLVMgODfQGHNbiOM8FXjYGFNgrW3QdGQRkVS3W882a986fdfpr/64uM38VRsKurVuWnbIdh1XJiIYEXD55f+Z16/fdutef/3l4vfee7tddnYWPXtutf7yy/8ze//9D1gd7rVdunStGD58nxXvv//OFhkWwbKysjj22BMW3XLL9b0Cz5WXl2fdccct3bfffoc1I0cessq7/ogRI0tef/2V1XfffXv33XcfNrOgoCBjMjBTnQISItJouV0QzgKGWGsXuo2hwJRSZwOHAsNxGlR3AvcAx+I0/P4Aiqy1le62/hrFLsfgBC7+AB53tzk6RNneBYbgNJTXG2PuApoDC4wxn1trD4iifscBl1hrB0RRtkj2BBa7wQiAp4GjjTF9cOozltDZDxhj8txtjI1DWbYHrGfbdXofjTH9gPtwGvlfAtfjNHgjMsYMAh4FDsbJYBkNvGqMMZ6G79HACGAj8BkwDrg/xCYPJHx2yCicz95o4FzgZffYVwGv4WSvHOuW/z2nGPZtd/l5bhm7Am8BZ+IGslx/xQkcdMPJwNnd3c8KnCDascBEnzL9B3gHJ1slHyd4hjGmOfAucDlO1sf2wLvGmB+ttT8B63C+CzNxgh7vGmO+t9a+7Nn2cJwgSrUx5ijgSpz38RucQEaFZ92Qx9la+6cxpgIn02dGiGMrItJotCjIrT5ucNflydp/VlYWRx11zIqjjjpmRbj1rr325jl+z1911XVzr7rqurne50Jt79BDj1h56KFH1N74yc/Pr3nuuVdnhtrn3Xc/ODtiBSTuFJAQkcasCigA+hljlllr53iWnQ6cFbhj7Y5rMM+9o15XT1hrf3S392/ge2PMWGvtFtkN1tr93Abnk9banYwx/wIqrLU3R7sza+2TwJP1KC9uWbviNOLP9zy9CKe7iMU5jvOBfcJsZk9gurW2tL7lwcl08F541PV9PBJ43Vr7sbvs3ziBjWicCjxgrf3S/Xui+x7tCnzkPnentXahu+3XcDIJQhkJ/CvM8mnW2ufdbd0GXODuqxwottZe7a73uzHmIeAY4G1r7TTPNuYYYx7Aaezf7nn+JmvtGmCmMeZH4B1P5stbOJk5fgGJCpyshM7u8f3Uff4gYI619jH37++MMS/gdPO5ylo71bONGcaYp9wyvex5/kpr7Tq3DCe7ZfzaXRZ8wRjpOJfifGZEREQkxSggISKNlrV2tjHm7zh3X/sbY97GSWdfiNPQeskY401jrMIZT6Gu5nsezwXygHbAEu9KxpizcFLaC9y/S4BCYK0x5lKgj7XWd9CneDPGFOPcBb/XWvuUZ9HlOBkc3XDGrxgNfGCM6W+t9ev/eSDxGx9hFc7xAOr1PnbG855Ya9cZY8LesfHoAYw1xpzteS7f3WaAd1yP9UHLahljinC68YSbEcJbzmp3cNDOONPHd3Y/IwE5wCfutvvgdEXZCWiGc973Bilg88/fBp+/O4Yo00U4WRJfGWNWAbdaax/FOTa7BJUpF3eMEWPMLjjjlmyHc8wKgOdC1RfnM/ZbiDJA5ONcCJQgIiIiKUcBCRFp1AJZBMaYlsADwI3ACTgNohOttZ8Fv8YY08NnU+twGnwBfo047+jN3XHuMG+RNmmtvRu42xgzBbgKZ3yCH6y13aOqVJwYY1rjBCNetdZeG7R4IPCMZ8yDCcaY24F+bBqE0+tA4PA4FW0GQV0/6vg+LsLpFhD4uxnQNsoyzAeu9TkudfFX4AO/TBmP2s+OOy5GV5yxMiqBP6y1vUO87j7gO+BYa22pG7g5Mg5lxlq7GGfMDYwxQ3G6inyMc2w+stbuF+KlT+KMr3GAtXaj+7kJ7g/s7bs7H6ebRsyMMV1wgh420roiIiKSeApIiEij5Y490AWn3/lGnLvBgbEH7geudbtUzHUzBXa31r6CMxZBNbAV8Ku7/vfAxcaY7jgD9f3TZ5ejjTGP4wzUdzXwfIRG6EBgOrALW86uEahDAc6MXQD5xpgmQFk002EaY3JwsjRygWz3tVXW2gq3Yf828Jm19hKfl38NHGWMeRrneBzvbmuL/pfGmF5AgbX25zBlycM59tlArluWihDH513gDmNME7dBW9f38XngS7cx/RXOexLt7FMP4WRevOe+thmwF/BxHbqlRBo/AmCwMeZwnJlPzgHKgC9wPoel7qCed+J04egLNHW7OBQCa3Cya7YFzsB5v+rNHdvhczcotQoniFANvA7c4HaLedpdfSCw1v0MFAIr3fduZ+A4nMBXKA8DtxljPsX5HmyN89mYG+Y1AcNxgj0a0FJERCQFadpPEWnMCnBSx5fjpH23Z1Mg4Q6cxt87xphSnMbfLgBul4Rrgc+MMSXGmF2tte8Cz+DcvZ+G0ygL9gTODAaLgSY4DUtfbmBjhbuvHdkyzT7A4jTAu+AEEDbgpMxjjDneGBNy8CacDIINOHfRh7mPH3KXHYbTJWO8MWat518gS+NGnGDJ9zjp8OcBR1hrS3z2M5LI3TUecvd/LHCp+9h3vA5r7RLgA5yBHqHu7+NMnBkmnsQZE2MVEGqWi+AyfIOTHXC3+7rZOIMpxsQYk4WTIRFyQFDXK8D/ufs6ATjcWhsI2ByE0+D/A+cYPAy0cl/3D5wGfynOMX4m1jKGMQQnoLMW5xifa6393Q3I7I8zjsVCnPfkRtwuSDiDal7tvh+XA8+G24m19jmc79uTbj1explqNhrHE3ogUREREUmyrJoazWgiItLQjDPt5yRr7cPJLkuiGWPeBO621sZrDAncGTImAjtHkw0Sw3bnEOW0n3Ha3844x2bnROyvMTHOVKoPWGt3S3ZZRETq47vvvp/TtevWSZsZQ6S+Fiz4rd2gQQN7+i1Tlw0REWloU4EP47lBd/rIIfHcZhJdkewCZCJr7QxAwQgREZEUpoCEiIg0KGvtTckuQ6qy1n6V7DKIiIiIJIsCEiIiCWCt3SvZZZDIrLU9k10GERERkcZCg1qKiIiIiIhIg6qpqeG5555uO3bsMdv+5S97DNp336GDTj55jHnnnbdaBa976aUX9hw6dKfBV1556RZTrZ9wwtF9L730wp6Bv5977um2Q4fuNPioow7pX11dvdm6N954bddDDx2xfeDvF154tu2wYUMGT5v2dXPveqWlpdkHHbTfgIsvPr9XPOqabPPmzckfOnSnwe+99/YWxzbVKCAhIiIiIiIiDerqq//d/a67buvZp8+26y6//Jrf/vWvK35r375D2dVX/3ubBx64p6Pfa6ZOfb/twoV/5kWz/UWLFjZ5883XWodb54gjjl7Rp8+2a2+77abuVVWbZha/667/dikrK8s+//yL5sdUKak3BSRERERERESkwUyZ8kbRu+9OKT7ttL/Nu/TSK+cPH773mn322W/NddfdPOfQQ49YPGnShC4zZnzfzPuaLl26bmzWrFnVhAmP+AYrgvXt27/0qaee6BRpvQsv/OfcBQvmNX3iicfaA/zww4ymU6a83n706LELO3ToWBlLvQ49dMT2zz33dNtYXiObU0BCREREREREGswLLzzbvkOHjmXHHDN6WfCyU045c3GTJk2rnn32qfbe5/Pz86tHjTpiyXvvvd1u+fJlEcc+HDPmxEVz585pGqmbwrbb9ts4cuQhSydPnth54cI/82655foe3bv3WD969Lilsdesbp56alK7Y445rN9ee+2244EH7rPD+eefvdXq1atzAL755qvm55xz+jYjR+47YJ999hh03HFH9HvppefbBG9j/vy5+Rdd9PdeI0bstcM+++w+6NhjD+/38ssvbLbehg0bsq+88tIe++03bODBB+8/4M47b+0c3K3l559nNjnrrFO32XffoYP23XfooAsuOHurJUsWJ2ysSQUkREREREREGoGsstXZTb9/sF2Lqf/s0vT7B9tlla1u8PZgZWUls2b92mLIkF1KcnJytljeqlWrqv79tyv96acfWwQvO+64MUvz8nJrJkx4pEOk/QwaNHjddtsNWDNp0oSIWRJnnnnuwqZNm1afeebJ2/7+++zm55130Ty/sjWEe+65o9O9997RY7vtBqy94or/zD777PPnNm/evGrdurXZAAsX/pnfv//2a88//+K5V199/ew99hi26vbbb+75yisv1gYbli1bmnvGGSdtO3v2rOYnnXT6gquuun72/vsfuHzJksX53n098sj9XZs2bVp12WVX/z58+D4rnn32qU5vvPFqbbeW33//reCcc07ftqKiPPvCC//1x/nnX/zH/Pnzmv7jH+f2rqmpScjx0CwbklGMMROA7ay1O8XwmvbAmcAEa+2cBipagzHGnAL8C+gGfJrOszkYY3oCfwAHW2tfj/G1pwJLrbUv12G/E4jxcyMiqUnngYY5DxhjLgK+stZODXq+BjjbWnt3vPfpbn8UcAOwNbAw2plwjDFXAmdZa9u5f+8FfAhsb639sSHKKpLq8uZNbdHqrVN6U1NDVtXG7JqcJtXNv7y52+oDHppV0X2vtQ213xUrludWVlZkdejQqTzUOu3bdyyfPv27LTIbCgsLq0eOHLX01Vdf7HDSSactbt26dZXf6wPGjBm/+KKLzuvzyScfFQ4bNrw01HotWrSoPvLIYxY9+OC93ffcc+8VgwcPWRdNXSort+zRUVNTvdnzOTk5ZGVl+b6+pKQk54UXnuk4cuQhSy655N8LAs8fcMBBJYHHhxxy2KpN265h1113L122bFn+G2+82m7UqMNXAjz++KMd1q/fkPPww0/83LFjpwoAv/r27btd6cUXX7YAYPjwvdd8++3XrT7+eGrrgw8+dBXAQw/d27lVq6LKu+56cFZ+fn4NgDF9N4wbd+x277//bqt9991/dTTHpT4UkBCB9sAVwFRgTlJLEiNjTEfgPuBu4DlgVfhXZLRTgR+Bl5NcDhFJPzoPRHaRu4+pDbT9LRhjcoDHgbeAU4CoGgwisqWsstXZrd46pXdW5YbajIisqo3ZAK3eOqX3inHTptcUtKwOvYXkOeGE8UteffXFDpMmTWh/9tnnLQq37u67Dyvt02fbtY8//mincAGJqqoq3n77rXZZWVlY+3OL8vLyrECDPJy99tp1cPBzd955W88777ytZ+Dvc8/9x5yjjjpmhd/rv/326+bl5eXZhxxymO9ygFWrVuXce+8dnb/66ouiVatW5ge6WLRu3aYisM6MGd8XDhw4aE0gGBHKzjvvssb7d7du3TcsW7asNotixozphXvvve+K7OzsmkBQpUePnmXt2hWX/fzzzGYKSIhIJNsAOcCj1toZ9dmQMaaptXZDfIolIiIJksnngU5AS+BJa+2nyS6MSDpr8vMzbQiVgl9TQ5Ofn2mzYeApyxti323btqvMzc2rWbJkUX6odZYuXZzfunUb3wyK1q1bV40YMXLp66+/0mH8+FOWRNrf6NFjF11++T97f/31l81DrfPEE4+1X7BgXtNLL73ytxtuuGarhx++v8OZZ56zONK27777wZ+9f1922UXb7L//gcv33HOvksBz3bv3KAv1+tWrS3IBOnToGDKQcOWV/+o5a5ZtccwxoxdutdU2G1u0aFH1wgvPFn/99RdFgXVKS0tze/c26yOVt7Cw5WYZJbm5uTUVFeW1Qam1a0tzX375+Y4vv/z8FgOHLlu2JOT7FU8KSEhGM8Z0Aq4F9sK5sJkPPAtcba0td7sI/OCu/qExBgBrbZb7+jY4qaKjgFbAt8B51tovPfuoAf4OdMC5g1ODc5fqfGttmWe9Hu629gOaAbOBG6y1TxpjvgJ+staOCyr/BGAHa+0gn7pdiXNHD2C6W/bx1toJxph2wK3AQUBT4CvgH9babzyvnwO8AJQAp7nlDzmtkjHmZOA8nIvfxcA91tqbPMt3A/4JDMG5gJwF3GytnRy0nZDHwbNaM2PMA8AxQCnwCHCVtdY3cm+MmQoMBgYbY8a6TweORQ7wb+BEt46zgWuD9he8vXzgaWAnYB9r7WxjTHfgJmB/oAnwCXCOtda6r+mJ093k/4C/RFt2EWlYOg/U/zzgrtcWuMIYE9jf3p7uGznGmOsi1D3sb6jPPscBj7l/vuLW7SpgAj5d++LR9c4YkwdcDxyNcyxWAF8C/2etLY+2HsaYbsADwN7AEuAaYATQLtCdxq+8ft0WjTHZONkpJ+N0yZmLcw6b6HndVGA58CJwNU7Gz2fAKdbaBZ71muIcw/8DOgILgaettf/0rBP2XC/pK6fkj4JARkSwrKqN2Tmr/yhoqH3n5ubSu3eftd9881VRdXX1guzszYuxZs2a7J9++rFw5513Kwm1jbFjT1ry5puvtX/yyceLI+1vn332W/PYYw+tnzDh4U7du/fcGLx8yZLFuZMnT+x80EGjlo4YMbLk559/Wvz88890OvjgUSu7desRslsJwMCBO24WBMjNza3p1KlzWfDzobRqVVTpliGvbdt2W/T/2LhxY9a3335TdPrpZ807/vixtQOAPv/805v1ASksLKxcuXJFVNOhhtO8efOqXXbZbdWoUUdsEYxq06ZNTDOO1JUGtZRM1w5YCZyPczFwMzAeuMtdvgg43n38N2A39x/GmALgPWBf4ELgUGAZ8J6bIut1AdAZGO3u4zTg3MBCt3/y5ziN9X8AB+M0VLu5qzwCHGmMaeF5TQvgSODREHV72C0zbh12A95w/34Z+Ku7r//D+a5/aIzZJmgbxwHDcfpO/1+I/WCMuRAnJfhlnIvb+4D/GGPO8qzWA+cC6CS3fi8Ajxljjo3hOATcBKx16z8JuNx9HMqZwC/Am2x6DwPH4mrgUuBB4BC3jJO95QqqaxPgJWAHYJgbjGgDfAoY4HSci9XmOJ+FpvUsu4g0LJ0H6n8eOAxY7ZYxcHy+jaHusfyGBrwBHO4+/oe7z4dDrBsv/8Q5jv/GCRr9HafeORBdPYwxWcArwHY458PzcY7FbnUs013AZTjnsJE456dHjTEHBa23C3AWzntxKrCj+xqCynUGcA9wIE4wq51nnWjO9ZKmqop6ldXkNPG9OVKT06S6qlWvkHf14+GII45eunjxooJnnpncLnjZww/f12nDhg05Rx99bMhZLoqL21fuu+9fl7/88gsdy8vLI7Zhjztu7KLp079r9dtvs5oFL7vtthu7NW3atPqMM85ZCHD66WctatmysPLWW28Mvh6Nux13HLIuPz+/+rXXXvGdKrSsrCy7pqaG/Pz82veqtLQ0++uvvyryrrfDDoNKp0//ruXSpUvqlWCw/fY7rJk3b27THXYYtH7gwB03+9e9e8+wwZl4UYaEZDRr7Q84FzIAGGM+w+mD+qgx5mxrbZkxJpDi+pO19gvPy0fjXFD0t9bOcl//HmBxTvgXetad47mr9bYxZg+cC6nAXYXzcO6sDbbWBvq+ve95/VPAbcBRbLojdDTOnSrfO/nW2gXGmJ/cP2cEBukyxowA9gD2stZ+5D73AU6/6AtxLhS9DrLWbhE9DjDGtMS5aLnGWnuV+/S7xphmwGXGmPustVXW2qc9r8kCPga64twxeyrK4xDwsbX2As++RuAcz2dDHIufjDHrgGXe99C9ePy7W/Zr3KffNsZ0Ba70lCuwfjPgVbfce1pr//SUuzkw0Fq70l33M5xjeiLOxV2dyi4iDUvngfqfB6y13xljKoEFQccnlrpH+xsa2OcyY8x3m/509utmETSUnXG6h0z0POf97Y6mHgcAg4BdA1k0xphpwG84mYNRc4NHZ+BkvQTK9J6b9XMF4B38uSUw0lq7yn1tR+C/nm44++MEWUZZa1/1vO5xd/2ozvWxlF9Sy8a+/7ey+Zc3+ze4s7LY2Pf/Vjbk/keMGFny5ZefL7v//ru7//HHH02HDt2zpKqqMuv9999pM3XqB21POGHcnwMGDAybZTB27EmL33nnreI1a1bnbrNN77BjyowYcWDJhAkPbfzppx8L27VrV9uw/vTTjws/++yTNv/85+W/t2jRohqgadOmNaeffvb8a665YusPP3yv5d5777sm9Jbrp6ioqOroo49bNHnyxC6VlRVZu+8+dHV5eXn2//73aavTTvvbws6du1RstdXW6ydPfrxz8+YtqrKysnn66Sc6NmvWrGrDhvW1gZgxY05c8uGH77c944yTtj322BMWdezYqfyPP35rsmHDhuxTTz0zYreWgFNOOXPhGWec1Pess07d5sADD17RunXryiVLluR9882XLUeOPGTF7rsPCzkOR7woICEZzW0Yn4tzt6AXTnplQHecdNlQ9gWmAX8YY7zflY9wUvm93gn6+6egdfYBpnguQjdjrV1jjHkeGMemC9FxwKvW2pCD3oSwM85sEx95tr/OGPM6MDRo3ffDXYS6dsO5AHsu6Dh8gHMXqSsw1xjTGicVdBTQBfeOEvCn5zVhj4OH3/HsHuE1frbDSYt+Luj5Z4AJxphia20gHa45MAUoAoZba70/5vsC7wJrPMegFOfzEc1noS5lF5E40Hmgdvv1OQ9EEqnusfyGJtP3wBnGmCU454MfrLXeTvfR1GNnYIm3S4+1dq4blIjVX4Bq4KWgz9/7wLHGmBxPkODrQDDCFQhUdcH5jO8DrAwKRnhFda6vQx0kRdQUtKpefcBDs4Jn2SAri9UHPDQrEQNaXn75f+b167fdutdff7n4vffebpednUXPnlutv/zy/8zef/8DIg6e2KVL14rhw/dZ8f7772yRZREsKyuLY489YdEtt1zfK/BceXl51h133NJ9++13WDNy5CGbDQA8YsTIktdff2X13Xff3n333YfNLCgoaLA5L08//azFLVu2rHz55Rc6vPvulOJmzZpX9evXv7RFi8IqgCuvvO73G2/8T49bbrmhV4sWLSoPOmjU0o0bN+a8+eartd1V2rUrrrz33od+ufPO27o++OA93SorK7M6dOhUduyxoyNdY29mm216l91770O/3Hff3Z3vvPPWHuXl5dmtW7cpHzBgYGmPHr3qe26IigISkun+jpM+eiPOBeQqnHTZe9j8otRPO2BXwG/Qmd+C/i4J+rs8aPttga8j7O8RYKoxZisgCxiGk1IZq06AX8rbEqCNz3ORBH70Z4ZYHujTOgHneP0H50JoDc6dnVGedaM5DhD5eEYrMA91cD0Df7fBSb8GJ924N07f3OD1A58Fv3Tm4AyPkqC/61p2EYmPv6PzQEBdzwORlAT9HVz3WH5Dk+kanADAmTiflz+NMTdba+9wl0dTj474H/ulQGGM5WmHE9wP1VDrBATGiCgJWha4Ixx4H9ridE8Kty+IfK6XNFbRfa+1K8ZNm97k52fa5Kz+o6CqVa+yjX3/b2WiZtfIysriqKOOWRFqBgqva6+9eY7f81dddd3cq666brPPYqhtHnroESsPPfSI2syP/Pz8mueeezXUZ5y7734wXIDa18svT/kh8lpbOu64McuPO26M7yCiW221ddkDD0z4Nfj5c845f6H3727depTffPMdv/tto3v3nuWffvrNFoFQv+Pau7fZeNttd/luJxEUkJBMdxTwvLX20sATxph+Ub52JfANTqM6WKz97FawqXHsy1r7sTFmFs4dsSycwaaC7zpFYxHOgFbBOuDUySua6G/gNQfhf+Fq3XEXDgL+Zq29P7DAHYzLK+JxiLPAxVd7d98BHdz/vcdjFnAHTubEYmvtfZ5lK3G6cvzHZx8NnsomIvWi88AmdT0P1Fc8f0MDd+yCR39vHWuhgrmZIpcDlxtjeuOME3G7McZaa6cQXT0W43/s2wPeGUw2ErkOK4FKnO43fg3GkP3tfUT6/EU818ewL0lhNQUtqxtqNg2RulBAQjJdU7a8aDw+6O/guwgB7+P0uZxnrY3lpO/nfeAcY0wHn7vvXo/i3JkBeLyO/TW/BK4yxuxprf0YasdGCAyGFavPcS6iOltr3/BbwRjTCmfANO+I6oU4g0h6L3ajPQ514ZeJ8COwHqdBcrXn+aOBXz3dNQCw1j7hDiJ3tzGm1Fo7yVPuo4GZNrWmxBORyHQeoN7nAahftlc8f0OX4mSs9A084f5u704c7+Bba2cZY/6BM2hoP5wuHNHU42uc2Uh28Ywh0R1nkMnPPOstAHoaY5p4uszsH7StD3AyJFpZa9+tZ5XeBy4yxhzknZ3EI+K5XkSkISggIZnuXZwLwC9x0muPx5nKymsezkl4rDFmNVDhTov2OM7dkanGmFuA33FSHncGFltr/xtDOf4LjAE+McZcizPtXF+gedB0WhNxUkZz2dSHOCbW2reNMf8DnjHGXIJzV+QfOBflN9dheyXGmVruDuNMWfcxTvChD860b4dZa1cbY77Guau0BudOziU4aaYtPZuL9jjUxS/AX40xf8Wp8x/W2hXGmNtxBuSqxLnTeThOCrTvLBvW2vvci9vHjDFrrbUv4ww0Nxr4wBhzF864GB1wRqb/1Fr7lN+2RCQl6DxQz/OA6xdgpDFmCs5MQtZaG212Q9x+Q6211caYV4DzjDFzcboqXMDm2Qd1Yox5CWc8iO/c7R2J8z58HEM93gSm44zFcDFOMOwqtsxmeBknUP6wcaYAHYQzMKa3rtYYcz/wtDHmJpxzWBOgP9DHWntyDNV7F3gbeNIYczXOLCmdcAZwPi2ac30M+xIRiZqm/ZRMdzXOyOXXuP+XA+d4V3DvTJwCDMbpX/y15/m9cU7iV+Gkzd6BM87AV7EUwr0TvwfORc7tOCNjn4pzEexdbzHOna3PrLVb9B2LwaFuuW/HGdAxC9jHWhtz3zi3XDe55T0AZ9qwp3Au6j/xrHYczsX64zjH6QX3sXc7UR2HOroG+BlnRPSvcabUAyf99nqclOvXgT2B0d5ZQYJZa292X/O0MWY/a+1ynH7Dv+A0Kt7BGT2+FTAj1HZEJCXoPBCH8wDO7BzrcKbj/BrnWEWlAX5Dz8LJNrgXZyyQp3CyCerrfzjH7Umcc91g4Ag3OBVVPdxBMA/BGUvpUXe9u3EyEGq5M6KciDOY5Ks4QY3xPmX6G04XkTE4wY4JOJkuH/usG5JbrsNwpgL9O/AWzndiuWedaM71IiJxlVVTk4iugyISDXeayj+Bs6y1jyS7PCIiklg6D2QmdwaVdtbavZJdFkk/3333/ZyuXbfWuA+SthYs+K3doEEDe/otU5cNkRTgjrfQD2dqulKcuxIiItJI6DwgIiKNkQISIqlhMPAhzoBcY6y165NcHhERSSydB0REpNFRQEIkBVhrp+L07xURkUZI54HMZq09MtllEBFJRRrUUkREREREREQSTgEJEREREREREUk4ddkIobq6uqaqqv4zkOTkZBGP7aSqTK5fJtcNMrt+mVw3UP0SJS8vZzlQ3FDbj8d5JlWOVUNR/dJXJtcNMrt+mVw3SJ36NfQ5JtXceedtnZ999slOgb+Liooq+vTZdt3ZZ5+/oFevrcqi2cZTTz3RrnXrNpUjRowsabCCBrnzzts6v/nmq8VTpkydnqh9NjYKSIRQVVVDSUn9x5MqKmoWl+2kqkyuXybXDTK7fplcN1D9EqW4uHBuQ24/HueZVDlWDUX1S1+ZXDfI7Pplct0gderX0OeYVNS0abOqG264ZRbA/PnzCyZOfKTzeeed2Wfy5BdmNm/evDrS699887Xi7t17bEhkQEIangISIiIiIiIi0qBycrJrBg/eeR3A4ME7r+vUqXP5BRecbT788L1WBx00alUiy1JVVUVVVVVWfn5+8tNlGrmEBySMMTnADcA4oAnwDnCatXZ5iPVHALcCWwG/Aedba99xl7UBXga2dbe1DHgMuNZaW+OuMxXYDajwbPYYa+3rca6aiIiIiIhIylpbUZr91oLX2/y5bkFBl+Zdyw7oetDKFnmFEbMTGsKAAQPXAfzxx+9Nhg0bMnjSpOd+6NGjZ3lg+dy5c/JHjz5q+8suu+q3559/usMff/ze7I8/fm82dOhObQHOPfcfc4466pgVVVVV3HPPHZ3fe+/ttmvWrM7r0KFj2bHHnrDo0EOPWBnY1qWXXthz3ry5TY8/fuyixx57qMvixYsKbrzxv7/uuuvua996642ip556vNP8+fOa5ucXVG+zTe+1l1xy2bxu3XrUluWHH6Y3veWWG3rMnz+3aadOncvOPvv8ebvuuvvaRB6vTJWMDIlLgFHALsAK4FHgCeCA4BWNMVsBLwKnAs8CRwEvGWP6W2vnAOuAM4BfrbUVxphewJvAUuBBz6b+Y629psFqJCIiIiIiksK+XvZliyu+/Wfv6poayqvLsvOzC6of+/WhblfteP2sIcW7JLxxPX/+3AKATp06lxcVta545ZUX251zzvkLA8tfeeWFdoWFLSv/8pf9S3r27LXxsssu3rpDh45l48efvAigR49eZQB33nlrl5dffqHD0Ucft6h//+3Wffjh+61vueX6XllZWYwadXhtUGLZsqX5Dz10X9fRo8cubNu2uKJbt+5lL774bJvbbrup1+67D115wgnjF9bU1PDNN1+3XLFiRW4gIFFeXp593XVX9Tr88KOWtG3brmLixEc7X3XVpVu/8MIbPzRr1iwpwZxMkoyAxKnA1dba3wGMMRcBs40xPay1wX2pxgLTrLWT3L8nG2NOd5+/ylpbBswMek01YBqu+CIiIiIiIuljbUVp9hXf/rP3xqqNtbMslleXZQNc8e0/ez+7z6vTW+S1aPDGdWVlJQBz5vxRcPPN13dv0qRJ9dChe66ZP39ewQcfvNv27LPPW5iVlUVNTQ0ffPBu2+HD91mRm5uLMX03NmnSpLpVq1aVgW4fAKtWrcx57bVX2h955DGL/va3cxcB7LXXX9YsX74s74knHuvsDUisXbs29+ab7/x1++0HbACorq7m0Ucf6jpkyC4lN910+x+B9fbf/4DV3jKXl5dn/+1vf58/dOiepQDFxR0qzjjjxH5ffvm/Fnvvve+aBj1gjUBCAxLGmCKgOzAt8Jy19jdjzBpgByA4ILGDd13Xt+7z3u2+DvwFp9vGfOCBoNf83RhzPrAImATcYq2tIIycnCyKippFUavwcnKy47KdVJXJ9cvkukFm1y+T6waqn4iIiMTmrQWvt6mu8R8uobqmhikLXm9zZK9jfLvQx8vatWtz99pr18GBv9u2bVf+r39d8VvHjp0qDjvsyOUvvvhsp//975PCPfbYs/Szzz4pXL58ef6oUYeFLdMvv/zctLy8LHv//UdsNgbF3nvvu+r222/uuXz5stx27YorAVq3blMRCEYAzJ79a5OSklV5Bx54cNh95Obm1uy++9DSwN/GbLsRYMmSJfmxHQHxk+gMiUL3/9VBz5cALUOs77duf+8T1tqD3LEphgAHA94P1T+BX4A17vLJ7r7+Ga6gmmUjOplcv0yuG2R2/TK5bqD6JUpxcWHklURERNLAn+sWFAQyIoKVV5dlL1i3oKChy9C0abOqm2++/desrCyKi9tXdOrUuSIrKwuAnj17lfft27/09ddfbbvHHnuWvvHGK+223nqbddtu229juG0uX740D6C4uP1mN5vbtm1bAbBq1aqcQECiVatWm62zatWqXL/XBmvSpElVdvamQxcYCLO8vCwruppLOL4fygYUiCy1Cnq+CCdg4Ld+VOtaa6ustV/gBDDu8Tz/ubV2lWf55cDoOpVe6m3mqh+4+KvzmLnqh6RuQ0Qk3owx2caY/xljaowxXZNdHhERib90vQ7t0rxrWX52gW+XjPzsguquzbuWNXQZcnKyawYO3HH9DjsMWt+5c5faYETAgQcevPzLLz9vvXDhn3lffvlF0f77H7Ai0jbbtXOCCcuXL8vzPr9ixYo8gNatW1cFngveX+vWrSsBli1butlrJbESGpCw1pYA84AdA8+5A1e2BGb4vGS6d13XIPf5UHKB3mGWVwOKZiXJ47Me5evlX/L4rEeTug0RkQZwHpD81A4REYkrbxAiXa9DD+h60MrsLP8mUHZWFiO6HrTSd2ECjRgxclVubk7Nv/998VY1NdVZI0eO2qxMubm5NeXlFZu1X7fdtu+G/PyC6nfemdLa+/zUqe+37tixU1kgO8LPNtv02di6dZuKt956o218ayKxSMaglg8CFxtjPsSZZeNG4G131oxgjwMXGmOOBZ4HjgQGA2MAjDG7As2B/wHlwB7Aue4+AmNWDAWm4szIMRC4EnimAeolURjT+8TN/k/WNiR6gZPvmN4n0r/19skujkhKMsb0Ac4EjgC+S3JxREQkjgJBCEjf69AWeYXVV+14/azgWTays7K4asfrZyViQMtImjRpUrPnnnuvnDLljeI99hi2sqioqMq7vEuXbhu///7bllOnvt+yqKh1ZffuPcratGlbdfDBo5Y+99xTnXJycmr69eu/furU94u+//7bVhdddOnv4faXnZ3NSSedtuCWW67vdfHF5/fab7+/roQspk37qvCvfz1w5cCBO+omQwIkIyBxA9Aa+BooAN7F7UJhjDkeeMBa2wJqB7w8HLgVZ3rQ34HDPMGLfOAmoA9QA/wJ3OnuAyAPuAxn3IhsnEEtJwPXN2gNJaT+rbfnxp3/m/RtSPS8J2Edd5EtGWOycc5R/8AZ5ygq8Rg8OdMHAFX90lcm1w0yu36ZXDeIvn7Tl03nwR8f4NTtTuPMQWfy4I85nLrdaexQvAN79NolASWNvyHFu6x9dp9Xp09Z8HqbBesWFHRt3rVsRNeDVqZCMCJgzz33XjVlyhvFI0eO2mKgyZNPPn3h9ddfnX/ttVdutWHDhpxzz/3HnKOOOmbFOedc8GdOTk7NW2+91v7ppyfldujQseyCCy7545BDDlvltw+vQw89YmVBQUH15MkTO11zzZVbFxQUVPfu3Wdt27ZtQ2ZWSHxl1YQYbbWxq6ioqtGglpFlcv0yuW4Qff3SMUNC7116S5X6FRcXTgN2irSeMeY8YA9r7ZHGmJ7AH0A3a+2CcK+Lx3kmVY5VQ1H90lcm1w0yu36ZXDcIXz/vNU/ghsyQdrs0yA2ZaM8xAN999/2crl23btAZMFLFzTdf1/Wzzz5u/eKLb/7gHUhS0tuCBb+1GzRoYE+/ZcnIkBCRNKKMFJHQjDHbABcQ5UWliIikrkzompGuZs36tWD27FlN3377zeJjjhm9UMGIxkMBCfGVjnfFRUSSYChQDPxojIFNg0XPMMZcZq29N2klExGRqASue4d1HA5Qe/2rGzKJc9NN1/ScPXtW85122rlkzJgTlya7PJI4CkiIL40bICISlWeB9zx/dwU+B/YHfklKiUREJCK/7hmg695keeihx22yyyDJoYCE+FKamohIZNba9Xim+jTGBM6ri621a5NTKhERiUTdM0RSgwIS4ktpaiIisXNngfKf6F1ERJJq5qofePK7iRzXc+xmQQhd94okj0YLEYnBzFU/cPFX5zFz1Q/JLoqIiIiIROC9dnt81qN8vuh/PD7r0doghMZKE0kuBSQkadKxcR9I73t81qPJLkrM0vF4B3jLnin1EBERkYbnvXYb0/tEduu0u7pmiKQQddmQpEnHAYS86X3pNhNJOh7vAG/ZgYyoR7qVHTT7joiIpAfv+Sq4a8Y9ve6lpGR9hC2ISKIoICFJk44DCHn7GF781Xlp1bhMx+Md4Ff2dKqH33Ri6SjdAyoiIpLZAufbtRWl/Lz6J8A5X+mcJZK6FJCQpEmXAYRC3RVOtwa+93h7B3VKhzvdwZ+VdPjceGVKQz7dPvMiIpL5/Kbv7NuqH0Pa7aLzVQq5887bOj/77JOdAn8XFRVV9Omz7bqzzz5/Qa9eW5VFu52nnnqiXevWbSpHjBhZ0iAF9XHnnbd1fvPNV4unTJk6PVH7TIahQ3cafOqpZ84bM+bEZYncrwISIhGEakymS0DFT6BOlRVVaVuHdJIpDfnAZz4wFoa6boiISLKFmr5T56fU07Rps6obbrhlFsD8+fMLJk58pPN5553ZZ/LkF2Y2b968OpptvPnma8Xdu/fYkMiAhDQsDWopCRFpML9UHuxvTO8Tw0bZU7nsoaTDoE7RHNd0OfaZNpJ3Og/uKiIi6c97/vdep2Xa+TbT5ORk1wwevPO6wYN3XnfooUesvOSSf89Zvnx5/ocfvtcqGeWpqqqivLw8oVN1n3LKGHPnnbd1TuQ+U50yJCQhIqWsB0e3U2ngvEiZEKlc9lDdTfwGdUq1AQuj6eaQKV0hUpnf5yJTMj5ERCR9+HXNAI0Rkc4GDBi4DmDRooX577//bqsrr/zXNpMmPfdDjx49ywPrzJ07J3/06KO2v+yyq357/vmnO/zxx+/N/vjj92ZDh+7UFuDcc/8x56ijjllRVVXFPffc0fm9995uu2bN6rwOHTqWHXvsCYsOPfSIlYFtXXrphT3nzZvb9Pjjxy567LGHuixevKjgxhv/++uuu+6+9q233ih66qnHO82fP69pfn5B9Tbb9F57ySWXzevWrUdtWX74YXrTW265ocf8+XObdurUuezss8+ft+uuu69NxLEKV75Zs2yTBx+8r7O1P7VYu3ZtTnFx+/IRI0YuGzv2pKXZ2ZvyD1auXJFz5523df366y9brVu3Lrddu3blI0cesnT8+FOWBtapqqrOuu22G7u8++6UdpDF7rsPXXXRRZfOLygoqAmss2DBvPw77rit64wZ37WsqKjIMqbv2vPPv3he7959ou5646WAhEQUj4ZqpAaMd7lfIzPVGsteocqeCsGJWBrsqda4j6bRm84NY+9nGkj6ZyUUv89F8HgkqVp2ERHJHKG6ZkhsqktLs8vefLVN1YIFBTldu5YVHHjIyuzCwqi6S8Tb/PlzCwDatm1bsdde+6wuKmpd8corL7Y755zzFwbWeeWVF9oVFras/Mtf9i/p2bPXxssuu3jrDh06lo0ff/IigB49epUB3HnnrV1efvmFDkcffdyi/v23W/fhh++3vuWW63tlZWUxatThtUGJZcuW5j/00H1dR48eu7Bt2+KKbt26l7344rNtbrvtpl677z505QknjF9YU1PDN9983XLFihW5gYBEeXl59nXXXdXr8MOPWtK2bbuKiRMf7XzVVZdu/cILb/zQrFmzBj1+kcq3ePHivG7dum3cf/8RK5o3b15t7S9Nn3zy8c5lZWXZp59+1mKADRs2ZJ155slmzZrVecceO2Zhr15bbZw/f27BggXzm3j39dJLz3XYfvsBpRdffNkfs2b92vSJJx7r2qFDx7JTTz1zCcCqVStzzjzzFFNYWFh11lnnzW3atGn1k08+0fGCC84yzzzzyg9Nmzat8atDOApISETxaGRHyjLwLvebWjN4tGQ/yWoYhSp7KjTwozlhp8IMEKEa55GOWyaM4xGQ7M9KKJE+Q6kWhBMRkczid52Szuf/ZCr/8vMWay67uDc1NVBWlk1BQfW6hx/o1vKaG2fl77JbQu70V1ZWAjBnzh8FN998ffcmTZpU7777sNKcnBz22We/5R988G7bs88+b2FWVhY1NTV88MG7bYcP32dFbm4uxvTd2KRJk+pWrVpVDh6887rANletWpnz2muvtD/yyGMW/e1v5y4C2Guvv6xZvnxZ3hNPPNbZG5BYu3Zt7s033/nr9tsP2ABQXV3No48+1HXIkF1Kbrrp9j8C6+2//wGrveUuLy/P/tvf/j5/6NA9SwGKiztUnHHGif2+/PJ/Lfbee981oepbVVVFTc2mNnpNDdTUVNceB4Ds7Gy8mQxe0ZRv2LDhpcOGDS91tl/DzjvvVrpx48bst99+szgQkHjppefa/vnngqb33vvIT4G6A6XB+ysubl9+7bU3zwkcw5kzf2jx2WeftA4EJCZOfLRDWVlZzsSJT/3UunWbKoDBg3dee/TRh2z//PNPtzvhhPExD4ipgIREFEsjOx5BAb+pNUONlhwqfS9Sw8ivATys43A+WfxR7XN1mYUiVHAi3H7DHatIxzPS8mhO2IkMnIQqbyIa5/HMSIjHttJlKtNIn6FUC8KJiEj6C9c9Q+qmurQ0e81lF/dm48ZNLd+ysmyANZdd3LvNS29Oz27RokHv9K9duzZ3r712HRz4u23bduX/+tcVv3Xs2KkC4LDDjlz+4ovPdvrf/z4p3GOPPUs/++yTwuXLl+ePGnXY8nDb/eWXn5uWl5dl77//iFXe5/fee99Vt99+c8/ly5fltmtXXAnQunWbCk+DnNmzf21SUrIq78ADDw67j9zc3Jrddx9a24A3ZtuNAEuWLMkP97ojjhi5/fLlyzdb55dffmrx3HNP1844cvTRxy3yZoV4RVO+jRs3Zj344D2dpk79oM2KFcvzq6qqasfFqKysJDc3l+++m9ayR4+e671197PjjjttFlzp3r3Hxt9+m9088Pf3309rOWDAwDWFhS2rAkGVwsLCql69tl5v7c/NAQUkGoOGygQIN95AqOyF4EZ7vE8akUZLDpW+F3h+bUUpLfIKt2g4+jWA7epfWFOxerPn6jMLhV9DLlTD2xtA8StnNPWo693pRKY9hipvPBvn3s9lYJ+h3vPgckQ6bn4ZO95ted/vWINFwZ+VUK9PtSlbIwXhGpK6i4iIZCZ1z4i/sjdfbYPnTv1mamooe+PVNk3/77iwjfL6atq0WdXNN9/+a1ZWFsXF7Ss6depckZW1aUzJnj17lfft27/09ddfbbvHHnuWvvHGK+223nqbddtu229juO0uX740D6C4uH2F9/m2bdtWAKxatSonEJBo1arVZuusWrUq1++1wZo0aVLlzWLIz8+vASgvLws7KOZ1190y2ztw5i23XN9j6617rz/ssCNrG+4dOnQMue9oynfbbTd2fe+9d9odc8zxC7fdtt/6li1bVk2d+kHR888/3Wnjxo3ZLVq0qF6zZk1u69ZtwtYRoLCwsNL7d25uXk1Fxabyl5aW5s6ePau5N7AUkJW1/RYZF9FQQCINNVSkOJrt+mUvlKwvqW0s+3W3iFe2hJ/ggEVww2htRWnIRqj3f2CLDIncvJzaRm28hGp4h2ssR1uPun4uYkl7rO97Gq684RrnsZQtECyorKgCwr/n0QR9/DI5/DJ2gi+U6vp+ROqmFI8pWxuqIZ/osSXUXUREJHN4zxuhru+k7qoWLCgIZERsoawsu+rPBQUNXYacnOyagQN3XB9unQMPPHj5nXfe1mPhwj///PLLL4pOOunUBZG2266d01hfvnxZXps2basCz69YsSIPoHXr1rXPeQMg7rJKgGXLnKBGvPXrt91mGQlNmzatbtu2XUWk4xBL+f73v09aH3jgwUsD3SoAPvnko81mLmnZsmXlokUL6/0et2jRorJr1yEbxo8/ZVHwsubNW1T5vSYSBSTSUKhIcX3TyGONQI/pfSK5eTmUrC/xbVgGAhaB5xtCqJNU4PngYxIod6i70wd1P7T2ueBZKOrDWw6//YZqLMdSj8CyYR2Hc/FX5zVIw6y+wbCGvJvuDRbs1mn3zYJJ4d7zSEEf72tCZez4NcLrWr9wQY/A9vyCZbEEABLR9SqWQE8kocoTKStKgQkRkdSmmTMSJ6dr1zIKCqp9gxIFBdU5XbrWaYaEeBsxYuSqe++9o/u//33xVjU11VkjR45a6V2em5tbU15esVkdtt2274b8/ILqd96Z0rpPn21rG8pTp77fumPHTmWB7Ag/22zTZ2Pr1m0q3nrrjbb77Tdidaj1kiWa8pWXl2fn5+fVpr9UVVXx8ccftvGus+OOO6259947e8yc+WPT/v23C9ttI5wddhhU+umnH7c2pu+Gugxg6UcBiTQUqhFe3374sUagA1NHfvbHl1s0liE1UuwipcUnSqQGYKRyRlOPwDrxCARF0wCsr3jf8fCWbY9eu9QGk6IdGDNU0CeWMsfjYipSNyXvlK2R+thGeh+9watA+ePVXzeWQI9XpK5gwZkQ4QJLupgVEUlt6pqROAUHHrJy3cMPdPNdmJVFwchDVvouS7AmTZrU7Lnn3iunTHmjeI89hq0sKira7K57ly7dNn7//bctp059v2VRUevK7t17lLVp07bq4INHLX3uuac65eTk1PTr13/91KnvF33//betLrro0t/D7S87O5uTTjptwS23XN/r4ovP77Xffn9dCVlMm/ZV4V//euDKaDMZGko05RswYOCaN998rbhr124bW7YsqnrppeeKKysrNwvaHHbYUSteffXl9hdeeG6f448fs7Bnz14b//xzQf68efOa/OMfl/wZbXnGjj1pydSpH7Q544wTzaGHHrm0Q4cO5cuXL8/7/vtvCwcMGLjWO4BotBSQSBPR3LGMZz/8WETKUpDEnmTjsa9QDdJUfk/rW7ZQQZ9YsgXicez96hHNYKB+QYZIDXlv8ArCd2+paz1CBXpCZXQFyhyqK1ikz6bf/kREJHWoa0ZyZBcWVre85sZZwbNskJVFy2tunNXQA1rGYs899141ZcobxSNHjtpiTIuTTz594fXXX51/7bVXbrVhw4acc8/9x5yjjjpmxTnnXPBnTk5OzVtvvdb+6acn5Xbo0LHsggsu+eOQQw5b5bcPr0MPPWJlQUFB9eTJEztdc82VWxcUFFT37t1nbdu2bUNmViRSpPJddNGl86677qoe9957Z4/8/Pzqvffed8XQocNL7rnn9h6BbTRp0qTmnnsetLfffkvXSZMmdt6wYUNOcXFx2ciRh8Q0CGXbtu0qH3jgsV/uuef2Lg8+eE+39evX5xQVFVVsu23/tcZsW6fgTVZNqMFNGrmKiqqaeKTrFxU1i0vaf6DhMKTdLjENnOfVEH2641W/VJTJdYPw9avrZyXcQIyJ7N8fz/cu1HcvkYLLEKif33H1rusNQgQa8t56xHPmkfrUCdiszE/OmUjJ+hJ+Xv1TvX7z6qu4uHAasFNDbT8e55nG/DuVCTK5fplcN8js+jVU3YLHSErWeTVV3rtYzjHffff9nK5dt47LgJPVa9dml73xapuqPxcU5HTpWlYw8pCVqRSMALj55uu6fvbZx61ffPHNH0JNhynpZcGC39oNGjSwp98yZUikiVB3LGPpC64B4CRake5SRLq7Dfg2hiH90uhTIYU0VBn83qdQd5v8tpHMLk3hxk0J1xVMd9BERNJTpDGSJDGyW7SobujZNOpq1qxfC2bPntX07bffLD7mmNELFYxoHBSQSBOhLsIjNZYiTYvp/VvBCYlWpFlB/D5j3v/TSSo0gGMpQ7p0oYp13BQREUk/4bpnpKuKH2ew/rGHaTb+ZPK2G5Ds4mSUm266pufs2bOa77TTziVjxpy4NNnlkcRQQCLN1XdazHS/ey3JEe7utt9nTI1LERGRxiETZ87wBiHWP/YwFV99wXqg1a13JrtoGeWhhx63yS6DJJ4CEhkumrul6Xz3WpIjllk/REREpPHIlAzJUEGIZuNPrv1fROpPAQlRw1FERERE6iwTZ84IFYTI226AMiNE4ijhAQljTA5wAzAOaAK8A5xmrfUdXMUYMwK4FdgK+A0431r7jrusDfAysK27rWXAY8C11toad51mwN3A4e4mXwDOstZuaIDqhRRpZPhQgwR6H6dzfzsRERERySzBM2dA5nTNSLEgRHVNTU1WVlaWpkeUtFNTU5MFhJzJJRkZEpcAo4BdgBXAo8ATwAHBKxpjtgJeBE4FngWOAl4yxvS31s4B1gFnAL9aayuMMb2AN4GlwIPuZu7ACVgYoAYngHGb+7qE8RtEcljH4Xyy+KMt+tgBvo/T9cddRERERDKD3xgR6T5zRiAQUb22lKqfZtaOD5EqmRBZWVmLy8s3tiooaJrQG6oi8VBevrFJVlbW4lDLkxGQOBW42lr7O4Ax5iJgtjGmh7V2btC6Y4Fp1tpJ7t+TjTGnu89fZa0tA2YGvaYaJ/iAMaYpMBo4yFq7xH3u38BrxpjzrLUbG6B+vvwGkbSrf2FNxeotlge/JvixiIiIiEgyhBojIt0yef3GiMjp25+8nXdNufEhqqoqr1qxYsndbdt2ID+/yUZlSkg6qKmpySov39hkxYol+VVVlVeFWi+hAQljTBHQHZgWeM5a+5sxZg2wAxAckNjBu67rW/d573ZfB/6C021jPvBAYJH73LSg1zcF+gAz6l6b2PgNIunNkAg3SKAyI0REREQkWTJljIiKH2fw56THyB89PuwYEalm8ODBb0+bNu2s5csXXVFTU9MRyE52mUSiUJ2VlbW4qqryqsGDB78daqVEZ0gUuv+vDnq+BGgZYn2/dft7n7DWHuSOTTEEOBgIjEfht7/AY7/91crJyaKoqFm4VaKSk5O9xXb2KNqFPXrtAsDoAcfVex/J5Fe/TJHJdYPMrl8m1w1UPxERaXiZOH1nIAhRWVGVamNEROQ26EI26kTSVaIDEqXu/62Cni8C1oRYP6p1rbVVwBfGmD2Be4Bjg/ZXErRvv/3VqqqqoaRkfbhVolJU1Cwu20lVmVy/TK4bZHb96lI3b+omUPs4Fe+UZPJ7B6lTv+LiwsgriYhkqEycvrPZ+JMpz8shf/T4tAhCiDQGCQ1IWGtLjDHzgB2B76F24MqW+HefmA7sHfTcIOD9MLvJBXoHdglsdPf3gef1G4BfY6+BiGQqb+omUPtYFysiItJYzFz1A09+N5Hjeo5N+64ZweNDBM7pxfc/kBJBbxFxJGNQyweBi40xH+LMsnEj8LY7a0awx4ELjTHHAs8DRwKDgTEAxphdgebA/4ByYA/gXHcfWGs3GGMmAVcbY350t3k18HgiB7QUkdTnTd0ENnssIiKSyYKn76ysqErLrhl+s2UEn99FJLUkY0CUG4DXgK+BP4EcnJkwMMYcb4xZG1jRWvsbcDhwGU4Xi8uAwzzBi3zgJpxpPlfhDGZ5J3ClZ39/x8mGCPyzwHkNUTERSV+B1M287QZs9lhERCTTebtn7NZp97TqmlHx4wxWX3BObTCi4qsvoIba2TJ0ThdJbQnPkHDHeviH+y942WRgctBzU4ApIbb1MU7GRLj9rQNOdP+JiIiIiDR6oWbO2KPXLinfpSFUl4xUny1DRLaUjC4bIiIiIiKSYJkyc0a4IITGfhJJLwpIiIiIiIg0Auk8c0bwbBkKQohkBgUkREREREQyVKiuGekyc4bfQJWtbr1TQQiRDKGAhIiISD0ZY64FjgPa4kw3/TFwvrV2XlILJiKNUrp3zfAbIyKnb//agSpFJHMoINGAKn6cwZ+THiN/9HgNrCMZwXuBoM+0yGaeAG6y1q42xjQDrgGeBnZPbrFEpDFKx64ZGqhSpHFSQKIBBX5MKyuqlFYmGcF7gaDPtMgm1tpfPH9mAdWASVJxRKSRCmRGDOs4HEivrhkaqFKkcVJAogE1G38y5Xk55I8en+yiJJ3urKevUINIicjmjDHHAfcBLYFK4PzklkhEGoNw3TNSnQaqFBEFJBrQr12yePL/cjiuSxb9I6yb6Q32TL6z3tjeu0x7/xqLTP+cBuqXP3xvyj/6MCn1tNY+CTxpjOkInAT8EG79nJwsioqa1WufOTnZ9d5GKlP90lcm1w1Sq35PfjeRr5d/SW5eDmcOOpMHf8zh1O1Oq3P5GrpuG77/npX330eb089g3aTHqPjqC8rzcuhy/wMwdNcG229AKr13IqKARIMKRKkrK6oiRqkzucEOZPSddb136S3TG+oBW6TCZlida7vI2Z+pWb06qd9Ha+1iY8xDwO/GmO7W2pV+61VV1VBSsr5e+yoqalbvbaQy1S99ZXLdIPn182ZFHNdzLJUVVRzXcyw98npz7aBbAOpcvoaqW/BsGUsrqmg2/mQqK6rIHz0+Yccz2e9dQHFxYbKLIJISFJBoQGN6n0huXg7H9Rwbcd1MbPQFN/QysbEOm793mdi4zcT3LtTAWZlWTy/v5zRT6uyX6uvNkEiyXKA50BnwDUiIiMQiHWfOiDRbRiZeY4hIbBSQaED9W2/PPb3uDRmFzfQGezwaPenQwPe+d6svOCcjGnqZLtTAWZkm1G9MptQ5VHeipoccltByGGOygTOBZ621S40xXYG7gDnAL+FeKyISSSAQsbailJ9X/wSkz8wZmi1DRCLJTnYBGrPaH+nHHk52URpEs/EnbzFfdMWPM5xG+48zotpGKh8jv7r41TkTxfo+Jkuocnrfp0BDPRMvjkJ9f2Kpcyq/1yn2fTsQ+NEYsw74ElgP7GutrUxusUQk3XmzIYa022WzmTP6t94+yaXbkve80VjOtyJSd8qQSKJE3KVMZoaBX9ZHrFkTqXwn168umZjp4iddUv7DjZsQbbn9vkPpkLkD8fn+xPO9rutxm7FwDQ99PpdTdusBUPt4QIp836y11TgBCRGRuPB2z/BmQ6RiAALCd4VMhd9pEUldCkgkUUM2XoMHDkqVhmOs4y001DGKR4MyUmOvrvtIh8ZuKgeKvOIxboJfUCPW71Ui39O6dgULVcZ4fs7r+h489PlcvpizqvbvwONTduuxKTjRuWXU2xMRSUXpPEaE97yYLtcIIpIaFJBIQfFovPgNHJQKGnK8hUQ0jLwiNfbqOqtBOsyG4K2797gDKVXeeIyb4BfUiPV7lYiMkroEIaMZ3DOWz3mk/UXzHlT8OIM/Jz1G9u571g5OecpuPQFqMyQCj72BiruOSM27hiIi0fIGIVJ5jIjGPlClN2tPwXCR+lNAIgX5NUi9I8dH09DzGzgoEXdpY9lHvGeniHfDqL7qenc+nrMhJOI995YRSNmuHHW9QAoV1IjleNYlyyDW964uwZJQg4011Pc41Hvgd3FbNeMHckrXsKSskgF337tZwCHwOBCg8AYqdKEoIukkXNeMVM2KaIwDVXrPLQqGi8SXAhIpyK9BWml/pmb16rANvUip2vG+Sxu4k5k/enztSSiWfcSSLRFNAymWIEMiovex3J2Px2wIfscoEdkWwWWsb6CnvkEUv89lvMQjqOEnUrcQ73sH1NYv8Npm40+u00Vh8GsifR/93ptQr/MLpv7cpmftBV3erz+x+uEHaHXyaRQ+/zhNpn/DkrJKSo8cw5qla/m2+w70+uUbppv9uDhE+Qd0bll7MRi4WCzdWMnMxaWALhRFJDWlc9cMv/NNqt2AaAjeIIRfMFxE6k4BiSSI5S5i4Effe1EfSqRgQKjGbaTyhFpeGyypqIprWnxd6gb1DzIEdz2IZ6M2ULbAyNOhjmWs6fJeftuIJtsiUO9Ys3BCldGvK0ekz1Wg/N5yri0tJbuwMGx5/LYRaMh7P5cNKVQ9I2U9BMobfHHnl+ngl4VSWVFV+7iuA4eF+nyF+j5Gem8iBVMf2v2U2gu64196gG3mzmT2ww/w6i6HsMOiUqab/ViwojlfDBxH/46F/LTjPpyyW4+ougUFLhb7dyxk156tdaEoIikrnbtmNKaBKr1ZEd4ghDcYLiL1p4BEEtQ1i6DpIYcBdR98LlS/f79GRqCc4RqyzcafTHleDtm777lZI7u+d5D96lfXdPJoGjJ+fe+BLYIt8RDuWNZl4EC/Oxb5w/f2fT8iNTK9Dcd4ZFP41TXUxQ2wRfpn9dpS3+yOwLZDbSOnb3+a7rFHbQZBQwuVheJX/3DdW8J1Cwl+78rzcjZlSBB7ADCSSIEK73sTKoDmF0w9pc2mC7q8tqcx282QOKBPPx7qvE3tBV9ebjbjhnSr7XKx+tbI3YKCLxZFRFJNIDNiWMfhQGp2zfBmGYbqmpHJwnXNUBBCpGEoIJEgoVLd6iJcGn5d7qb7NTJgywaiXzCg+P4HmHvSyXHtCuLXkIuUFh5LkCG4nKH63gcaffEctDHcsazLAJl+dyxCpdsHB30CFxx+Dcd4dO/xq2u4UbiD0z9jCV4Eb6N46K6UlKwPLlKDCJWF4vc9D1VeL7/PQvBzxfc/UFu/wPOJGDvB772JtC5sCqYOwNONovOusNeutet7L/QeHTtks/cvmuOmO1YikorCdc9IJcHn6cqKqkbVNcOv25+6ZogkRlZNTU2yy5CSKiqqauLRoCkqakZJyfraRmLezrvW+wfdr6EW63ZjSSf3NryD61FU1Ixln34R17EJYkn1D1X/QDlz+vb3zfqIlFoP/u8dELf3MZbPRKg6+wVkoskgibTveA+G6fd+1HUqVIgcFAq8d4mWqOk9/ep39gs/8MWcVezas3XaN8yT9f4FKy4unAbs1FDbj8d5JlWOVUNR/dJXJtcNoq/fxV+dx9fLv2RIu11qgxKBzIhU4j1P57cpapBxmFJF4L3zy4bo37GQwia5Ccm2a+hzjEi6UEAihHgHJBqqoZKoBlCo/SX7giOW/vux8nvvIH7TWta1jPGoW8WPMyhvoIEfQ+0vkZ/TZH8uG5pf/QIXVnv3bseHs5anddeFVHn/FJBIPtUvfWVy3SB8/bxZEUDKBiFCXd8kMsswGQLvnTeQHwhKJPLcqYCEiEMBiRDiHZDIVJlcv0yuG2R2/TK5bhC+fvHIlIhH94/6BEhS5f1TQCL5VL/0lcl1gy3r59c1Y0i7XVK2a0a4LNNMfu9mLFzDhK/nM25IN4CkThOtgISIQ2NIiEjG8jasIbkXHokSjz6voeZY9wsyBNYPfhzYxs+LS1m9sXKLbYmIZJJUnjkj1JhMjXmgyorKag1UKZIiFJAQkYzlbVgDvo1sP4kYIDIe/MoZj8EdvUENvws5b5AB8D3GgW0EBy9ERDJJqs6cEU0QIpMHqgw1W8Ypu/WonclJRFKDAhIiklFmLFzDhFdmMm5IN99sgWgaxqEyBBpKXQMgkcoZKUMk3PLA9gJdQCB8kCH4sXcbhw/oFHWdRERS3cxVP/DkdxM5rufYlJ05ozEGISDybBkDOrfcYiYnEUkuBSREJKOES8cMF1zwNs4TPdVXrIGFcAGXUNuFzbMXgi/YvMu9ZQi+kPMLMkR7jEVE0pXfGBGVFVUp2z0jf/jeQOMKQgTPlhEYrFLTQouktoQHJIwxOcANwDigCfAOcJq1dnmI9UcAtwJbAb8B51tr33GX9QGuA3YDWgLzgP9aax/2vH6qu7zCs9ljrLWvx7ViIpIS6pqOGRwUqO/FSyxZD35dJLxZCH6BhWj6v4bKEPG7YAt+TYAu5EREthwjIjcvh+N6jk3Z7hlARgchvIK7ZAT+T+UulyKySTIyJC4BRgG7ACuAR4EngAOCVzTGbAW8CJwKPAscBbxkjOlvrZ0DtAY+BM4BFgF7AK8bY1Zaa1/0bOo/1tprGqxGIpIy6pqOGU1WRF0GdQxsM9zr/LpIeMdpCC5btAGX4GBC4HGoCzYFHkRENvFmRXgzIfq33p57et2bMtOeN/aBKkNl8olIekhGQOJU4Gpr7e8AxpiLgNnGmB7W2rlB644FpllrJ7l/TzbGnO4+f5W19kvgS8/6nxpjpgB74QQyRESiEuoipr6DOkbzOr8uEsHTZXrXqW//V12wiYj48+uaAc74EKmYCdGYxogINVClZssQSW8JDUgYY4qA7sC0wHPW2t+MMWuAHYDggMQO3nVd37rP+22/GbAr8J+gRX83xpyPk0UxCbjFWlsR/HoRaRximQ7ULxU01kEdo30doMEgRUSSKBWn7wwEIqrXllL108xGFYSAyANVikh6S3SGRKH7/+qg50twxoDwW99v3f7BK7pjUzwBzAce9yz6J/ALsAYYAkx29/XPcAXNycmiqKhZuFWikpOTHZftpKpMrl8m1w0yu36R6jbhlZl8MWcVebnZALWPHx07ZIt1z9+vD3d9OJuz996GQd1bs2e/jgCcuOfWtesEngt+XPtcUbOIr4tFJr93kPn1E5HUk6rTd8KmGTNy+vYnb+ddG1UQQgNVimS+RAckAsO5twp6vggnYOC3fsR1jTF5OIGGTsAB3uwHa+3nnlW/MMZcjjOoZtiARFVVTVz6BhYVNcvoqYUyuX6ZXDfI7PpFqtu4Id2oqKyuHYch8NjvNb1aFnDbKCcGmirHK5PfO0id+hUXF0ZeSUTSVrjuGcnm7Z4RnA2RqUJ1ydBAlSKZLaEBCWttiTFmHrAj8D3UDlzZEpjh85LpwN5Bzw0C3g/8YYxpAjwPtAD2t9aujVCMaiCrLuUXkcwQarBHERFpPFKte0aoMSJa3XpnRmdDBIQLQug8LZK5kjGo5YPAxcaYD3Fm2bgReNudNSPY48CFxphjcYIORwKDgTEAxpgWwGs4U3oeYK3d4H2xO2bFUGAqsA4YCFwJPBPfKomIiIhIqgs3c0YyMiM0W4ZmyxBp7JIRkLgBZ7rOr4EC4F1gNIAx5njgAWttC6gd8PJw4Fac6UF/Bw7zBC+OwJlRYwOwzBgT2Mcka+3pQB5wGU53jmycQS0nA9c3aA1FREREJCWk2swZmi1Ds2WIyCYJD0hYa6uAf7j/gpdNxgkYeJ+bAkwJsa2JwMQw+1qGM+uGiGSgULNl7KkBEUVExJVqXTMaYxACNFuGiPhLRoaEiKSpwMVE8PSV4abNrOs+Qm0v1J0VoPZxXWevEBGRzJFqM2cEMiPyhzvDozWmIIRmyxCRUBSQEJGoBS4mfl5cyuqNlbXPeweh8stYCDwOFcjwPg7so3RjJYVNckMuD+zP+3/wYxERaVxSbeYMv+4ZQKMLQoBmyxARfwpIiEhYfgNOBQcWgLAZC4HHoQIZ3seBbZZurAy73O/Oiu6yiIg0bqnQPaMxDlQZbRBC52kRCaaAhIiEFWrAqcMHdKpdJ/BcpIyFUIEM7+PABUvw+BDBy0VERCD1Zs5ojGNEKAghInWVVVNTk+wypKSKiqqakpL19d5OUVEz4rGdVJXJ9cvkukH09Ys0pkMq0nuX3lKlfsXFhdOAnRpq+/E4z6TKsWooql/6aui6+XXNGNJul4QFIILr582KAGof5203ICHliadY3ju/saVS/VohVb53DX2OEUkXypAQkbB0d0NERFJNKnTNgE2BiOq1pVT9NJP1OONDZGomBISftlNEJFYKSIiIiIhIykuVrhkVP87gz0mPkT96fG33jJy+/cnbedeMHB8CohsjQkSkLhSQEBEREZGUFQhErK0o5efVPwHOrBnJmjkjEISorKjaYoyITKKBKkUkERSQEBEREZGU4jdGRN9W/RjSbpekds1oNv5kmo0/mfK8HPJHj8+4gSpnLFzDhFdmMm5INwUhRCQhFJAQERERkZQSaoyI/q0T1xAONX1nq1vvpPj+B1JiYMR4CwQhKiqrFYQQkYRQQEJEREREki4VxogIFYTwds3IRN7ZMvJysxk3pJuCECKSEApIiIiIiEhS+HXNgMSPEeE3W0bw+BCZ1DUDQo8R8cRJu2Rk9oeIpCYFJEREROrBGHMjcBDQDVgLvAFcbK1dmdSCiaSBZE7f6ZcN4Z0tozEFITRbhogkiwISIiIi9VMFjAZ+BIqAx4EJwCHJK5JIagtkRgzrOBxIzvSdobpkaLYMEZHEUUBCRESkHqy1//L8ucwYcwfwbLLKI5KqwnXPSJTg2TIytUuGghAiki4UkBAREYmvvwDTk10IkVSTrO4Z4WbLyKQgBGwKRJRurGTm4lJAQQgRSW0KSEgtbzR9QOeWyS6OiEjaMcYcAZwODI+0bk5OFkVFzeq1v5yc7HpvI5WpfukrULfpy6bz4I8PcOp2p3HmoDN58MccTt3uNHYo3oE9eu3SoGXY8P33rLz/PqrXrKHihx8oz8uh/dlnsfL+HNqcfgZN63HsU/W9m/DKTL6Ys4odurRk2DZtOXvvbRjUvTV79usY9TZStW7xkun1E0k3CkhILW9Kn6LnIiKxMcYcBTwAHGKt/TbS+lVVNfUeyb6oqFlGj4av+qWnmat+4Mk5Ezmu59jarIjKiipu3Pm/XDvoFoAGq3e4gSrzR4+nrGcfmt/wX8qAsnqUIZXeO+8NpXFDulFRWb3ZzaVYy5lKdWsIqVK/4uLCZBdBJCUoICG1NMKyiEjdGGPGA7cCB1trP0t2eUSSyRuESPTMGY19oMq7jtheN5VEJK0oICG11K9QRCR2xphzgCuAv1prv052eUSSwTtg5ZjeJ5Kbl8NxPccmZOYMDVSpG0oikr4UkBAREamfO4BK4ENjTO2T1toWSSuRSIIEAhFrK0r5efVPgDNrxj297m3QtHgNVKmBKkUkMyggISIiUg/W2qxkl0EkWQLdM/q26seQdrs0aNeMUEEIb1ZEpvDLhujfsZBde7ZWEEJEMooCEiIiIiISteDuGeCMEdG/dcM0kAOBiOq1pVT9NNN3fIhMyIqIpkuGZkETkUyjgISIiIiIhOUNQgSyIsDpntEQY0SEmy0jk4IQXuGCEMqGEJFMpYCEiIiIiITlDUIkYuaMxjhbhoIQItIYKSAhkmG8FzdK7RQRkboK1zWjobMiMrFLRoCm7BQR2UQBCZEME5zyqeCEiIhEKxW6ZjTW2TJERBojBSREMoz34ib4zouIiEg4ieqaEWmgykyh2TJERMJLeEDCGJMD3ACMA5oA7wCnWWuXh1h/BHArsBXwG3C+tfYdd1kf4DpgN6AlMA/4r7X2Yc/rmwF3A4e7T70AnGWt3RD3yomkAO/FjTc4oa4cIiISSiAzYljH4UDDds0AMnqgSs2WISISvWRkSFwCjAJ2AVYAjwJPAAcEr2iM2Qp4ETgVeBY4CnjJGNPfWjsHaA18CJwDLAL2AF43xqy01r7obuYOYFvAADXAy8BtwBkNUz2R1OENTpz9wg/KlhARkVrhumc0hHBjRKS7aIMQOv+KiGwuGQGJU4GrrbW/AxhjLgJmG2N6WGvnBq07FphmrZ3k/j3ZGHO6+/xV1tovgS89639qjJkC7AW8aIxpCowGDrLWLnH392/gNWPMedbajQ1UR5GEi5QBoX6qIiLilYjuGZk+RkSkcSEUhBARCS+hAQljTBHQHZgWeM5a+5sxZg2wAxAckNjBu67rW/d5v+03A3YF/hN4CqdbiHcb3wJNgT7AjFBlzcnJoqioWfgKRSEnJzsu20lVDV2/7+at4q4PZ3P23tswqHvrBtuPn3R77ya8MpMv5qwiLzebR8cO2WL5nkXN2LNfR8A5rne/+hNn7bU1AHd9OJu/9uvA2z8t4ey9t6l9LhnHPR7S7b2LleonInWViJkzKn6cwZ+THiN/9PiQ03dmCo0LISJSP4nOkCh0/18d9HwJzhgQfuv7rds/eEV3bIongPnA42H2F3gctvNeVVUNJSXrw60SlaKiZnHZTqpq6Prd9u6vfDFnFSvXllPYJDeh/S7T7b0bN6QbFZXVjBvSLWK5A8e1vKIKgC/mrGLGgtWs3lhJRWV17XMVldVpeVGVbu9drFS/xCguLoy8kkgaSMTMGX6ZEJUVVRk5feeMhWuY8MpMxg3ppnEhRETqKdEBiVL3/1ZBzxcBa0KsH3FdY0weMBnoBBxgra3w2V9J0L799icpJnCiL91YmRHjH3i7VQARB5kMrL9373Z8OGv5Fq8L3ka0x+aU3XqQl5vNuCHdap8L3kdgPRERSU+BQMTailJ+Xv0TEP+uGaFmyyjPyyF/9PiMCkIEjxERCNqn83WJiEiyJTQgYa0tMcbMA3YEvofagStb4t99Yjqwd9Bzg4D3A38YY5oAzwMtgP2ttWu9uwQ2uvv7wPP6DcCv9ayOJECgkR3ckE8loYIMfo+9fUyBzQa98ntd4KLn58WlrN5YucXrvI9juSAa0Lklj44dUnsXOvDawwd0ql1HF1giIuktkA3Rt1U/hrTbpUFmzgg1W0bx/Q+kRKZTfYQbqDI4qC8iInWTjEEtHwQuNsZ8iDPLxo3A2+6sGcEeBy40xhyLE3Q4EhgMjAEwxrQAXgMqcDIjNpvK01q7wRgzCbjaGPOj+/TVwOMa0DK9eO/+J3P6Sr/gQ6ggg99jbx/TgOALHe/rAutFyl5IxUCNiIgkXrgxIuJFs2VsHtQXEZG6S0ZA4gac6Tq/BgqAd3FmwsAYczzwgLW2BdQOeHk4cCvO9KC/A4d5ghdH4MyosQFYZowJ7GOStfZ09/HfgbvYlBHxAnBew1RN4iFSwCH4AqEuwYlI+/D2Dw3sM1TgIFSQIdRj7/4CQRa/GTCCu2GEyl5QJoOISOOWrDEiNFuGiIjUV8IDEtbaKuAf7r/gZZNxxoLwPjcFmBJiWxOBiRH2tw440f0nacDb6Pc7+XsvEEIFJwLbCTX2gt/rvOt6+4fClhkL0QQZwj0OFnyho4seERGJVkNN3xkqCJEps2X4ZUNotgwRkcRKRoaENGLRjLfg1+j38l4ghApOAGHHXvB7nXddv/6hfhcnulAREZFkaKjpO6MJQqTzQJXRdskQEZHEUEBCfEUzG0SgW8PQXm0izgAReBzNeAuxjFgdKjgREGrsBb/XedcNNeijiIhIsiSia0ZjDkLoXC8ikngKSIivcIMsBp/UZyxYHXEGiMDjWMZbiFWo7IVIM0eEGqdBREQklTRU1wzYlBmRP9yZ3CzdgxBeCkKIiKQuBSQSJJkzQ9RFqLES/Ka9Cs6Q8Hud93E04y2IiIiII5AZMazjcCA+XTPAv3sGkBFBCNh07bV373aAghAiIqlIAYkEiTRQY6oJlW0QatqraGaASId6i4iIpIJw3TPqozEOVAm6BhERSVUKSCRIpIEa04XuLIiIiDS8eHbP0ECV6X3tJSKSyRSQSBA15EVERCSceM+cEQhEVK8tpeqnmY0uCKFrLxGR1KeAhIiIiEiSNOTMGYFsiJy+/cnbeVcFIUTqKHfxNJp9dRvrdz4foPZxZcfBSS6ZSPpTQCIJEjnAZah9RTOtp4iIiDSseM+c4e2eEZwNka4C1yzeqcMVhJCGECrw0Oyr2yiY/1HteoHHaw6ZnJRyimQSBSSSIBDVL91YSWGT3LgFAvyCDMEnb787C4AGfRIREUmgmat+4MnvJsZl5oxQY0S0uvXOjMqG8E4driCE1Jdf8CG7fA15S76rXScQeAisE/g/+LGI1J0CEkkQCBiUbqz0DQTEkkERKn0R2OLkHWmgJw36JCIi0nD8umdUVlTFNQiRzrNlRNslQyQWwYGHnLfuIHfQub5ZD+XtB1LWbfgWgYfKjoM3y4ZQZoRI/Cgg0YBmLFzDhFdmMm5It81OoIGovvfEG+4kHJhD+8NZy7foYhFNkCGw73DpjbrLICIi0rCCu2fk5uVwXM+xUb8+E2fL0LgQEk+B4EPZ1gdS8Nubvt0tsud/RLOKqpBZD95xIRR4EGl4Ckg0oMCJtaKy2vdE6j3Bnv3CD74n4cA2fl5cyuqNlbWvjeaEHbxPndBFREQSK9zMGff0upeSkvVRbytTghCgcSGkfiKN9ZC7dAY5Zc61cnDgIS8vh/WDzlXWg0iKUECiAZ2yWw/ycrMZN6RbVOsG/veehAPPB2dI+K0rIiIiyRfvmTMCmRH5w/cG0j8IoXEhJBbRZD0Ej/XgXTc48FB17PNUxhAIFJGGpYBEAxrQuSWPjh0S1d2PUCdh7/OHD+hU+7xO2CIiIqkpHjNn+HXPADIiCAEaF0K2VJ+sh8Bjb/ChrP/xCa6BiNSFAhIiIiIi9RSua0a0WRGZMlCldwwtjQshwWKdWjOarAd1txBJXwpIiIiIiNRRIBCxtqKUn1f/BMTWNSNTBqr0y4SoqKxWEKKRi8fUmsp6EMlsCkiIiIiI1FGge0bfVv0Y0m6XmLtmpHMQAkIPThkYQ0tBiMYhlqwHTa0pIl4KSIiIiIjEIFz3jGhV/DiDPyc9lpYDVUYzOGW0Y2hJ+olX1kOAAg8ijZsCEiIiIiIRxGPmDL/uGXkVVWkbhAANTplpchdPI+etO8gddC6Ash5EpMEpICEiIlIPxphjgL8BOwDNrLU6t2agus6cEW6MiPK8HPJHj2/IYtdLtEEIdclIT6EyHbKXfEeziiqAsINMKutBROJBF00iIiL1swq4F2gKPJjkskgc1XXmjGgHqiy+/4GU69agIETmiXV8h+qt9mG9myEB4QeZBAUfRKR+FJAQERGpB2vt2wDGmL2SXBSJk/rOnJGOA1WGGpwy8L+CEOkhEHzwTpEZaTrN4IBDi22HUekGyhR4EJGGpoCEiIiIiEddZs7wZkWkchDCmwEBRBycUkGI1BQp6yF36Qxyypzslmim0wQFHEQkORSQEBERSYKcnCyKiprVcxvZ9d5GKktk/aYvm86DPz7AqdudxpmDzuTBH3M4dbvT2KF4h7Cv2/D996y8/z6q16yh4ocfKM/Locv9D8DQXSPuM1H1+27eKu76cDZn770NE76ezxdzVpGXmw1Q+/j8/frUrjOoe+t671OfzfjJWvAV2Z/cRLU5iGz7OtXDLiL7uzvInv8ReXk5ALWPq/f5J9Wf5FBjDqLavk7OsIto0XVn2HYYLQIb9D72ofdORBJJAQkREZEkqKqqqff4AUVFzVJuDIJ4auj6+c2cUVlRxY07/5drB90C4Lt/vzEicvr2J2/nXckfPT7qMjd0/YK7YVRUVnPKbj2oqKxm3JBuTl3cx71aFnDbqP6Af51jpc9m7MJlPeTO/4iaP78ju2wVFRVVlO58Ps0qqmrHegg8rmyxHRzwuLPBrY52/o+xnHrvEqO4uDDZRRBJCQpIiIiISKMUy8wZ0Q5UmWx+g1KG64ahLhmJF8sgk7Cpq4V3XAh1txCRTJHwgIQxJge4ARgHNAHeAU6z1i4Psf4I4FZgK+A34Hxr7Tue5Q8DuwEGmGCtPTno9ROA44Eyz9MXWWvvjVOVRESkEXPPa3lAvvt3E3dRmbW2JmkFE1+xzJwRbRAi2WNERDszhiReqKk185Z8V7tONNNpBgIOZf2PT1TRRUQSIhkZEpcAo4BdgBXAo8ATwAHBKxpjtgJeBE4FngWOAl4yxvS31s5xV5sBPAecFmafE4MDFSIiInFyAvCY5+8N7v+9gDkJL41swa9rBkSeOSMTghDKgEiMWKfWLOs2XINMioiQnIDEqcDV1trfAYwxFwGzjTE9rLVzg9YdC0yz1k5y/55sjDndff4qAGvtne52jk1I6UVERDystROACUkuhoQRS9cM2JQZkT98b0BBCNlc7uJp5Lx1B7mB8RvqmPUQoMCDiDRmCQ1IGGOKgO7AtMBz1trfjDFrgB2A4IDEDt51Xd+6z8fiCGPM4cBy4BXgKmvt2hi3ISIiImkkkBkxrONwIHTXDPDvngEkPQgBWw5OCQpCJEK4rIfs+R/RrKIKUNaDiEh9JDpDIjCc7Oqg50sAv86NhSHW7R/DPu8CLgaWAX1x0mofAsJmVMRjOrasBV+RM+VmWg+9kJquO9drW6kqk6dOimfdaqfsGnZRynwW9N6lL9VPJLRw3TOCRTNGRLLEOjil1E8g+OAdODLcIJN5eTm1M1wEnlPWg4hI7BIdkCh1/28V9HwRsCbE+tGu68ta682wmGmMOQ+YaowZZ60tC/W6eEzH1vKD68md/xFV5ZUZe2JKlamTGkI86xb4LFRUVKXMZ0HvXfpS/RJDU7Klp0jdM1JtoEpv4AHQ4JQNLNJYD7lLZ5BT5hz3cN0tqo59nkr3dypVzusiIukooQEJa22JMWYesCPwPdQOXNkSZ3DKYNOBvYOeGwS8X49iVLv/Z9VjG1Hxi6BL4+R3USMiIvERy8wZqRCEACcQMeGVmaxcW17bDQPQuBBxFGvWA2hqTRGRREvGoJYPAhcbYz7EmWXjRuBtz6wZXo8DF7oDVj4PHAkMBsYEVjDG5APZQA5Q4063Vm2tLXeXHwNMcYMhvXGmEH3VWruxoSoYEBxBl8Yr+KJGRETqJ5aZM7xZEckOQoTrhhGgIERs4pX1oKk1RUQSLxkBiRuA1sDXQAHwLjAawBhzPPCAtbYF1A54eThOEOFR4HfgsKDgxTvAcM/f44CPgL3cv08H7jXGFABLgZeAK+NfLREREUmUaGbOCAQiqteWUvXTTNbjDFKZ7CAEOEGHvNxsxg3ptlk3DAUhQotlak1Q1oOISDpIeEDCWlsF/MP9F7xsMjA56LkpwJQw29srwv7CLhcREZH0EWnmDL8xInL69idv510TNkhltNNzPjp2SEqMl5IqQgUcAo/rMrWmsh5ERFJbMjIkRERERKIWaeaMaAeqbEjRBiGUAeGIZXyHwGNNrSkiknkUkBAREZGUM3PVDzz53USO6zk2YveMZA5UGQhElG6srB2cUkGITeIxvoP3sabWFBHJLApIiIiISMoJBCEqK6p8Z86o+HEGq685J2EDVUaantM7OGVjDEIEBx5y3rqD3EHnxm18BwUfREQykwISIiIikhKCp+/MzcvhuJ5jfceISMRAlaG6YUDo6TkbA7+sh+DxHbLnf0SziiqN7yAiImEpICEiIiJJE258iHt63UtJyfqED1QZqRtGQKZnQ8Qyq0Xw+A55eTmsH3SuxncQEZGwFJAQERGRpAk1PkTFjzP4c9Jj5I8en5CBKv2yIcJ1w8i0IEQsg0yGy3oIqDr2eSo1g4iIiESggISIiIgkXKTpO1dfcw4VX31BZUVVg40REe3MGJkkHoNMKutBRETiRQEJERERSYhYpu9sNv5kyvNyyB89PilBiEzIgKhL1kO0g0yKiIjEgwISIiIikhB+3TNOqtqT1Recs9n4EIGBKovvf4CSOKT9Z3oQIt5ZDxpkUkREEkUBCREREWkwwTNngBOM6PNnDf96porqta9S4c6W4e2aEQ+RBqdMtyBELINMgrIeREQk9SkgISIiInEVqmvGNc3G869nqmg2vsZ3toy6ds3wZkAAMQ1OmaqimVozmkEmlfUgIiKpTAEJERERiatQM2esv+ahuM2WEaobBpBWg1PWZ2pN0CCTIiKS3hSQEBERkXqL1DWj2fgaiMNsGZG6YQSkSjZEqIADQM5bd9Bi3aqYsx4CFHgQEZF0p4CEiIiI1FkgELG2opSfV/8E+HfNCAxUWd8uGdF0w0hGECLW8R0Asud/RKWyHkREpBFTQEJERETqLNA9Y7+SHoz9oAVFJ+25WRCirgNVzli4hgmvzGTckG5hZ8ZIhniM7wCQl5fDukHnKutBREQaLQUkREREJCbe7hknVe3JES/OpGtNNfm/lpD3/IdbjA8RbVaEXyZERWV10mbGaOjxHaqOfZ7KOExrKiIikq4UkJCU4L3o894pEhGR1OANQrz37u3s+/oPvHfQGsZ92Zw2toScvl3IjmG2jEDwYe/e7fhw1vItBqc8Zbce5OVmM25It4QEIeI1q0WAMh1EREQiU0BCUoL3bpMu4kREUkOo6TvP+bSagj+g36fVNDs1+tky/DIgfl5cyuqNlcCW3TEeHTuEkjhnEGhWCxERkdShgIQkjfei0O9uk0hAuFHqlVkj0nC8QYhA14yik/ak/albs/6xh2kVRTZEqOk5A8EHb4ZEvDMhAr8dZVsfSMFvb4YdZFJZDyIiIomngIQklLdhGZwVoQs98Qr1WQF8H+vzI6DuX/ESyIw4oHTr2iBEh+c/pI11xojIu/WwegUhgoMPhw/oVK/yRsp6yF06g5wypwzhAg/KehAREUksBSQkobwNS2VFSDiRPiuhHkvjpu5fdec3RkSbqul0nrd2i4Eq/cQahKirumQ9eNdV4EFERCR1KCAhCeVtWAZfFAboDqdA+M+KGhMSzNtIBQWp6sI7UOWR7hgR5X2Kydt5u7ADVQYCEaUbK5m5uBSITxAid/E0ct66g9xB5wL1z3oo6398zGUQERGRhqWAhCRUqCCEl+5wCkT3WREJ0O9G3XizIo70DFTZ/tTzNhsjAjbPgAC2yIbo37GQXXu2jjkIEa67Rfb8j2hWUQUo60FERCQTKSAhCRFL1oO6cohIrPS7Eb1Q03eeGRSEaHXrnU4Q4oUftuiGAYTskhFOrFNr5uXlsN7NkAg8p6wHERGRzKGAhCRELHcvdWe8cVOXHakL/W5Ez69rRr9Pq8k7elOXjEjdMAJCZUPEa2rNqmOfp9Kd9lPvr4iISOZRQEISQncvJVpKvU8vyQwgKXgVvV8/f4mSR+6j6KQzQnbN8BuUMlw3jMBjTa0pIiIidaWAhCREfe9ehrrbFqoRooZK4kRzrCOt411e1+CVt1GUM+9tcgedu9m+Yv0MxZNfgy1TPpeJDiCFmzpYthQIROStL2Or+Rv4/ZH7qBp9NatXPkCrw09jRZuePLT7KZzSJvzMGKCpNUVERCT+FJBIkHRrIIcqb/AFaWAE9MA68W70BbYXro9xpLTgwAVvqr0H8WjIx7Mc3sYyEPX7GDw9Z13ej+DldWmkeBtF2WWraFZRtdl2wt2xrU/9vWJtsIXbR6htAb4zDwQeR1MPv3Wj+Xz5fVa8DU+/MsdSHm/9Crr/1fd1mjo4Mu8YEeseuY+tbAlzujThh14tqDliPE+saM4Xg8az64rm4AlCXNBnFXkrb6WizwVsk13OxLzbKFt1IAXfaGpNERERaRgJD0gYY3KAG4BxQBPgHeA0a+3yEOuPAG4FtgJ+A8631r7jWf4wsBtggAnW2pODXh/T/hpKKt/Ji5Ru6204BV+QZs//iOZrV1JT0CrsBWtd6xzYXqg+xtFcILd89fiwdQrsJ7jhFBxs8R6rWBtcfo3MWBryWWWra49xqH3EUh5v/fway95j6X3sF0zwNgrr8354/68L7z5azHub9YPOjZh5ESpYEKr+kYIXsTTYIn1XQi0HfGceCDyOph5+64b6DPrVz/s6bwCp5avH16s83vo1//M739d530eNG+HPO0bE9keM54enHuKdHQ/lvaqB7Lq+9WaBB6D28YA/HqCgfBplfzwAf/h/Rrz/Bx5rkEkRERGpq2RkSFwCjAJ2AVYAjwJPAAcEr2iM2Qp4ETgVeBY4CnjJGNPfWjvHXW0G8BxwWn3315BC3UX0a6jW9S5sqMeRthcp3TZcwzEvL4esdavIj9A/uK6CGx8BgYvfSBfI3gZSpIZzcMMp0OgLF5CJtSEf6lhGashml6+pPcah9hFLeYLrB2zRyPY7rn4ZK94GaV3fj3g0LL3baLrHKVSWrN9sf8GZF8Fljqb+kYIXsTTYQq3rDRD6LQd8Zx4IiKYefuuGC4CEC6x4+dUplvJ467cuKEMisDwVgxCpEPj2jhFx4IcVtP4Den5YwVt75vCXnZowoMU6zqryCTxA7eNI75+yHkRERCTesmpqahK6Q2PMXOBqa+0j7t9bA7OBntbauUHrXgXsY60d5nnuE+A9a+1VQetOACp9MiSi3p9XRUVVTYk7snd9FBU1I3g7gUZSefuBW2QWBLIAwt319q4LhH3s3UekbgGh0rfDBUuKipqx9pdPUqorhFe0XU/87nq3+u4OVnsyCKJ5bwLPRZMhEcv4BrEEoaLNkAjUL5b3zO+zG8vrE9VtJvC9i/f+InVvicc+Ase4rNvwkA0+v9+V+ormM5ao73dD1K8uiosLpwE7RVrPGHMpMBYYwabAdzNrbdjAd33PM79+/hKrH72fVieezsoH7mSb39Yxe+vm/L7DKIZ/9hwf7XEUo7t+Ttuln1GeV0R+RUnI37FU/P2G1PksNJRMrl8m1w0yu36ZXDdInfpFe44RyXQJDUgYY4qAVcAga+33nudXAydYa18NWv9lYI619u+e5+4AullrDw9adwJBAYlY9+dVXV1dU1VV/2OTk5NNVVX1Zs9lLfiK7E9ugo2ryV44jeqt9qF62EVkf3JT7f/Zv39A9Vb7AJD9+wfUNG1D1oaVW6wLhH0cah/edWu67hzX+mWKQN0C71d9j1Wqqct7ly7HIp0/l9Ec43SuXzRSpX55eTnRBiSSEvj+YtzetUGIrH655MxYRdWA1uzWqw1tl37GivZ7kD3sojqNF5IqUqXh0FAyuX6ZXDfI7Pplct0gdeqngISII9FdNgrd/1cHPV8CtAyxvt+6/Rtof7Wqqmri8mPl+6PXYjs44PFNdyQHnUul+xzg9OuvqKpNyW5WUbXpYjJoXSDsY+8+mn1wPbnzP6LC7XseeFyftNtU+VFvCLV18x7vDKprnd67NDkWaf25jOIYp3X9opAq9SsuLoy4jhv47g5MCzxnrf3NGLMG2AEIGZDIycmiqKhZncuX3S+XOZXVZPfLpdcRV1PR5gby9r6EVh0Kqf7kJloFglrbDqMpwB6n0KLOe0uOnJzseh2jVJfJ9cvkukFm1y+T6waZXz+RdJPogESp+3+roOeLgDUh1o923XjsL6FC9YUO1U+3LoOFebcV7/EdREQkeYHv9gf8m/w2t1K+ywUUb70bbP0K4KQFpkPgMBqpEpxqKJlcv0yuG2R2/TK5bpA69Ysm6C3SGCQ0IGGtLTHGzAN2BL6H2oErW+IMThlsOrB30HODgPcbaH8ZTQOSiYjEXdIC3z2335OiYSNS4sJaREREpC6SMcvGg8DFxpgPcQb/uhF42zNrhtfjwIXGmGOB54EjgcHAmMAKxph8IBvIAWqMMU2AamtteR32JyIiEjUFvkVERETqLjsJ+7wBeA34GvgTJ5AwGsAYc7wxZm1gRWvtb8DhwGU4d5ouAw4LCia8A2xwtzHOffxONPsTERGJg0Dgu5cxpiUKfIuIiIhEJWKGhDFmR2AkzuBcRTj9YqcDb1lrv4l1h9baKuAf7r/gZZOByUHPTQGmhNneXnXdn4iISBzcALTGCXwXAO+iwLeIiIhIRCEDEsaYvwLX4gzY9RHwGU5f2UKgLzDZGFMKXOYGDURERBodBb5FRERE6iZchsQpwBnW2q9DrWCMGQJcTJgMBhERERERERGRYCEDEtbaIyO92A1WRFxPRERERERERMQrq6amJuJKxphiYIO1dq0xJgdnlotq4AlrbXUDlzFZlgFzk10IERFJmh5AcQNuX+cZEZHGq6HPMSJpIdppP18HTge+wxlX4mCgAhgInNcgJUs+/UCIiEhD0nlGREREGrVoAxJ9cOdXxxk5fHdgLTCTzA1IiIiIiIiIiEgDyY5yvSog3xizPbDaWjsPZ/rPFg1VMBERERERERHJXNFmSLwFPAu0BZ52n+sH/NkQhRIRERERERGRzBZtQOJkYCzOuBGPu8+1A65sgDKJiIiIiIiISIaLapYNEREREREREZF4CjmGhDHmNmNMx3AvNsZ0NMbcFv9iiYiIiIiIiEgmC9dlwwJfGWN+Bj5y/y4FCnFm3dgLMMA1DVzGtGSMyQFuAMYBTYB3gNOstcuTWa5YGWNuBA4CuuHMrPIGcLG1dqVnnTHAFUAn4AfgTGvttCQUt16MMdnAp8BuQDdr7QL3+bSunzFmX5zv6XbARuBZa+2Z7rJ0r1tH4A5gH5zfs++A86y1093laVM/Y8wxwN+AHYBm1trcoOUjgFuBrYDfgPOtte94lm8D3I/z+V0F/Ndae2uCih9RuPoZYw4E/gEMAHKAH4F/WWs/8ayT0vVLtEw5x0DjOc9k6jkGMvc8o3OMzjGJq4FI4xUyQ8Ja+wCwNfCQ+//FwN3ARTg/VvcD21hrH05AOdPRJcAoYBegq/vcE8krTp1V4Uz12hbnR74rMCGw0BgzFLgPOANoDbwAvGmMaZnwktbfecB67xPpXj9jzF7A88AtOO9hV+Bhd1la1811L9AGJ0jaAfgGeN0Yk5WG9VuFU5+/By8wxmwFvAhcD7Ry/3/JGNPTXZ4DvAb8DBQDhwAXG2P+LxEFj1LI+uG8P3cB2+CU/0ngLWNMN0ib+iVappxjoPGcZzLuHAMZf57ROYa0+Q3WOUYkTWkMiQZijJkLXG2tfcT9e2tgNtDTWjs3qYWrBzeC/qy1tqX790Qg21p7gvt3FjAX+Le1dmLyShobY0wfnNlkjsC5A9LNWrsg3etnjPkc+Mhae4nPsrSuG4AxZgZwt7X2QfdvA/yCc0FxK2lYP/fi/r2guztXAftYa4d5nvvEXe8qY8zeOHeV21tr17rL/wMMtdbundAKROBXvxDrLca52/hiOtUvUTL1HAOZeZ7J1HMMZPZ5RucYnWNSrX4imShkhoTUnTGmCOgO1KbtWWt/A9bg3P1JZ38Bpnv+3oHN61mDc7GVNvV002gfxUnnKwlanLb1M8Y0B3YGco0x3xpjlhtjphpjdnJXSdu6edwMHGGMKTbGNAFOBT5109YzoX4Bm9XF9S2b6rID8P/t3XmYHVW19/Fv0ukEAkk6mEBAQgICSwgyiCEEZXKWiyIg+jJIAAkgMqOgXq8DwhVU9CKDTIYwOoEIDsgYBpUhApIQYMkURoME0kmHQNLd6fePXdWpnFSdofvM/fs8T54+OadO1d51TndVrVp77X/FJ1IprzcUM3sfYSanudFTTdW//mryYww02XGmWY8xMCCOMzrGrHq9af4G6xgjUl8UkKiMEdHPxTnPtwP1mspXkJntDxwDnJh4egSN388TgQXufmPKa43cv9GE3/EDCePMNyKMM/9zdEHTyH2L/Y0wHvQ/hLHn+wHTo9eaoX+xQn1pmr6a2fqE1Ocfu/vT0dNN078yacpjDDTtcaZZjzHQ/McZHWOKe71h6BgjUn8UkKiMjujnqJzn2wh3sBqOmR1AqCfyGXd/JPFSBw3cz6iI0anAcRmLNHL/4u/hFe4+x91XEMaFtgK70Nh9i+863gH8i9CP4cBZwH1mtgEN3r8chfrSFH01s42AWYQLmm8kXmqK/pVR0x1joDmPM01+jIEmPs7oGKNjDA3WP5FGpYBEBbh7O/Ai8P74uahg0EhgTo2a1WdmdjhwCfBpd5+V8/JjrN7PQcD2rJ5uW88+RBgL+riZLSSk6AHMMbNjaeD+uftiYD6QWyimJ/rXsH2LrAdsCpzv7kvcfUVUZHcwoUp2o/cvabW+RHZgVV8eA7aM0qfTXq97UfG0+4Bb3P24KP051vD9K6dmO8ZAUx9nmvYYA01/nNExRseYhumfSCPLW/AlZmY3AlcCf3L3zso2qWlcSqjQOwt4AzgHuNXd59e0VSUysxMIU1p9wt1npyxyGfCXqHDVfcAJhCno0lJT69FvCHdAYhsD9wMfJxSumkNj9+8i4EQz+yXhLs8pwHLg74Q7Ag3bN3dfaGb/Ao41s68T+nUoIfVyDrCQBupfVOW7FRga/X+t6KXlwFXA18zsQEI1+88BOxL6C3AvoZja/0b7woCjWT3tvaYK9M8Iv4cz3f1bKW+v+/7VQFMcY6DpjzPNfoyBJj3O6BijYwx11D+RZlZUQILwh/bbwC/M7DfA1e7+98o1qymcTRhbORsYBtxOmNas0ZwHdAGzQnHpwN3XjX7+NbrLcxmr5uHey90bIs3N3ZeRmIbNzOLfiQVRcaOG7h9hGrYRwF2EE6VHgU9Fd7UavW8AnyUUHXuBcCLyDHCAuz8HPNdg/fsicEXi/29HPzd192fNbD9CVfcZwHPAvvHFp7t3m9mnCXeY3yCMff2Ru/+qSm0vRmb/CNNKvxs4ycxOSixztLtf2yD9q7ZmOcZAEx9nBsAxBpr7OPNZdIzRMUZEKqqkaT/NbBLhhOcgYAVhzvNro+reIiIiIiIiIiJFKSkgETOzXYELgG0IVYdnA6e6u8ZaiYiIiIiIiEhBxQ7ZwEIeZW52xN7A68CxwO8JaVEiIiIiIiIiInkVlSFhZv8AJgK/Bq5y9wdTlnne3RWQEBEREREREZGCig1IfA64OZpfWkRERERERESkXwYXudwSQoZELws+VvYWiYiIiIiIiEjTKzYgcSFhLumkjuh5EREREREREZGSFBuQWN/d/53z3L+BcWVuj4iIiIiIiIgMAMUGJJ4zsw/nPLcH8Hx5myMiIiIiIiIiA0Gx035+F/idmf0CeBZ4D3B49E9EREREREREpCRFzbIBYGY7AUcA44GXgF+4++wKtk1EREREREREmlTRAQkRERERERERkXIpasiGmQ0FDgO2B9ZNvubuh5a9VSIiIiIiIiLS1IqtIXElsB3wB+C1yjVHRERERERERAaCYgMSnwQ2dff2CrZFRERERERERAaIYqf9fBEYVsmGiIiIFMvMtjazf5jZoCpuc6aZnVmt7SW2+10zu6ba220EZjbfzD6a8dq2Zvb3ardJREREildshsRVwE1mdh45Qzbc/a6yt0pEpI6Z2UTgeaDV3bsqvK2tgcvdfRczOwNY6O4/i17bGfg+sCPQDdwNnODu/y5y3Z8HTiLUB3rI3fdIvLYl8CNgF6AFmB2t26PXB0XbPpxQW+hR4CvuPi/P9jaKtrNxzvPrA+cBuwPrAI8Dp7j7g3ma/33gx+7eNJWZzewS4GF3v7TWbWkG7j7HzNrN7NPu/odat0dERETWVGyGxHHABsD/Ar9I/Lu8Qu0SEZFgR+AficePJF4bDVwKTAQmAB3AFSWs+03g/4CzU15rA24GjPD3/yHgpsTrBxCmgt4VWA+4H7i6wPb2Av6S8vy6hIDHjtG6rgT+ZGbrpiyLmW0I7An8vsD2Gs2ngD/XuhH1xMyKvXGS5Vrg6HK0RURERMqvqAO9u29a6YaIiNSCmZ0OnACMBF4FjnX3O81sMHAaMJ1wcX4ncIy7vwncG7293cwAPgZ8Atjc3Q+J1juRRBaFmd1NuGj/CPBeYBZweLS+fD4APBw93gH4Z/yCu9+S05cLgHuK7bu73xG978iU1x4iBCHidf8U+JaZvcvd3wA2Bf7q7s9Fr18DnFxgk3sBaww9iNbxk8RTl5rZjwnBkIdzlyfs70fc/Z1E+/ryOWJmXwTOJARFfhItd2S8b/Ixs72j904EnojWOyd6bT5wAXAoIVj0F2Bass0569oWaHf3lzM2t5aZ/ZqwD58mfHcei967EXA+sBuwFPhpIotmJ0L2yVbA28ANhOyTFdHrPcBXCJ/dOEKAaiYhuLRN1O5D4uVz2rw54ebE9kAncKe7fyF67b1Rm3YEXgf+x91/E732X9F+ew+wGPiFu383em0i4ffmSOA7wHxgNzObDpwCbAy8FLUpDs5tb2Y/ydjPdwOXm9kwd1+esW9FRESkRorNkMDMWs1sVzOLTzbWMbN1Ktc0EZHKshBNOA6Y7O4jCEGF+dHLxwOfJQwj2AhYBFwYvbZb9LPN3dd19/uL3OShhKyCDYEu4Gd52na7mbUTLhbPN7MlhEyFl83sloy37Qb0Dpkws4PMbE6RbStkN2BBFIwA+BXwHjPb0sxagWmkZz/EbWmN1nF7oQ2Z2fbAUOCZjEXeB3hi+T59jtFwmJ8DX4xeexfhgrcgM9sBmEG4+/4u4BLgZjNL1lv6PFFRaGBbwvTZWfYC/pTn9X2A3xIySK4Dfh8dlwcTZsB6DHg3IeB1kpl9InpfNyHYMAaYGr1+bM66P0EIHOxMCN5cChwCjCcEJQ7MaNP3gdsImTobEwIQROcGt0ftXB/4f8BF0f4GeIvwu9AG/BfwZTP7bM66dycEUT5hZgcA343eMxL4DPBGYtnM/ezurxCCJZbRBxEREamhojIkzOx9hNTd5YSTjl8TThamAV+oWOtERCqrm1Cwd2sze93d5ydeOwY4Lr5jbWbfBV6M7qj31dXu/ni0vv8B/mlm09y9O3dBd/9YVMfhOnf/gJl9E+h09x+lrTi6w/5twoVrvI7rCBeF/WJmGxMu4k9JPP1v4K+EwEA34a71h/OsZjfgMXfvKLCtkYS7899z98UZi7Wx+gVpXz/HzwF/dPd7o9f+hxDYKMZRwCWJOhdXRp/RzqzKUvmZu78arfsPhEyCLP8FfDPP6w+7+/XRun4CnBptawUw1t3PiJZ7zswuIwQBbnX3ZIbJ/KhOxe6ETIjYD919CTDPzB4HbktkvtxCyMy5MqVNnYSshI2i/fvX6Pm9gfnuHg8fetTMbiAM8/meu9+dWMccM/tl1KbfJ57/rru/FbXhyKiNs6PXcgNVhfZzB+E7IyIiInWm2LGZPwe+7e5Xm9mi6Ll7gMsq0ywRkcpz92fM7CTC3ddJZnYrIZ39VcKF1o1mtjLxlm5ClkJfvZR4/ALQSrhzvVqxYDM7jpDSPiz6fzswAlhqZv8NbOnu/0ksvzlwC3Ciu9/Xj/atwczGEu6CX+Tuv0y89G1gMuEu+gLCHfW7zGySuy9LWdVeFKiPYGZrE+72P+DuP8iz6CLC/gD69TluROIzcfe3zCwZ6MhnAjDNzI5PPDc0WmdsQeLxspzXeplZG2EYT74ZIZLtXGlmL0fr6wE2ir4jsRbgvmjdWxKGonwAGE447ucOg0l+/95O+f+4jDadRsiSeCg6NzjX3WcQ9s2UnDYNIaoxYmZTCHVLtiHss2GE7I/U/hK+Y89mtAEK7+cRQDsiIiJSd4oNSExi1bjfHug9cVu7Iq0SEamSOIsgujN/CXAOIYX/JeAId/9b7nvMbELKqt4iXPDF0i7ixiceb0K4w7wwpU0XABeY2V+A7xHqE8x1900y2nIH8H13L1RUsiRmNpoQjLjZ3c/KeXl74NeJmgczzez/gK1ZVYQzaS9gvzzbGka4Q/4yhYsQziFk6PXq4+f4b8KwgPj/wwnDL4rxEnBWyn7pi08Ad6VlyiT0fneiYRobE2pldAHPu/sWGe/7OWEGlAPdvSMK3HyuDG3G3RcQam5gZh8C7jCzewn75h53/1jGW68j1Nf4lLu/E31vxuQsk5w95SVCvYmSmdm7CUEPL7SsiIiIVF+xAYn5rF7pPS6UlTW+V0Sk7kW1B94N/A14h3A3uCV6+WLgrGhIxQtRpsAu7n4ToUjfSmAz4F/R8v8ETjezTQiF+r6RsslDzOwqwt/UM4DrC1yEbk+oDTCF1WfXiNv/buAu4AJ3v7jIbiff30LI0hgCDDaztYBud++MLuxvBf7m7l9Pefts4AAz+xVhfxwcrWuN44KZbQoMc/cnM9rRClxP2P/T3H1l2nIJtwPnmdla0QVtXz/H64EHo4vphwifSbG1lS4jZF7cEb13OLAHcG+hYSkpCtWPANjRzPYjDJ88gTCE8gHC97DDQlHPnxGGcGwFrB0NcRgBLCFk17wX+DLh8+q3qLbD/VFQahEhiLAS+CNwdjQs5lfR4tsDS6PvwAjgzeiz2wk4iBD4ynI58BMz+yvh9+A9hOFLLxTRzN0JwR4VtBQREalDxZ54/Q9hCrbvAUPN7BuE9MpvVaxlIiKVN4yQOr6QkPa9PqsCCecRLv5uM7MOwsXfFIBoSMJZwN/MrN3Mdnb32wn1deYQUuL/mLK9qwkzGCwA1iJcWKaKAhtvRNt6P+mzTRxJCIp818yWxv8S6zjYzOalvC/2RcLF+88J03e+zaqhePsShmQcnlx31C4IGQiPEQIx7YTCifu7e3vKdv6L/MM1diHUHfg4YeaSeFu7pi3s7q8RAjFxvYy+fo7zCEVDryPUxFhEyNAoyN3/QcgOuCB63zPkL1qZyswGETIkMguCRm4i1GxaRPjc9nP3ziigtTfhgv95wj64HBgVve+rhAv+DsJn++tS25jHZEJAZylhH5/o7s9FAZmPE+pYvEr4TM4hGoJEKKp5RvR5fBv4Tb6NuPtvCb9v10X9+D2huGcxDiYEpURERKQODerp6Sm8FL0VxacTxoa+BFyWUyxLREQyWJj28xp3v7zWbak2M/szIYsjbw2JEte5NaHQ4k7uXtyBrLj1zqfIaT/LtL2dCPtmp2psbyCJCr1e4u5Ta90WERERSVfsLBsHRHcojs15/nNx1W8REZEMdwOzyrlCd3+CcIe+GXyn1g1oRu4+hzDVqYiIiNSpYmtI/II1K2BDmKtcAQkREcnk7j+sdRvqlbs/VOs2iIiIiNRK3iEbZrZZ9HAO8D5gUOLlzYCr3D11GjMRERERERERkSyFMiSeIVTNHsSac4AvIMz5LiIiIiIiIiJSkqKKWprZPe6+exXaIyIiIiIiIiIDQNGzbIiIiIiIiIiIlEuxs2wMIcywsTswhkQtCXffrTJNExEREREREZFmNbjI5X4KHA3cC+wI3ACsD9xVoXaJiIiIiIiISBMrNiCxH/Apdz8P6Ip+fhbYs1INE8liZjPN7B8lvmd9M/uumU2sULMqysymm9nzZtZlZnfXuj39YWYTzazHzPbuw3uPMrPP9nG7JX9vRKQx6LhQmeOCmZ1mZnukPN9jZsdVYpvR+vcxsyfNbIWZzS/hfd81s4WJ/+8RtXWbijRURET6rdiAxHDgpejx22Y23N2fAnaoTLNEym594DvAxBq3o2RmNg74OXATYdjUsbVtUU0dRQiGioj0l44LhZ0G7FGhdacysxbgKuAx4MPAvtXcvoiIVFdRNSSAJ4HJwEPAP4DvmtkS4JVKNUxEem0OtAAz3H1Of1ZkZmu7+9vlaZaIiNRIMx8XNgRGAte5+19r3RgREamsYgMSJwLd0eNTCFH5EYS7lSI1ZWYbAmcR7uJsSMjm+Q1whruviNJx50aLzzIzANx9UPT+9YCzgX2AUcAjwMnu/mBiGz3AScAGwHSgB/gtcIq7L08sNyFa18cImUXPAGe7+3Vm9hDwhLsfltP+mcB27r5GxpGZfZdwBw/gsajth7v7TDMbA5wL7A2sTQgYftXd/5F4/3xCzZd2Qh2YDYDWPPvySOBkwsnuAuBCd/9h4vWpwDcIAcqRwNPAj9z92pz1ZO6HxGLDzewS4P8BHcAvgO+5+8qMtt1NqGGzo5lNi56O90UL8D/AEVEfnwHOytle7vqGAr8CPgB82N2fMbNNgB8CHwfWAu4DTnB3j94zEXge+ALwkWLbLiLVpeNC/48L0XLvAr5jZvH29nT3u6PHLWb2vwX6nvdvaso2DwOuiP57U9S37wEzCX97P+3uf8zZT9u4+wfS1lcMM2sFfgB8nrAv3gAeBL7g7iuK7YeZjQcuIQxnfg04E/gkMMbd98hqb+K40ts3MxtMyE45EhgPvEA4pl2ZeN/dwELgd8AZhIyfvwHT3f3lxHJrE/bhF4BxwKvAr9z9G4ll8h77RUQqqaghG+4+290fiR4/7e4fdfcp7n5fZZsnUpQxwJuEYNkngR8BhwPnR6//Gzg4evwVYGr0DzMbBtwBfBT4GmE4wOvAHVFKbNKpwEbAIdE2jiYE64jWtT5wP+Fi/avApwkXquOjRX4BfM7M1k28Z13gc8CMjL5dHrWZqA9TgT9F//898IloW18g/D7PMrPNc9ZxEKtSer+QsR3M7GuEYOPvCSezPwe+nzNOeALhhOdLUf9uAK4wswNL2A+xHwJLo/5fA3w7epzlWOAp4M+s+gzjfXEG8N/ApcBnojZem2xXTl/XAm4EtgN2jYIR6wF/BQw4hnByug7hu7B2P9suItWl40L/jwv7AoujNsb755ES+l7K39TYnwh1y4j6MDXqbyV9g7Af/4cQNDqJ0O8WKK4fZjaIMHxmG8Lx8RTCvpjaxzadD3yLcEz7L8LxakZK7aUpwHGEz+Io4P3Re8hp15eBC4G9CMGsMYllijn2i4hUTGaGhJl9uJgVuLtm2pCacve5hBMXAMzsb8BbhIP38e6+3MzilNYn3P2BxNsPIZxATHL3p6P33wE44QD/tcSy8xN3sW41sw8STpziuwgnE+6k7eju/46euzPx/l8CPwEOYNUdoM8T7kyl3sl395fN7Inov3Pc/fGojZ8EPgjs4e73RM/dBcyP2nx0zqr2dvd30rYRvXck4STlTHf/XvT07WY2HPiWmf3c3bvd/VeJ9wwizLyzMeEO2S+L3A+xe9391MS2PknYn7/J2BdPmNlbwOvJzzA6WTwpavuZ0dO3mtnGwHcT7YqXHw7cHLV7N3ePh56dTDjJ3N7d34yW/Rthnx5BOJnrU9tFpLp0XOj/ccHdHzWzLuDlnP1TSt+L/Zsab/N1M3t01X/Ddq2yhUd3IgwPuTLxXPJveTH9+BShrtrOcRaNmT0MPEvIJCxaFDz6MiHrJW7THVHWz3eAPyYWHwn8l7svit47DvhpYhjOxwlBln3c/ebE+66Kli/q2F9K+0VESpVvyMYvinh/D7BZmdoi0ifRhfGJhLsDmxLSKWObENJjs3wUeBh43sySvw/3EFL5k27L+f8TOct8GPhL4qRzNe6+xMyuBw5j1YnnYcDN7v5Gnjam2Qn4T3zSGa3/LTP7I/ChnGXvzHfSGZlKOOH6bc5+uItw12hj4AUzG01I/dwHeDfRHSRWryeTdz8kpO3PTQq8J802hDTo3+Y8/2tgppmNdffXo+fWAf4CtAG7u/trieU/CtwOLEnsgw7C96OY70Jf2i4iFaDjQu/6+3NcKKRQ30v5m1pL/wS+bGavEY4Pc929J/F6Mf3YCXgtOaTH3V+IghKl+giwErgx5/t3J3CgmbUkggSz42BEJA5UvZvwHf8w8GZOMCKpqGN/H/ogIlK0zICEu29azYaI9MNJhHTRcwgnjIsI6bEXsvpJaJoxwM5AZ8prz+b8vz3n/yty1v8uYHaB7f0CuNvMNgMGAbsSUihLtSHwn5TnXwPWS3mukDh9c17G6/EY1pmE/fV9wonPEsKdnH0SyxazH6Dw/izWhtHP3H7G/1+PkG4NIb14C8JY3Nzl4+9CWvpyboZHe87/+9p2EamMk9BxIdbX40Ih7Tn/z+17KX9Ta+lMQgDgWML35RUz+5GHKe6huH6MI33f/4dQc60UYwjB/sUZr28IxDUi2nNeWxH9jD+HdxGGJ+XbFhQ+9ouIVEyxRS1F6tkBwPXu/t/xE2a2dZHvfZMwc8yXU15bnvJcPm+w6uI4lbvfa2ZPE+6ADSIUl8q9y1SMfxMKWOXagNCnpJ6U5XLF79mb9BNVj+ou7A18xd0vjl+Iim8lFdwPZRafbK0fbTu2QfQzuT+eBs4jZE4scPefJ157kzCU4/sp2+goU1tFpDp0XFilr8eF/irn39Q4m2NozvOjS21UrihT5NvAt81sC0KdiP8zM3f3v1BcPxaQvu/XB5IzmLxD4T68CXQRht+kFUpOC3xkKfT9K3jsL2FbIiJ9ooCENIO1WfMk8eCc/+feNYjdSRhj+aK7l3KQT3MncIKZbZBy9z1pBqvmjL+qj+MzHwS+Z2a7ufu90FsbIS5+Var7CSdNG7n7n9IWMLNRhAJpyQrqIwhFJJMnt8Xuh75Iy0R4HFhGuAA5I/H854F/JYZrAODuV0dF4y4wsw53vybR7s8D87y+psATkdLpuEC/jwvQv+yvcv5N/Q8hY2Wr+Ino7/gulPEOvrs/bWZfJRQN3ZowhKOYfswmzEYyJVFDYhNCkcm/JZZ7GZhoZmslhsx8PGdddxEyJEa5++397NKdwGlmtndydpKEgsd+EZFKU0BCmsHthBO+BwnptAcTpq5KepFw0J1mZouBTg/ToF1FuBtyt5n9GHiOkOK4E7DA3X9aQjt+ChwK3GdmZxGmmdsKWCdn+qwrCSmiQ1g1Zrgk7n6rmf0d+LWZfZ1wF+SrhJPwH/Vhfe0WppI7z8IUdfcSgg9bEqZ529fdF5vZbMJdpCWEOzdfJ6SVjkysrtj90BdPAZ8ws08Q+vy8u79hZv9HKMDVRbizuR8h5Tl1lg13/3l0MnuFmS11998TCssdAtxlZucT6mJsQKhE/1d3/2XaukSkLum40M/jQuQp4L/M7C+EmYXc3YvNbijb31R3X2lmNwEnm9kLhKEKp7J69kGfmNmNhHoQj0br+xzhc7i3hH78GXiMUIvhdEIw7Husmc3we0Lg/HILU4DuQCiMmeyrm9nFwK/M7IeEY9pawCRgS3c/soTu3Q7cClxnZmcQZknZkFDQ+ehijv0lbEtEpE+KmvZTpM6dQahUfmb0cwVwQnKB6E7EdGBHwnji2Ynn9yQctL9HSJM9j1Bn4KFSGhHdif8g4aTm/wiVsI8inPQml1tAuJP1N3f/VynbyPHZqN3/RyjoOAj4sLvnK9aWKTo5PopQLfwmwr48mDDfeuwgwsn5VYT9dEP0OLmeovZDH50JPEmogD6bMIUehHTbHxBSrP8I7AYckpwVJJe7/yh6z6/M7GPuvpAwTvgpwkXEbYRq8aOAOVnrEZG6pONCGY4LhNk53iJMxzmbsK+KUoG/qccRsg0uItQC+SUhm6C//k7Yb9cRjn07AvtHwami+hEVwfwMobbSjGi5CwgZCL2iGVGOIBSTvJkQ1Dg8pU1fIQwROZQQ7JhJyHS5N2XZTFG79iVMBXoScAvhd2JhYplijv0iIhUzqKenGsMIRSQWTVP5CnCcuxczm42IiDQxHReaUzSDyhh336PWbRERqVcasiFSJVG9ha0JU9F1EO5CiIjIAKXjgoiIDHQKSIhUz47ALEIBrkPdfVmN2yMiIrWl44KIiAxoGrIhIiIiIiIiIlWnopYiIiIiIiIiUnUKSIiIiIiIiIhI1Q3YGhIrV67s6e7u/3CVlpZBlGM99Ur9a3zN3kf1r7HVU/9aW1sWAmMrtf5yHHfqaX9VSrP3Uf1rbOpf46uXPlb6mCPSKAZsQKK7u4f29v7XjmprG16W9dQr9a/xNXsf1b/GVk/9Gzt2xAuVXH85jjv1tL8qpdn7qP41NvWv8dVLHyt9zBFpFBqyISIiIiIiIiJVp4CEiIiIiIiIiFSdAhIiIiIiIiIiUnUKSIiIiIiIiIhI1SkgISIiIiIiIiJVp4CEiIiIiIiIiFSdAhIi0lTmvLqE42+Yy5xXl9S6KQOG9rmIiAwEOt6JlJ8CEiLSVC67/wUemL+Iy+4fWNN71/IkaaDucxERGVh0vBMpvyG1boCISDlNnzphtZ8DRXySBHD+/u+r+PbmvLqEy+5/gelTJwzYfS4iIgNDfMzbc4sxgI53IuWkgISINJVtNxpZlQvyepAVFEg+v+1GI8u2nT23GMOspxcyfeqENQIg8T5PbhsoWzuy1lvObYiIiKSpdtBfZCBRQEJEpEFlBQWOv2FuWU+c4u08uaCDxe90AdmZKMk2Af1uRxyI6Hini3kLOtZYbzm2ISIikkuZgCLVoYCEiEiDyjpBKnTiVEwWQ9qJWDJDIisTJW3bycdZ2RtZbYoDHJPGjWDniaMz16uTRBERKae0oP+8RXM5/aEZHLrFEUwarSC4SDkoICEi0qCyggLJ59Mu9LOyDeIAQL4hGfttu2FJbcptR3Lb06dOYOZN8zhs8vjMzIpkgCMZwEjbhoiISH9kZUXMWzSXq56ewdLODp5c/AQA5+z001o2VaRpKCAhItJgSqkRkXahn5VtkFy23OmpaZkO8XOdXSszMysGUk0QERGpvuQxNSsYf/pDM5i98EG2GrU1k8dM4dAtjqhlk0WaigISIiI1VkyAId8JUz75LvRj8TpysxHKGQhIy3SYPnUCrUMGc9jk8ZmZFSIiIpWUFYyPsyIO3eKI3gCEhmqIlJ8CEiIiNZZ7MpQWnOhr9kIpF/qVzEZIW/e2G41kxrTJtLcvq8g2RURE0mQNzWhZ+wWGj59By9pHcNXTISsCwvAMDdEQqQwFJEREaiDrZCg38BDXWKhk9oKIiMhAUmhoBrBaVoSIVI4CEiIiVZRW3DF5MpQWnOjsWrnaMiIiIlK6Oa8uYeZN89hzizFA4aEZyooQqTwFJEREqijfNJaw+tCGZI0FqT9mNhj4KzAVGO/uL9e4SSIikkd8DF688mnGjL9HQzNE6oACEiIiVZQ1jWUa1VioeycD+nBEROpYcojkR7d9ixeHXc3KdbuYvdABDc0QqTUFJEREqkj1H5qDmW0JHAvsDzxa4+aIiEiGZL2I4eN/TcfgeWzcumr6Tg3NEKktBSRERERKEA3VmAF8FWivbWtERCRXblbE/KFX8dH3HsnmY45gSGsLB02cpuk7ReqEAhIiIiKlORFY4O43mtnEYt/U0jKItrbh/dpwS8vgfq+j3jV7H9W/xqb+NYYLb76ZJ7tv4MJ/7M+Y8ffyVssTPLT0eqZNvojdNp9Kd/fKWjdRRCIKSIiIiBTJzDYHTgU+UOp7u7t7+l0PpK1teNPXFGn2Pqp/jU39q1/JrIiW0bczpONpWkbczkETj6Krs5uDJk6jvX1Z3fRx7NgRtW6CSF0YXOsGiIg0sjmvLuH4G+Yy59UltW6KVMeHgLHA42a2EHgken6OmR1bu2aJiAxs5z14F491/5jzHryLr2xzFJPHTOEr2xzVWyNCQzRE6pMyJERE+iC+E9PxThfzFnQAqFjlwPAb4I7E/zcG7gc+DjxVkxaJiAxQNz39AJc/dTlHvvdIho25kyEdTzNsxJ1MGv1ZFaoUaRAKSIiI9EFctXvSuBHsPHE006dOWC1dtNCUntKY3H0Ziak+zSw+ji5w96W1aZWIyMAyb9Fcrnp6Bo+/9h/ebnmey5+6nLM/dCJXPT1D03eKNBgFJERE+mD61Am9P+Pgw/E3zO2dWkzZEgODu88HBtW6HSIiA8mFj1/KUx0Ps8FaWzD4na058r1HavpOkQalgISINKw5ry5h5k3zOGzy+KpnJGy70cg1gg7JIIWyJURERMonzoo4dIsjWL7wI3R1LmF46778ct/P1rppItIPCkiISMOKh010dq2si4yEZJAimS0xfeoEBSdERERKlAxCxFkRHcu7OHHKWVx2/3uYPmVCrZsoIv2kgISINKzpUyfQOmQwh00e3++MhOT7gYKPC20jmS0RB05AQzlERESKlQxCxFkRy5d/hG13XTNLUUQaU9UDEmbWApwNHAasBdwGHO3uCzOW/yRwLrAZ8CxwirvflrLctsA/gHvd/aOVab2I1JNtNxrJjGmTaW9fVlL9hrTgQ3K2DKB3XVmPC20jmS2RDE6IiIhItrShGcuXf4QTp3xYWREiTagWGRJfB/YBpgBvADOAq4FP5S5oZpsBvwOOIky1dgBwo5lNigqJxcsNidZzX6UbLyL1qdBFfzIIkcxYANaYLSN3nfkeFyOt3oSIiIgExQzN0LFUpDnVIiBxFHCGuz8HYGanAc+Y2QR3fyFn2WnAw+5+TfT/a83smOj57yWW+wYwG3gN+FBFWy8iNZU1NCPtRCUrCJEWvMhdX3JdWY9FRESk/656egazFz4IoKEZIgNMVQMSZtYGbAI8HD/n7s+a2RJgOyA3ILFdctnII9Hz8TrfRxj+sQNwSrFtaWkZRFvb8BJan7WewWVZT71S/xpfM/Tx0RcXcf6sZzh+z82ZOfslHpi/iNYhg5kxbXLe/s28aV7vsqd8bMvedeywyWh223pc73LJx/WmGT6/fJq9fyIiki3OjNh0rSk80d3BLqO/wKYbb62hGSIDSLUzJEZEPxfnPN8OpFWIG5Gx7CToHapxBXCiuy8xs6Ib0t3dQ3v7sqKXz9LWNrws66lX6l/jK1cfqz2NZVp2Q2fXSqZPnUBn10oOmzye9vZleft32OTxvctuOnIYP9lnEkBDfebN/h2tp/6NHTui8EIiItIvyeEZcWbEE90dLPjXodyxYh3O319ZESIDSbUDEnHFuFE5z7cBSzKWz7fsacDT7v7HMrVPRDLkDnkoNjhRTCAjXmbPLcYw6+mFeYdYlDKGVONNRUREai8tCAGwy+gv8MRrHXxy3CE8tWK0ij+LDEBVDUi4e7uZvQi8H/gn9BauHAnMSXnLY8CeOc/tANwZPf448H4zi2foGA4Mif6/pbu/Wd4eiAwsyWBC1jSWyeAEUDCwkDaFZrzMkws6WPxOV++y8U8FFkRERBpXMghx6BZH9P68+C5YMP9QnloxWsd5kQGqFkUtLwVON7NZhFk2zgFuTc6akXAV8DUzOxC4HvgcsCNwaPT6AcCwxPKnAJOBAwlDO0SkH5LBhPP3f1/qNJZpM1ZkBRbSlk0ukwxkKAghIiLSuJJZEckgRPfbE1j20hF0bzyB6VPDssqMEBm4ahGQOBsYTZgVYxhwO3AIgJkdDFzi7utCb8HL/YBzCdN6PgfsGwcv3P315Iqj4pjL3f3l6nRFpDklh1DAmicKyWBB2owVWYGFfLNbxMvst+2GFeqViIiIVFLW0Ixzdvop5+z0UwCOv2tu6s0OERmYBvX09NS6DTXR2dndo6KWhal/ja/YPqYVkdx5Yv2nUDb7Z6j+Vc/YsSMeBj5QqfWX47hTT/urUpq9j+pfY1P/8jv9oZOZvfBBJo+Z0huUiLMi0oZsVqNIdq7+9LHz8Tksu+Jyhh9+JK3bbNuvdlT6mCPSKGqRISEidSiriKSIiIhIlqyhGZNGv69psiLiQMTKpR10PzGPZcCoc39W62aJNAUFJEQEUBFJERERKV4ciFja2cGTi58AVh+akVUYu1EksyGWXXE5nQ89QMtWk2jdaWeGH35krZsn0jQUkBARQFNkioiISH5pNSK2GrV17xCNpKzC2I0iDkIsgxCUiH72d6iGiKxOAQkRERERESkoa/rOSaNDsKGZsiJygxAaoiFSGQpIiIiIiIhIqkI1Iua8uoTj75q7xvTejZIVkTY0I64RoSCESOUpICEiIiIiIr2Kmb4z1ohFsbOCEMmsCBGpDgUkRERERESkV9bQjKR4eMaeW4wBGqModufjc3jlmitYsai9d7YMDc0QqS0FJEREREREBrh5i+Zy3aNXctDEaZnTdyblDs+oV4Vmy1AQQqS2FJAQERERERmgcqfv7OrsTh2aAY1ZtDJ3SMaK1haGHnK4ZssQqRMKSIiIiIiIDFDJ6TunbrgLB02clrlsoxStzDdbxtiLL6G9fVmtmygiEQUkREREREQGkKyZMz646ZQ1LtYbJStCs2WINCYFJEREREREmlwpM2ck1XNWhGbLEGl8CkiIiIiIiDShrCBE1swZsXrPiogDESuXdmi2DJEGp4CEiIiIiEgTygpCZM2cEavHrAjNliHSnBSQEBHpg+Rdp0mjiz9R6+v7REREipFVH6JQEGLOq0uYedM8Dps8vm6yIooZkqHZMkQamwISIiJ9kDv+ttLvExERySd3+k4oXB8iKc6K6OxaWTdZEfmCEMqGEGkOCkiIiPRBofG35X6fiIhIPsnpOyePmVL0cSauF7HnFmNoHTKYwyaPr3BL88s3ZaeCECLNRwEJEZE+KJT6Wu73iYiI5Mo3PKNYyXoRV39pzWk/q0FTdooMXApIiIiIiIg0iL5O35lUL7NoFJotQ0SanwISItIUVCxSREQGglKm70xKBiFqOYuGZssQkSQFJERkDY14cV+NYpFp+yX5XNyORtpvUjozOws4CHgX8A5wL3CKu79Y04aJSNPq68wZSckgRLWzIjRbhohkUUBC6l4jXhw3onwpoI2gGsUi0/ZL8jmg4fZbKfS72Otq4IfuvtjMhgNnAr8Cdqlts0SkmVRyaMa2G42salaEZssQkSwKSAwwjXhB0YgXx42+nxtlJoh5i+Zy3aNXctDEab13ieYtmsvpD51ckX2ftl+yniuUOdHo35FG+V2sBHd/KvHfQcBKwGrUHBFpUuU4LtfL0AwFIUQkiwISA4DufFdfo+/nRpkJIt7PXZ3dqRkL5ehDbuAgd525z8WPT3/o5LyZE43+HRnozOwg4OfASKALOKW2LRKRZhEfd3YdtztQ+nG5lgUrNVuGiJRKAYkBoBHvfCc1ysVxUnI/N8qd8LT9XO9tP3SLIxjS2sJBE6et9lz8sxzt72vgIF82Rdbr9Sq5Hxvtd7FS3P064DozGwd8CZhb6D0tLYNoaxver+22tAzu9zrqXbP3Uf1rbJXq32OvP8alj1/CUdsczXXzr2T2wgcZ0trCJR+/pOR1zbxpHg/MX0TrkMHMmDaZ3bYeV/R7+9K/t//5T968+Oesd8yXeeuaK+h86AFWtLaw/vHH8ebFLax3zJdZu46+E83+HRVpNIN6enpq3Yaa6Ozs7inHPMttbcNrMl9zKfpzUdYI/euPavQvvlM+ecyUmlzM9aePtW57MfL1L9n+OEOomN+DeipUWQ+/g2nfg3IFq+qhf7GxY0c8DHyg1PeZ2frAc8Am7v5m1nLlOO7U0/6qlGbvo/rX2CrVv74er5LizIg9txjDrKcX9taKKEUp/cudsjOeJSPOkKjXIpX18h3t6zFHpNkoQ2IAyMowSKYE3rfgnrq6C17vd+ZLUcqd8HrrdyNmeiQl25+V6ZDWr74WD+uret+3ad/hRhxyUkFDgHWAjYDMgISISFI5Zs5Iyq0XUQmaslNEym1wrRsglREX9pu3KDuLOL6guNwvYfbCB7nq6RkV3XYxbcptWzFtKmW9lZTVjuSJRbGfSbk+i/6K2z5p9Puq0rZyf5bJ9h+6xRG9d56S20nrV3LZasjat/MWzeUrs46t+Xc7uR9j1d5H9cLMBpvZcVFWBGa2MXAhMB94Kt97RUSyjj9pf2eLMefVJRx/w1zmvLqE6VMnsPPE0WWvF9H5+BwWn3pCbzCi86EHVmVB7LQz655wMqPO/VndZkSISH1ThkSTKubuZXwhkcyQSMqdwaAv206mHZZyRzUrq6CYu9m1UqgdpXwm9XiRV41siUp+lrmBoXx1VapdtyRr36YV7SyHYj6/Qssk91HWsqV8T+o9SyTHXsC3zWwdoB24G/iou3fVslEiUv/KUdcrWbSyGrNoaMpOEakkBSSaSFbqX5bkBcXem3x2jXUkL4aSgQVgjcfJoEZWmnxam/KN1S/2or6YC+VCFzvluEArtM+LDbLku8ir5UVbvgv6fO2ENb8vpe7Dcvc7LTW2ktOFFpJv38ZFO0upa1Ho92BpZwdPLn4CyB6+UkpwqJggZNb3JA56FrNsf4Me5eDuKwkBCRGRolRyaEalZtHQlJ0iUi0KSDSBrIuMvhzkci8K4ouh5PPAGo998VMs6Vy8xrazDrxpbU6ut5isjuTFY6EL5bSLq2IuhuJ9klzH0s4O1m0dUXQQJZYVbMi68Et7vl6yQfIFnfJ9rsnHWfu50D7qa7GvpLTPqh737aTR7+PCTS+ivX1ZwWlEkwoFCLYatfVqw1ey9nPyZ7FtzlpHvu9zHPTMWkfud6qvmVciItWS7zjfl79VWVN5brvRyLJlRXQ+PodXrrmCoYccrik7RaRqFJBoIFl3SNMuMvoq62Io7eIk+Thr2EehTIe0NheT1ZG8OEuuv5gLo9xgSL6LIWCNdSzt7Cj6wjBLMRd+acGXrGyQeJ1pj6979EqmvutDZS1cmvxc0/Zdoc81335OC74UurAth1IuwCsp63cmrX3J7was+tyL+T2IvwdZw1dKuXOX9X1Iez73+xwHPUv5TpUj5VlEpJLK/XeqkkMzcmfL6OrsXi0rQkSkkjTtZz9Vc+qg5JRQQL+nhypGpfrX3zTr/gyxiPfjVqO2pm142xo1MgqlxpdjSshS+p819WbW9yHt8cjWUSzpXFzx70tfawZA/v2cL0W/XqbvqpRipzUFUr8n5RiuVE653+dCn181hy5Vego2TftZnGbvo/rX2Ir9m1WOGcySWRFA7+NSp/JMkzVbxtD12hh6yOFNXaCyXr6jmvZTJFBAop/S/qiV82S5r2Pxy6Ve/miXU3KffnDTKXXfv2IuzCFPhsT81TMk4rs2lQ5OVEszfkeT8vWvHMGxaqvngJICEvWh2fuo/jW2Qud9yWNsf7P4jr9hLg/MX8TOE0eXJSMiLQgRT9cZPz/2Qzs39ecH9fMdVUBCJFBAop/iP2rlPBhV6sDWF/XyR7tSmr1/sGYf6+n7VQ7N/hmqf9WjgER9aPY+qn+NrdB5XzkC/XFmxJ5bjGHW0wvLlhWx+NQTUoMQyWyIZv/8oH76qICESKAaEmVSzrGCGh8tlZQ1Vl9ERESKk68+T3+LVubWi+gPzZYhIvVOAYkyKeVgVCjNuhwHNpFi6PslIiJSnOTsXOU+VyvnVJ5pQzM0W4aI1CsFJMqklCBEvlkccqc+FBEREZHaSDt/6+rs7vP0nUnlnsozd7aMOBtCs2WISD1TQKKCsoIQWVNoVmo6Q5HkSU85xqGKiIgMBLnnb/FUxeVQjqk8s2bLiOtEaGiGiNQ7BSQqqNjxhRrPL/1VKOCQmwpaqWnEREREmkFy+k5Ydf524aYX9asgYlZWRCmyhmTk1ogQEWkECkhUUKnjCzWeX/oqX8Bh5k3z2HOLMau9Fi8LlK1wloiISCPLymwt59CMcmRF5AtCKBtCRBqNAhIVpACDZCn3EIrkXZa0gENn18rek560OzJ9LZwlIiLSLCo1y1k5ClZqtgwRaVYKSIjUQDmn9AJWK4CVe7LTOmQwh00en7psubYvIiLSiJJZEeWcOaMcBSs1W4aIDAQKSIjUQH+n9Mon92RnxrTJ/RrvKiIi0kzyDc0oV2Zrf4ZmaLYMERlIqh6QMLMW4GzgMGAt4DbgaHdfmLH8J4Fzgc2AZ4FT3P226LX1gN8D743W9TpwBXCWu/dUtCMiJcodphGfnGQN30h7PvkcqCCliIhIMUqZ+aw/4uN0snZTMTRbhogMVLXIkPg6sA8wBXgDmAFcDXwqd0Ez2wz4HXAU8BvgAOBGM5vk7vOBt4AvA/9y904z2xT4M/Af4NJKd2Teorlc9+iVHDRxGpNGK+29WSRPCoDex/2tWJ01TKPQ8x3vdDFirSEqSCkiItJHxc581l+lDMnUbBkiIrUJSBwFnOHuzwGY2WnAM2Y2wd1fyFl2GvCwu18T/f9aMzsmev577r4cmJfznpWAVa75q8QHt67ObhWvbCLJkwJgtTGbfVHobkly+EbamNOOd7ryFsNSQUoREZF0WdN3lvO8rZSpPIsNQigbQkQGiqoGJMysDdgEeDh+zt2fNbMlwHZAbkBiu+SykUei55Pr/SPwEcKwjZeASwq1paVlEG1tw0vsweqO3eFYLnu8henbHN3vddWrlpbBTds3SO/fC5+fxoL/LGXc56ex5QYjePPiFtY75susnbIfHn1xEefPeobj99ycHTYZnfr8zNkv8cD8RbQOGczVX5qyxjp2axvObluPA+CIK2f3Ljtj2mR223rcGtuIlwVWe1xKH5uJ+tfYmr1/IlJ9lZq+M0sp9SIUhBARWV21MyRGRD8X5zzfDqQNgh+Rseyk5BPuvndUm2Iy8GkgtR5FUnd3T78L/U1o3YIL9ryI9vZlTVs0sK1teNP2bc6rS5g5+6XeGSh65wh/eSgPbH8YO788lOnjx3HZ5COYPnQcPLGgN9Nh1tMLVxtC0dm1svf/ac93dq3ksMnjC+7LwyaPX2PZTUcO4yf7hK98Xz6LZv4MQf1rdPXUv7FjRxReSETqXiVrRMT6mhWhIISIyOqqHZDoiH6Oynm+DViSsXxRy7p7N/CAme0GXAgc2J+GFqPz8Tm8cs0VDD3kcI3xa0DJoAGQOiwirWbDkws6WPxOV95l+zrFVynLioiISFCp6TuT5ry6hJk3zeOwyeMLZkVoyk4RkeJUNSDh7u1m9iLwfuCf0Fu4ciQwJ+UtjwF75jy3A3Bnns0MAbbod2OLEB9gujq7dXCpkqwZKfpi+tQJtA4Z3JshET+XDAqk3fVIZkhkLavAgoiISGVVY/rOpNzsR1gzK0JTdoqIlKYWRS0vBU43s1mEWTbOAW6NZs3IdRXwNTM7ELge+BywI3AogJntDKwD/B1YAXwQOJEqzLAB4cCyorWFoYccXo3NCaVVry5k241GMmPa5N508bT15QYW4sf7bbthwWVFZE3Ju4bKLBORUlVr+s5Y7tCM+EZG8pivKTtFRPquFgGJs4HRwGxgGHA7cAiAmR0MXOLu60Jvwcv9gHMJ04M+B+ybCF4MBX4IbAn0AK8AP4u2UXGt22zL2IsvKXn8czOekFerT4XGaUphzfT9a/ZhU83Yv9zUZRGRUlRr+s5Y7o2Q+EaGpuwUESmPqgckoloPX43+5b52LXBtznN/Af6Ssa57CRkTdS/fWMJGlpaaWMk+xXck5ry6hONvmFuWoRsDQbN+/5LDpuK+NdNJYDMOC1Pqsoj0RTWm70wqNGW3ZssQESmPWmRIDEhZB65Gl5aaWO478Ml0ya3enM+yKy7nlol78sCKdwH9H7pRrEbOLCj3969e9kVy2FTcx6UdHQweMaJfbatl/3KrsTfLsLBkv+KT9WbMABGR8qn29J3J8420IaLJv1kKQoiIlIcCElWSdeCqlwu7vkpLTVx86gmrX/z2s3/Jk4Iz/x4uOg9e3sXLe36Z6VMnrHYCES+fmzmRtcxubcOLbkc9ZBb09ftS7hOnNQIcNfoOJ4dNxX1cubSj359TLT/r3G3H/Wv0vxVp+7QZM0BEpHyqUSMiKW22rGPf9RaLTz1htQzD+G+W/m6JiPSfAhJVknURWC8XdoUkL4aA1dqZ26/kxW85LuySdSOGW1j3qMOP5Pxtwh2L42+Yu8bUnPHyaXc6ksvstvW4otsR92vo7nv2npxU+3MqdX8m7+akLV+OAEc5PuNC7cj3/YvF38XcZfui2llMWXPUJ1U7SFLKdyPr80k+TutXM2WAiEh5VGP6zqTcopVAb0bmmX8PQ1I7E7Nl6G+WiEh5KSBRY+W+sKuUZNuAvO1MBinKcWEXnxQMt/QASFqhy9wgRNYypYi3ncwAKffnlHYRmHWxWsxFeqE70IUCYlkXpeX4jEupa9HX718x+yhNudNvC13cFzNHfdZnXyiAU0owIe27U8z3POvzST5O61cyw6XRM0BEpO+qPX1nUvJc4SfW03u+kTVbRl+KmYuISDYFJCqomBPsQhd2xayjvxcnWa9njZUEir4ALcfwlLQLo+S6toLVAhbxWM9kECJt+s7Ox+fwyjHf6b3TUWzbirkwTLsQHrr7nqy4Z1bebaQFCHILhsb7IBkYgfSL9EJ3cwoFxIrJ4Cnl4r2YquSF2gnFf/9KCWSU+4I4b19ztlNMUCe5n9OCYqUEeIpZNu17nvUdzvf59OWzSu6j+DUFKkSaV7WHZiSzIo5911scfOMVjNrxaJZdcZ1myxARqTIFJCqgrzNPJFPOc8cr5jtJL3TBXuhiKOv1fGMl+3L3uK9349Mu1oq50ExmVrDRmsGC+PPp6uzOXEeaQheGWe3r8ifpWbw472eZFiBI3p1JyroIzN2P+e7mFAqIlZrBk3bhmuxfoarkye9+8n25QY9iv3/FBDIK/b6WI5CWth9zi2+W8jtV6HeiUNCsmGBQ2vc86zuc7/Ppy2eV9vuT3F9xHxSwEGlctRyasXptqusY+8I8Wv9wXepxSUREKksBiTJJCwBkXUgWUuhCJvciPF4mWdugmHXE/x+6+56Q8Xo5x0oWuijLF7DIV6cC0i/GCwVaWraaxNof/OCqDAnWvCgrpU/56gDEn098kZ4voJIWIEi70Mq6COzrkJKsbJZShmb0BrESF67J/hU62Sslo6HUPkH+gF3W72uhoGBW8CWrr/Hz/Sm+mRbAydpeWpHZ5O98MVlMyb8xad/hcpy05wuO5e4vyB4WIiL1q16GZiSzIhSEEBGpLQUkyiTfnd9SFbqQyb0IT6ttUMw64jYDmRfB5RwrWeiirJS78cVcjOcNxEQ/x35o597+9eUkJF+2RFr71v7Mvqv1P9+d+76eGBUTOCgkbf8X0560C1dY87tabNv7248spfy+FgoKZgVfsmpBlLP4Zqm1J9J+5/OtL7fNkP0dLqe03+81hkFR+e+JiJRXtYdmwKrMiM+0LOTgR69i1I5Hs9EfVmVFtGq2DBGRmhrU09NT6zbURGdnd085LrTb2obXTUG2UttQzPJx/yqlmBoMpezPUtdXzv7Vw3cgTV/6WK99SVPN/hWqDRI/V879lq9/5f6dr8XnXum/MaUYO3bEw8AH8i1jZucAewPjgaXAn4DT3f3NQusvx3GnnvZXpTR7Hwdi/+LMiF3H7c59C+7pHZpRDeecfyPb3f07Nhi0gvGvPd+bCdfXv3UD8fNrNvXSx2KOOSIDgQIS/VQvf9QqRf1rfM3eR/WvsdVT/4oMSPwv8FvgcaANuArodPfPFFq/AhLFafY+DpT+pQ3PmDxmSsWHZgA8efcDLL78EkYdeTQjrr+KtR77B8s3fy/rrtfW74DrQPn8mlm99FEBCZFAQzZERESK5O7fTPz3dTM7D/hNrdojUk/mLZrLdY9eyUETp1V9eEYyCLH48kvY/IV5PHP5JWz+9ZNZdsXljGqAjD8RkYFIAQkREZG++wjwWK0bIVIP4iBEV2d3VWbOSEoGIUYdeXTvTxWqFBGpbwpIiIiI9IGZ7Q8cA+xezPItLYNoaxver222tAzu9zrqXbP3sdn699jrj3Hp45dw1DZHc+wOx3LZ4y1M3+Zothu7HR/cdEplt33rfSy44ELGHfcVNjz+OJ694EI2PO4rbPeJXeGzH67INpvt88vV7P2DgdFHkUaigISIiEiJzOwA4BLgM+7+SDHv6e7u6fe45XoZ+1xJzd7HZuhfWn2Irs5uztnpp1yw50W0ty+rWB+TxXf/ff4FISvi/AvY+ZormDBlBkBF928zfH75NHv/oH76OHbsiFo3QaQuKCAhIiJSAjM7HDgX+LS7/63W7RGpljgQsbSzgycXPwFUb/rOOBCx9M12hj3zFK8t71ptaIaIiDQmBSRERESKZGYnAN8BPuHus2vdHpFqirMhthq1NZPHTKl4fYhkNsRrF1/MWo/9g3+vP5GF6xuP2cc4fY+dYY+dK7JtERGpDgUkREREince0AXMMrPeJ9193Zq1SKSCksMzcgtVVkIyCLHsisvpfOgBlgHX2sfY7t8d3L/LPrw50Zg+dUJFti8iItWlgISIiEiR3H1QrdsgUmlpNSIAztnppxXJhsgKQrz66YNY/FoHoz59EJ/acmsu22hzpk+dwLYbjSx7G0REpDYUkBARERGRXskgRDVqRCSDEMMPP7L350U+iAd2OJyd31iH8zcayfn7VyYrQ0REakcBCREREZEBLt/QjEpnRSSDEE+uN5HLdpnO9PUmMH1qWFbDM0REmpcCEiIiIiIDUL0MzXjh1DN7gxCX3f8CD8xfBMD5+79PWREiIk1OAQkRERGRAahaQzPiQMTKpR10PzFvjaEZySBEnA2hrAgRkYFBAQmpG3NeXcJl97+gglUiIiIVFGdG7Dpud6AyQzPSsiFatppE60475x2asa1qRYiIDCgKSEhFJYMMwBqP99xiDLOeXsj0qRPWuEOi4ISIiEh55BueUS6dj8/hlWuuYOghh2cWqmzdZlsALrthroZmiIiIAhLSP3HAIRlYgFWBh2SQAVjj8ZMLOlj8Theweppm7hhSERERKU1WEKJSwzPiIERXZ/caQYhR5/4snDPcMJfpUydoaIaIiAAKSEiO3IyGmTfN47DJ44E1sxuSgYNkYAHIOxY0+TgZyEimaepERUREpH+yghDlHJ6RO1vGitYWhh5yeG8QAladW3S808W8BR2AsiJERCRQQGKASRtCkTVsAkJgobNrZe/j5POwKmCQmyERv5Y7FjTt8X7bbrhGOzWGVEREpHTVmL4za7aMUef+jLEXX0J7+7LVzjfic4tJ40aw88TRutkgIiK9FJAYYNICDlnDJgBahwzuzZBIPh8/TgYOkoEFBRNERESqo1rTdxaaLSMpa+YM1YUSEZEkBSQGmLShEFnDJgBmTJtMe/syID27QURERGqrkvUhCs2WkTs0Ix7qmRuE0HmDiIikUUCiQWXNXlHozkPWEIq0YRMiIiJSnyo5NCNrSEbabBlpQzM6u1aqRoSIiBRFAYkGlTV7hQ7+IiIizSsORCzt7ODJxU8A5R+akS8IkTtbRu7QjNyhniIiIvkoINGgsoZeHB+dIGiMpoiISPOJh2dsNWprJo+ZUpGhGWlBiKR89SGSQz1FREQKUUCiQaUNvTj+hrmrnSD0ZUiHiIiI1Jd8wzP6I99sGblBCFg1PGPPLcYAqg8hIiL9p4BEmSTHUFbqor/QNpJ3KTSkQ0REpHFVcuaMUmbLSKsRATqfEBGR8lBAoh+S1aT7epAupThloW0k71KkDenQvN8iIiL1KysIUY6ZM0qdLSMtCJF2biEiItIfCkj0Q7KadPIgnUxpjKfTjJfPfZyWydDxThcj1hqyxrKlnAhkzaYhIiIi9SkrCNHXmTNKmS0jKV+NCJ1PyEA0ZMHDDH/oJyx/z14Me/bPLNvpFLrG7VjrZok0BQUk+iFZTTp5kI5rOTy5oIPF73T1Lp82hCItyNDxTlfmcAudCIiIiDSPSk7fWWi2jKRkVoSCEDJQxYGHZTudAtD7ePhDP2HYS/cw5D9zaFkezsuXfObaWjZVpGkoINEPWdWk4wN5boZE8rX4cVomQ+4wjtz3iYiISGOr1PSdpcyWka8+hIIQ0swKBR5i8eN4uWSGhIiUhwISFZAMMuy37Ya9zxc7hELDLURERJpbOafv7OtsGR3vdDFvQQeg+hDSvHKDDy23nMe6by2i9bVHe5fJDTwkAw7x8Iw4I2L5pIOr1XSRAUEBCREREZEqmLdoLtc9eiUHTZzW7+k7i6kPkSXOhpg0bgQ7TxytoRnSFIrNehj80j10rb89y8fvnjfwABqWIVINCkiIiIiIVEjazBldnd19Hp5RaMrOtKEZkL9GhEijSSsyWWi4RfyztbWFt3Y4cbWilAo8iNSOAhIiIiIiZZRv+s4hrS0cNHFaSesrZcrOJNWIkEZXSpHJYoZbAHQfeD1dOfXfRKR2FJAQERERKaN803deuOlFaxTDTtPXKTuzghCqESH1rBxFJjXcQqQxVT0gYWYtwNnAYcBawG3A0e6+MGP5TwLnApsBzwKnuPtt0WtbAv8LTAVGAi8CP3X3yyvcDREREZFe5Z6+s69TdmYFIVQjQupFWvBh8IolKjIpMkDVIkPi68A+wBTgDWAGcDXwqdwFzWwz4HfAUcBvgAOAG81skrvPB0YDs4ATgH8DHwT+aGZvuvvvKt8VERERGcjKOX1nKVN2JikIIfWolKyHFSoyKTJg1SIgcRRwhrs/B2BmpwHPmNkEd38hZ9lpwMPufk30/2vN7Jjo+e+5+4PAg4nl/2pmfwH2IAQyRERERCqmv9N3ljplZyxfkUoFIaSa+jrcIi34EFPgQWTgqGpAwszagE2Ah+Pn3P1ZM1sCbAfkBiS2Sy4beSR6Pm39w4Gdge+XqckiIiIiq8k3PKNYhWbLyBIHIjre6WLegg5ARSqleso93AIUfBAZ6KqdITEi+rk45/l2Qg2ItOXTlp2Uu2BUm+Jq4CXgqkINaWkZRFvb8EKLFdTSMrgs66lX6l/ja/Y+qn+Nrdn7J80ja+aMUoZndD4+h1euuYKhhxze79kyJo0bwc4TR6tIpVSEhluISLVUOyDREf0clfN8G7AkY/mCy5pZK3AtsCHwKXfvLNSQ7u6eoqpcF9LWNrws66lX6l/ja/Y+qn+NrZ76N3bsiMILyYCSb/rO5M9ixUGIrs7ussyWse1GafdyREoTBx+Wv2cvWl68lSE7nKjhFiJSNVUNSLh7u5m9CLwf+Cf0Fq4cCcxJectjwJ45z+0A3Bn/x8zWAq4H1gU+7u5Ly99yERERGWjyTd9ZSlZEslDlitYWhh5yuApVStUVynoY8p85DF6+iOGd3RpuISJVU4uilpcCp5vZLMIsG+cAt0azZuS6CviamR1ICDp8DtgROBTAzNYF/gB0EjIj3q5880VERKRZlWP6znyFKsdefElmVpAKVUo59LXI5PL37MW6L97Ksh1OVOBBRKqmFgGJswnTdc4GhgG3A4cAmNnBwCXuvi70FrzcDziXMD3oc8C+ieDF/oQZNd4GXjezeBvXuPsx1eiMiIgMLGb2/4CvEAosD3f3WhxLpcz6O31nVhCiUKHKrKEZKlQpxSh3kcm1PzidrjoZRiciA0PVT6LcvRv4avQv97VrCbUgks/9BfhLxrquBK6sQDNFRESyLAIuAtYmZP1JE+jr9J2FZssoVKgyOVtGMitCJElFJkWkWemujoiISAnc/VYAM9ujxk2Rfurr9J1p2RDFzJaRlDZbhoZmCKxeZHLYs38uariFikyKSKNSQEJEREQGjL5O31nMkIy02TKS5ry6hJk3zeOwyeM1W4YUVWSyZXkYwqMikyLSrBSQEBERqYKWlkG0tQ3v5zoG93sd9a7Sfbzu0SuZvfBBhrS2cOwOx3Lp4y0ctc3RBbf5yjVX0PnQA6xobWH944/jzYtbWO+YL7P29tvDh3bOfN+jLy7i/FnPcPyemzNz9kvc98wbAMyYNpndth5Xzq7VhWb/jvalf4NefojB9/2QlbueBtD7ePCj5zH4pXtobW0Jz0ePV374G6y8r4Ue25uV/kdadj2NdTfeCd67K+vGK00+LqNm//xgYPRRpJEoICEiIlIF3d09mbMrFKutbXi/11HvKtHHZFbEQROn0dXZzUETpzGhdQvO2uHHAKnbTGZFDD3kcLo6uxl6yOEsn7gl65z9U5YDy1Pel1aosrNrZW9WxGGTxzft59js39FC/csabjHkpXvo7OwOy0SPO3Y6JUyxucOJAL2Pu9bdBj51VVjhZp8PP6u0T5v984P66ePYsSNq3QSRuqCAhIiIiDSdcg/NGHXuz/LWhciaLSN3aMaMaZPr4mJISjdkwcO03HIeQ+IAgoZbiIj0mwISIiIiJTCzFqAVGBr9f63opeXu3lOzhklmECJZsDJLodkyshSaLUOFKhtTVqbD4JfuYXiU6ZCvyGTyfQo8iIhkU0BCRESkNF8Erkj8/+3o56bA/Kq3RnplBSEmjX5falaEZsuQUgtLtra29A6xiJ9LPk4GH5ZPOriKPRERaUwKSIiIiJTA3WcCM2vcDEmIMyN2Hbc7UHoQoi+zZcTDMzRbRmMoFHiIFcp06D7werqiITfKehAR6T8FJERERKTh5KsRkU++IERfakScv//7lA1RZ9KCD4NXLKH1tUd7l8kNPCjTQUSkNhSQEBERkYZTSo2IZFZEOYIQyawIqZ1Ssh5WrL89y8fvrsKSIiJ1RgEJERERaQjJrIhCNSIqPVuGsiKqK6vIZL7hFmnBh5gCDyIi9UEBCREREalbpUzfWUx9iCyaLaM+lFpkMvkzfqysBxGRxqGAhIiIiNSVUqfvLDRlp2bLqD/lKjKpwIOISGNTQEJERETqSjHTd5Zjyk7NllEd5RpuoSKTIiLNRwEJERERqQvzFs3lukevLGr6znJM2anZMspryIKHabnlPIbscCKg4RYiIlKYAhIiIiJSM2nDM7o6u1ODEJotoz7kG24x+KV7GN7ZDWi4hYiIFKaAhIiIiNRM7vCMIa0tHDRxWu/rmi2jttKCD4NXLKH1tUd7l0kGHlpbW1gWZUjEz2m4hYiIZFFAQkRERKoq3/SdF256Ea//9QEWn3lCybNlKAjRd6UUmVyx/vYsH7976nCL7gOvp6t9GaCsBxERKUwBCREREam4Yqbv7Hx8Dq9ccwUrFrWXNFuGpuwsLC3g0N8ikzEFHkREpK8UkBAREZGKy5o5o6+zZaRlQ2jKztIyHVRkUkREak0BCREREamIfEMz4qyIxWeesNqQjBWtLQw95PDU2TKKHZIxEJQSeID0gIOKTIqISK0pICEiIiJlFQcilnZ28OTiJ4A1h2ZkzZYx9uJLaI9qEIDqQkDphSWTP+PHWQEHFZkUEZFaUkBCREREyioenrHVqK2ZPGZK5tCMrNkyBmoQolyFJZXpICIijUIBCREREem3tOEZX+rejQ1+PYvhh/cUNVvGnFeXMPOmeby5dEXTF6eMgw8qLCkiIgOZAhIiIiLSJ1kzZ5w5/HC++etuVi69mc4Cs2U0e3HK3KyHllvOY8gOJ/YGH1RYUkREBjIFJERERKRoWUGIL3Xvxv6/m0fbl3YrOFtGviEZrUMGc9jk8Q1XnLLY4RaDX7qH4Z3dvcupsKSIiAxkCkiIiIhI0bKCEBtcP4v1vJ3W62etkQ0BxdeFmDFt8mpFLetRf4pMtra2sGyHE1cLPqiwpIiIDFQKSIiIiEheWdN3bnDmZZlBiFHn/iwEIW6Y27DFKStRZLL7wOvpqvOAi4iISLUoICEiIiKp0qbvjOtDDD+8BwrUheh4p6thilOqyKSIiEj1KSAhIiIiqeLhGR9rn8C0u9ZdrT5E7pSdjVKcslDWg4pMioiIVI8CEiIiItIrOTwjrhGxcc9Khv5rzaEZxdaFqJasYEPycaGsBxWZFBERqR4FJERERAa4ZBDijtv/j4/+cS537L2Ewx5ch/W8nZat3s3gaLaMJ9ebyGW7TGf6erWtC1FKYcnk42KyHlRkUkREpDoUkBARERmAsoIQn/vrSoY9D1v/dSXDjwrZEK9++iAuemOdmgQhylFYMvlYWQ8iIiL1QwEJERGRASgrCLH+USez7IrLGZXIhuh4pYt5CyofhBiy4GFabjmPYZt8ouyFJRV4EBERqT8KSPRDfOI0JJpPXERkICpm3L7+RtaHZFZEoSBEMhui3MUp82U9DH7pHtZ55VEVlhQRERkAFJDoh/jEaXhnt06ERPoheXGiC9fGk3UHO/lYfyNrJ2toxrEFghDQ/+KUpQy3gBBoaG1t4a1EhoQCDyIiIs1LAYl+iE+clu1wYq2bMmDowrWxFbo4GbR8MT3DRunzbTBZd7CTj/W7W31xIKLtmQV89C/PcsfeS9hrViejn4eJszp58kPlLU5ZSpHJfFkP3Qdez/L2ZSosKSIiMgAoINEP8YlTV/uyWjel6RRzV013yRpPobHgg1csYag+34aT7w52/HjkzQfrd7fK4myI9TrXZsLLIQjxu633Zbv//I7Htt6Xl0sIQvR1Os2sIpPKehARERFQQELqVClFzKRxFBoLnnvRI/Ul66K0mIyH+D3L37MXI28+uPf/cR2e5PqyHsfb6U87mt2/7r+R9l/8nLYvfbk3G+L59dv4x/qb8NjW+/Kp/T/CZRtt3huAgDWDEJWYTjOmwIOIiIgkKSAhdamYC9f4okYXIY2j0F3R5OulpvjHyy9/z169Y88h/WK10LqLuRscP87aXta2C7Uhd9v5LtiL2XY52hy3KeuitJiLzPizTWZKAL11eJLrS3ucHM6TFbAcqBe7yRoRSy67iC2eXszTl13EvTscy3b/+R3377IPb0601MDDla0/YdngU2CBptMUERGR6lNAQmoq353OfCe2pQ7dqNT49XKst9zrAFIvaNPuLue7EK7EBW8p/Ut+xvFFUr7+xcsP+c+c3ur8QOo60tadbHMxRRrjx1nby9p23P7kxX1W2yD/BXsx2y5Hm+M2FbooLUZusDG3Dk/WupPDeQrVrKg0M2sBzgYOA9YCbgOOdveF1WpDMghx85/P5aO3PsHNn1jEih33oWP5Ddy/4z7su2/Ihjh1y0Vs+/zZRQUeQNNpioiISPUoINFE6uXiuJTt9PWOa/KEudSxzckL0JYXby06XTx+nHXhmu+iOd9FeqF1FBMUyHcBPfile1hn6Zupd5fzXQhX4oK3lAuX5GdcqH/DO7tXGxKQ3F9p60hbd7LNhS54k4+ztpe17bj9yYv7rLZB/gv2YrZdjjYn29Tf9PvcYGOyDk++OhS5f5tqfEH8dWAfYArwBjADuBr4VLUakAxC7HbLO9gLMPyWd3j36dvSOvR2ttx5WzYf/DRXtv6EwV56YUkFHERERKQaFJAok3LcXS40PrrQ46w7roXel+8Cu9jx3aX2tb93XJMnzLkp4IXu+CUvQAcvX1RUunjycdaFa6G76vnu3OdbR7F3s5M/k49bW1sY9Nai1LvL+S6EoXIXvMVIfsaF+rcsygCJl09W509bR9q6k20upkhj8nHa9rK2nWx//Duf1TYofMFeaNvlaHNum2qhHtqQcBRwhrs/B2BmpwHPmNkEd3+hUhu965ZfMuiXl9Nz4JF8/M+LmPAirPfnRYz9/P50X3cp4w/Yi22ev4RhKx5m+fOXwPMqLCkiIiL1TQGJMinH3eX4ArGY4mFpj7PuuBZ6X74L7GLHd/elr/HP/t5xLeZudtYF6Lov3lpUunjWxXaxF8257yvUtlKDAvkuLLoPvJ6lT92Xenc530VnpS54+6JQ/4qZ6SbrgjYrkFFOpdTOqBf12KZ6YGZtwCbAw/Fz7v6smS0BtgMqFpAYct3FbD3/bZ647mK2n9LGihXvsP0UGD3oVobtNp/lg24tGPwCBR5ERESkfgzq6emp6gZLHXtrZp8EzgU2A54FTnH32xKvXw5MBQyY6e5HFtOOzs7unvYyTNfZ1jac9vZlZcmQSGYNxOn1xbwv+bgvWRa5F9ixIQseZtSj57G4AhkS9VKIMv78mlmz91H9a2z11L+xY0c8DHwg3zJmNh54EdjM3Z9PPP8C8N/ufk3We1euXNnT3d33Y+7DZ+3JovtfY/TUDfjAtHMYfN8PWbnraQC9j3s23qnP668XLS2D6e5eWetmVIz619jUv8ZXL31sbW0peMwRGQhqEZD4b2Aa8ElWjb0d7u5rjL01s82Axwnpsb8BDgAuBSa5+/xomRMAB44G3qxVQKIcqlW/oRT1dLFQCc3eP2j+Pqp/ja2e+ldkQKINWATs4O7/TDy/GPiiu9+c9d7+HneSQeJ6OUZUQj19JypB/Wts6l/jq5c+FnPMERkIBtdgm0cB57j7c+6+GDgN+KSZTUhZdhrwsLtf4+4r3P1a4JHoeQDc/WfufiuwpBqNr6Q4RbqZTzRFRBqZu7cTMiTeHz8XBc9HAnMque2ucTuGIUo6RoiIiEiTqGpAImvsLSGYsF3KW7ZLLht5JGNZERGRargUON3MNjWzkcA5wK1x5p6IiIiIFKfaRS1HRD8X5zzfTri7lLZ82rKT+tuQlpZBtLUN7+9qaGkZXJb11Cv1r/E1ex/Vv8bWoP07GxgNzAaGAbcDh9S0RSIiIiINqNoBiY7o56ic59tIH3LRUcKyJenu7inL+LF6GYdWKepf42v2Pqp/ja2e+jd27IjCCwHu3g18NfonIiIiIn1U1SEbfRh7+1hy2cgO0fMiIiIiIiIi0qCqnSEBq8beziLMspFv7O1VwNfM7EDgeuBzwI7AofECZjaUEFhpAXrMbC1gpbuvqGgvRERERERERKTPajHLxtnAHwhjb18hBBIOATCzg81sabxgVPByP+BbhGEa3wL2zQle3Aa8Ha3jsOjxbZXuhIiIiIiIiIj03aCenp5at6FWXgdeqHUjRESkbkwAxlZw/TruiIhIrNLHHJGGMJADEiIiIiIiIiJSI7UYsiEiIiIiIiIiA5wCEiIiIiIiIiJSdQpIiIiIiIiIiEjVKSAhIiIiIiIiIlWngISIiIiIiIiIVJ0CEiIiIiIiIiJSdUNq3YBGZWYtwNnAYcBawG3A0e6+sJbt6gszOwfYGxgPLAX+BJzu7m8mljkU+A6wITAXONbdH65Bc/vFzAYDfwWmAuPd/eXo+Ybvn5l9FDgT2AZ4B/iNux8bvdbQ/TOzccB5wIcJf7ceBU5298ei1xuqf2b2/4CvANsBw919SM7rnwTOBTYDngVOcffbEq9vDlxM+B4vAn7q7udWqfkF5eufme0FfBXYFmgBHge+6e73JZap6/7Vgo459f07naWZjzmg4w4N0r9mP+aAjjsijUwZEn33dWAfYAqwcfTc1bVrTr90A4cA7yL8Id8YmBm/aGYfAn4OfBkYDdwA/NnMRla9pf13MrAs+UQz9M/M9gCuB35M+Bw3Bi6PXmv4/gEXAesBWwIbAP8A/mhmgxq0f4sIfTop9wUz2wz4HfADYFT080Yzmxi93gL8AXgSGAt8BjjdzL5QjYYXKbN/hM/ofGBzQvuvA24xs/HQMP2rBR1z6vt3OktTHnNAxx0aq3/NfswBHXdEGpYCEn13FHCOuz/n7ouB04BPmtmEGrerZO7+TXd/1N073f11wh2BPRKLTAd+5+63ufty4EfAcmDf6re278xsS+BYQpQ8qRn69wPgYne/3t2Xu/s77v5I9Foz9G9z4LfuvsjdVwC/IJz8vosG7J+73+ruvwSeS3l5GvCwu1/j7ivc/Vrgkeh5gN2ACcA33H1Z9DlfAhxTjbYXI1//3P1ad7/R3dvdvcvdf064Sz45WqTu+1cjOubU8e90miY/5oCOOw3Tv2Y/5oCOOyKNTAGJPjCzNmAToDc1z92fBZYQ7vY0uo8AjyX+vx2r97WHkLrYMH2N0mZnEE4M23Nebuj+mdk6wE7AEDN7xMwWmtndZvaBaJGG7l/kR8D+ZjbWzNYiXJz9NUpXb4b+Ja3Wn8gjrOrPdsC/3H1pxusNxczeB4whpDxDk/WvHHTMabzf6WY+5oCOOzRH/2ID6pgDOu6I1BsFJPpmRPRzcc7z7UC9pusVxcz2J0SET0w8PYLG7+uJwAJ3vzHltUbv32jC7/KBhPHlGxHGl/85upBp9P4B/I0w7vM/hLsa+xHuUEFz9C+pUH+apr9mtj4h1fnH7v509HTT9K+MdMxpvL428zEHdNxphv7FBswxB3TcEalHCkj0TUf0c1TO822EO1YNycwOAC4DPpNIu4TQ34bta1So6FTguIxFGrp/rPo+XuHuc6LU0h8ArcAuNHj/ojuNdwD/IvRjOHAWcJ+ZbUCD9y9Fof40RX/NbCNgFuEi5huJl5qif2WmY04D9XUAHHNAx52G7l+OAXHMAR13ROqVAhJ94O7twIvA++PnoqJAI4E5NWpWv5jZ4YTxcp9291k5Lz/G6n0dBGzP6im29exDhCJFj5vZQkIaHsAcMzuWBu9fNJ58PtCT81JP9K+h+0coKrYpcL67L4nGuF5O+Ps1lcbvX67V+hPZgVX9eQzYMkqZTnu97kXF0u4DbnH346J051jD96/cdMxpuN/ppj7mgI47NH7/kpr+mAM67ojUM0372XeXEirwzgLeAM4BbnX3+TVtVR+Y2QmEqas+4e6zUxa5DPiLmV1J+GN+AmHaubRU1Hr0G8KdjtjGwP3Ax4GnCCf0jdw/CJWlTzSzXxLu6JxCKLD1d0Lkv2H75+4LzexfwLFm9nVCvw4lpFjOARbSYP2LKnq3AkOj/68VvbQcuAr4mpkdSKhg/zlgR0KfAe4FXgD+N9ofBhzN6invNVWgf0b4fZzp7t9KeXvd969GdMyp49/pHAPhmAM67jRM/5r9mAM67og0MgUk+u5swhjK2cAw4HbCNGaN6DygC5hlZr1Puvu60c+/Rnd1LmPVfNt7uXtDpLK5+zIS066ZWfy9XxAVMGro/kV+TDhRuotwUvQo8KnoLlYz9O+zhAJjLxBOOJ4BDnD354DnGrB/XwSuSPz/7ejnpu7+rJntR5gTfgahYvi+8YWnu3eb2acJd5ffIIxz/ZG7/6pKbS9GZv+A04F3AyeZ2UmJZY6OKqE3Qv9qQcec+v6d7jVAjjmg404j9a/Zjzmg445IwxrU05ObbSciIiIiIiIiUlmqISEiIiIiIiIiVaeAhIiIiIiIiIhUnQISIiIiIiIiIlJ1CkiIiIiIiIiISNUpICEiIiIiIiIiVaeAhIiIiIiIiIhUnQISIiIiIiIiIlJ1CkiIiIiIiIiISNUpICEiImVnZjPN7MwKrXusmT1lZmtXYv15tjvfzD5axe09ZGaTqrU9ERERkWpTQEJERBrN14GZ7v527gtm9hsz+7iZDTOzBflWUu0AQx/8GDij1o0QERERqRQFJEREpGGY2TBgGnBNxiI7Av8AtgUer1a7KuRmYE8zG1frhoiIiIhUwpBaN0BERKrLzE4HTgBGAq8Cx7r7nWY2GDgNmA60AXcCx7j7m9H7vgicCawL/CRa7kh3v6OIbe4dvXci8ES03jnRa/OBC4BDgQnAX4Bp7v5OyqqmAO3u/nLKNkYDg9z9TTP7AvBInvZcDWwC/MHMuoEz3P2HZvYZ4AfAu4F/Al929ydT3r8V8Gfgm+7+y772z8zGADOBDwErgXnA7u6+Mnr9YeATwJVZfRERERFpVMqQEBEZQMzMgOOAye4+gnCxOz96+Xjgs8DuwEbAIuDC6H1bAz8Hvhi99i5g4yK3uQMwAzg6et8lwM1RtkPs88AngU0J2Q2HZazufYDnrP8jZtYOvARsHD0+D/iKmbWb2e65K3H3LwIvAp9293WjYMSWwC+Bk4CxhIDDH8xsaM723g/cChwfBSP6079TgZej7W0AfBPoSbzvSWC7jH0hIiIi0tCUISEiMrB0A8OArc3sdXefn3jtGOC4OPvAzL4LvBhlRnwO+KO73xu99j+EwEYxjgIucfcHo/9faWbfBHYG7ome+5m7vxqt+w/A9hnragM6kk+4+51Am5ldA/wWuAN4FNgurc5EHl8A/uTut0ft+DFwIrALcHe0zK7Al4BD3D1+rj/96wQ2BCa4+zPAfTlt6oheFxEREWk6CkiIiAwg7v6MmZ0EfBeYZGa3AqdEF8sTgBvNbGXiLd2EO/cbETIQ4vW8ZWZvFLnZCcA0Mzs+8dzQaJ2xZAHKZTmvJS0CRiSfMLOXCcNIRgB7A62E49u/zWyGu59SZDs3Al6I/+PuK83sJcLwjdgxwD2JYAT0r38/InwWt4XkFS5197MTy44A2otsv4iIiEhDUUBCRGSAcffrgOvMbCRheME5hKEYLwFHuPvfct9jZv8Gtkr8fzhheEIxXgLOcvez+tt2YA5wcvIJd9/YzHYGvufunzCznwLz3P3yAuvqyfn/q4QhIQCY2SBgPPBKYpljgNPN7KfuHrejz/1z9w7CsI1TzWwb4C4zmx1lfUDY51kFPEVEREQamgISIiIDSFRD4t3A34B3gLeBlujli4GzzGyau79gZmOBXdz9JuB64EEz+xDwEGE6ymLrEF1GyLy4I3rvcGAP4N7ogrwUDxGGZ7zb3ZOBgh1ZVcTy/RRXBPI1YLPE/38DfN3MPgLcSxiusRz4e2KZDkItiDvN7Gx3/3p/+hcVw3wKeBZYTMhIWRm9tlbUr2lF9EVERESk4aiopYjIwDIMOBtYSBhGsD7wjei18whTTd5mZh3AA4RZLXD3ecBXgOuAfxOGTqwx00Uad/8HYUaOC6L3PUN20cpC61pBmJXikJyXdgQeibIa3kuYraKQHwDfigpfftXdPVrv+YT982lC0csVOW1oBz4GfMrMvt/P/m1BqHmxFLgfuMjdZ0WvfRq4O649ISIiItJsBvX05GasioiIFBZNZ1nUtJ9l3u5YQvHHHUosWtlQzOxB4Evu/nit2yIiIiJSCRqyISIiDcXdXydkQTQ1d59S6zaIiIiIVJKGbIiIiIiIiIhI1WnIhoiIiIiIiIhUnTIkRERERERERKTqFJAQERERERERkapTQEJEREREREREqk4BCRERERERERGpOgUkRERERERERKTqFJAQERERERERkar7/5nDuPSXW8E6AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 864x576 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.set_style(\"darkgrid\") # darkgrid, whitegrid, dark, white and ticks\n",
"plt.rc(\"axes\", titlesize=15) # fontsize of the axes title\n",
"plt.rc(\"axes\", labelsize=14) # fontsize of the x and y labels\n",
"plt.rc(\"xtick\", labelsize=13) # fontsize of the tick labels\n",
"plt.rc(\"ytick\", labelsize=13) # fontsize of the tick labels\n",
"plt.rc(\"legend\", fontsize=15) # legend fontsize\n",
"plt.rc(\"font\", size=13) # controls default text sizes\n",
"\n",
"colors = sns.color_palette(\"deep\")\n",
"fig = plt.figure(constrained_layout=True, figsize=(12, 8))\n",
"subfigs = fig.subfigures(nrows=2, ncols=1)\n",
"\n",
"fig.supxlabel(\"seq len (# tokens)\")\n",
"fig.supylabel(\"latency (s)\")\n",
"fig.suptitle(f\"Small seq len and greedy search on {model_name} don't tell the whole (inference) story...\")\n",
"for row, (plot_name, timings) in enumerate(all_timings.items()):\n",
" subfigs[row].suptitle(f\"setup #{1+row}: {plot_name} (seq len / beam search)\")\n",
" axs = subfigs[row].subplots(nrows=1, ncols=2)\n",
" for col, accumulated in enumerate([False, True]):\n",
" plot_axis = axs[col]\n",
" for index, (k, v) in enumerate(timings.items()):\n",
" axis = range(len(v))\n",
" color = colors[index]\n",
" v = np.array(v)\n",
" # remove extreme values\n",
" p99 = np.percentile(v, 99)\n",
" v[v > p99] = p99\n",
" v = np.cumsum(v) if accumulated else v\n",
" plot_axis.scatter(axis, v, label=k, s=2)\n",
"\n",
" title = f\"latency for the full sequence\" if accumulated else f\"latency for each token\"\n",
" plot_axis.title.set_text(title)\n",
"\n",
"# legend deduplication\n",
"handles, labels = plt.gca().get_legend_handles_labels()\n",
"by_label = dict(zip(labels, handles))\n",
"fig.legend(by_label.values(), by_label.keys(), bbox_to_anchor=(1, 1), loc=\"upper left\", markerscale=5)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Profiling model at the kernel level\n",
"\n",
"Below we reload the decoder model with `ONNX Runtime` kernel profiling enabled.\n",
"It will help us to understand on which part of the computation graph the GPU spends its time. \n",
"\n",
"The number of events that `ONNX Runtime` can save is limited to [1 million](https://github.com/microsoft/onnxruntime/blob/a4b5fa334aa939fb159bdc571ed3d56ca8d31fc7/onnxruntime/core/common/profiler.cc#L10).\n",
"It is not an issue as we have seen that timings per token are mostly stable, so having only n first token information don't change anything.\n",
"\n",
"The main information it gives us is that 30% of the time is spent on matrix multiplication when caching is used. \n",
"The rest of the time is spent on mostly memory bound operations:\n",
"* element-wise operations which require little computation (`add`, `mul`, `div`, etc.)\n",
"* copy pasting tensors `GPU` <-> `GPU` with little transformation in between (`transpose`, `concat`, `cast`, etc.)\n",
"\n",
"It matches the information provided by both `nvidia-smi` and `Nvidia Nsight` (the GPU profiler from Nvidia): the GPU is under utilized. \n",
"That's why we think that a tool like `TensorRT` which will perform aggressive kernel fusion, reducing time spent on memory bounded operations, should be a good fit for autoregressive models.\n",
"\n",
"> there is a nice opportunity to increase the speedup by reducing the number of casting operations. We keep this work for the future."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2022-06-25T23:32:08.273218Z",
"iopub.status.busy": "2022-06-25T23:32:08.272993Z",
"iopub.status.idle": "2022-06-25T23:32:24.271872Z",
"shell.execute_reply": "2022-06-25T23:32:24.271352Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAExCAYAAAC5/jJ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/R0lEQVR4nO3debyd09n/8U9OCCI4Womhhhi/fuhTfWhVi6K02qipFB1Qs1bVUEPVPFRCS7WouaFmfcxqLFFDFdFKTZcaTiiJBIkknIY45/fHWrtu2xn2mfaQfN+v13ntve9h3de+d9jXvta67zWovb0dMzMzs3rTVOsAzMzMzDriJMXMzMzqkpMUMzMzq0tOUszMzKwuOUkxMzOzuuQkxczMzOrSfLUOwMwMQFIl90PYBBgL/DEifjqwETUOSd8GhkbE2FrH0hFJI4GXgG9GxC01DqdLksYBb0TE9rWOxZykmFn9WL/wfCHgHuAk4NbC8qeBbYE3qxhXI/g2sAQpgTObazhJMbO6EBEPl55LGpafvlBcnv29elFZT0haKCJaq3i8wcDgiHivWse06nKSYmYNRVILhe4eSWOBtYBjgdOAkcC9wPeBTwAXAJ8HngF2j4gJhbaagMOAPYHlgInAyRFxSTcx7AEcAqwIvAM8BfwwIp4qdG18F/g6sA3QCpwdEceXtbMWMAbYKC+6HfhxREzO6zfO72UT4Ee5vSnALyPinML7/1Z+XuoyOz4ijusk9vYc+wr5HDUBfwAOKX7ZS1oeOBX4KrAgcD9wQEREXl96n98DvgZsBTwGbNbVuSu0vwlwE/DbiDgyL9sTOAhYBZicz9mphX3Gkj7rk4CTgdWATfPnsRbwM+BXwMqkZHafiHiqsH+vPm+rHQ+cNbO5wfLACcBRwN7AF4Hzgavy3/akH2VXSRpU2O+3eZ/zgVHA9cDFkrbs7ECSNgLOJX2xfx3YHXgIWKxs09OAd/OxLwCOlfSjQjurAA+SEoDvAbsBawI3l8VI3v8JUlfXOOBsSZ/P604kJTJ/J3WZrQ9c2Fn82SHAsqRE6iTSOTu5ENsngAcAAfuSupMWBu6WtFBZW78EZgI7AL/o5ril9r9G6sY7tZCgHAr8DrgB2DI/P1HS/mW7jyQlT6eQzv9LefnypHN+MrAzMAK4uq+ft9WWKylmNjf4BLB+RLwAIOl/gEOBXSPi0rxsEOmLcXXgmZwk7Af8oPBL+m5JS5OqMp0N8Pw8MCEiTiksu6mD7Z6KiH3y8zskjQCOlPS7iGjLx5gMfL1UwZA0AXgW+AYfHYtzZUSclLcZB3wT2A54JCJekPQW0NRB11hnZgI75Dhuk7QA8HNJp0TEW6RqxsLA2vk1kh4EWkhJ2dmFth6OiB9RIUlbAdcAR0XEL/OyRfP5OKlQbbpL0lDgqHzOPsjLPwlsFhH/KLQJ6d/AlyLiX3lZEykJEfBsHz5vqyFXUsxsbtBSSlCy5/PjPR0s+1R+/ArQBlwvab7SH/BnYO083qEj/wA+K+kMSRtJGtLJdteXvb4OWIZUwYDULXI90FY49kukRGDdsn3vLD2JiPeBfxXa6Y0bc4JSjG0hUpdJKba7gBmF2GYC4zuI7VYq9y3gWlLX0i8Ly9cnJUXXln0W9wBL8tH3+moxQSloKSUo2dP5sbRvbz9vqyEnKWY2N5he9vq9DpaXli2YH5cABgNvA+8X/saSqsxLd3SgiLgb+AFpHMk44A1JZ0tauGzTKZ28LrW7BHB42bHfB1YijZfo7v0tSO9VEtuOHcS2SQexvd6D424FvMXHE7gl8uNTZce7Ny8vHrOz400ve90vn7fVlrt7zGxe9RYwB/gS6Rd2ufIv8v/K3QWXSBpO6nY5g1RpOKKw2Yiy3UqvJxWOfz0djx95o7vg+6iS2G4ijXcpN7PsdSX3tyn5MXAwcKekL0dE6VLyt/LjlnSchEQvj1fU68/basdJipnNq+4h/bJeLCLu6k0DETEVOE/SdsAaZau3JQ3+LNmOlAT8O7/+M2mg7PiI6O0Xb0lPKytbS/pZoctnO9IVSE8WYvs2aVxNf15SPIN0JdB9pHE6m0bEDOCv+fjLRERPuo96os+ft1WfkxQzmydFREg6l3TFz6mky2cXJCUOq0XEnh3tJ+l40iDNcaSKx2eBL/PRKgrAmpLOA/6P1DW0B/CTQmJwHPAIcKuki3NbnwI2B8ZGxLgevJ1nSYnHNqQk6LWIeK2L7Rchjf+4IL/fo0mX+5YqGqeTrji6R9JvgVdJY0O+DDwQEVf2ILaPiIg3JW1OuqT5FklbRMR0SccBZ0paAfgLaTjCasAmEbFtb49XOG6vPm+rLY9JMbN52Y9IXRq7AH8ijU8YRfqS7MyjpKrJucAdpCtGjgPOLNvuMGBRUpKyTz7OWaWVEfEc8AXSZcrnA7cBxwOz+XCQb6XOIQ2uvTjHt3c32/+KVNW5EjgGuAg4shDbGzm2Z0ldWXeSLvtdDJhQ3lhPRcQk0kDWkcB1kobk+6HsTbqs+MYc23dJyUx/6c3nbTU0qL29r1VGMzMrqfd5avLN3H4cEWd1u7FZjbmSYmZmZnXJSYqZmZnVJXf3mJmZWV1yJcXMzMzqkpMUMzMzq0u+T4qZzTPyJIN/B84oTTIn6TDSRH3jqhjHENJsvV8gzYWzYESUz3xc2nZr0kzFqwIvAsdHxNXdtD8WWCsiyufZqSuSNibd+v7TEfFkN5sj6VOku8/+T0S8OMDhWR1wJcXM5iXfJt2I7YrCssOAjascx1BgT9I9Uh7qbCNJG5Dus3Iv6f4htwJXSvpqNYKsNxHxKnA16d4uNg9wkmJm85IDgD/kmYRrJiKmA5+IiK/x8cn2io4G/hIRB0TEvRFxKHA7NfqSlrRQLY5b5vfAzpI+WetAbOC5u8fM5gmSVgG+COxfWNYCfBI4VtKxefEmETFO0lBgNKn60gz8E/h5RNxZ2H8c6Xb2d5Lu2LokaY6YvfOv/k51N1+PpAVIsw4fULbqKuD3khaLiLe7aqPQ1pC837rAphHxvKTlSXeR/Srp9vD3AwdEROR9RpJuSvc90nw7WwGPSdozL9+RdNfYnUiTDl5E6opqKxx3LWAMaVoASAnWjyNichex7gEcAqwIvEOaGfmHEfFU3uRB0mSBOwFnV/L+rXG5kmJm84qvkL70nigs2xZ4m/QFu37+ezyvuwD4AWnsyLbAK6R5djYoa3d9Ppzddw/gf4Ab+iHelYH5SbemL3qGD+e16ZakBUnVms8AG+YE5RPAA4CAfUmJ2MLA3R1US35JSkJ2AH5RWH4qMAvYHriMVN3ZvnDcVUgJxYKkRGc30jw5N+exQR3FuhFpuoE/kLq3did1hy1W2iYndw8Dm1Xy/q2xuZJiZvOKdYBnir/0I+LvkuYA/46Ih0vLJf0/YGfgB4UBtneQ5q05mlRZKBkBrB8RL+ftJgIP5Inzbu9DvIvnx+lly6eVre9UrgbdBCwLbFSo7hxESkrWLk0qKOlBoIWUGBQrFA9HxI8KbY7MT/8SEYfk53dJ2oI0m/I1edmxwGTg6xHxXt53Ainp+gZpfE25zwMTIuKUwrKbOtjuCWCvLt+8zRVcSTGzecVSpK6ZSnwOGARcW1qQk5trgfJKyuOlBCVv9yAwhfSFW0sLk7pXRgBfLut+2gy4C5ghaT5J85GqJeNJXUJFHSUTkLq4ip4mJUPFY1wPtBWO8RIpEersqqN/AJ+VdIakjXI3VUfeAEZ0VpGxuYeTFDObVyxImmG4EksDsyLi3bLlrwND83iRkikd7D8lt9EXpYrJYmXLFy9b35llSGNwro+I18vWLUEaU/J+2d8mwHJl25bvWzK97PV7pHNcPMbhHRxjpQ6OAUBE3E3qYtsIGAe8IelsSQuXbTqb1BPg3oC5nD9gM5tXvEWqplRiEjBM0tCyRGVJ4N2IKCY7IzrYf0Ruoy9eIH2prw7cV1i+OtAGPNfN/v8CzgTGSpocEb8rrHuL1I1yYgf7zSx73du5U94iVVIu7GBdpxWt3L12iaThpO6jM3JMRxQ2ayYlkTW9SssGnpMUM5tXBGmQa7nyCgDAo6Qv5+2BS+G/N4LbnjTgtOh/JS1fGJPyJVKS8kifgo2YLele0oDV8wqrdgT+WsmVPRHxB0nDgLMkzYyIy/KqP5MGyz4VEa19ibMLfyYNlB3f3ZVMHYmIqcB5krYD1ihbPZLukzSbCzhJMbN5xYPAMZKG5y/AkmeBUZJuJ12tEhHxjKQrSV/ui5CqGnuRqhj7lbU7lXTVz7GkZGcMaZxKl4NmJX2dPHg1vy5dGfNoREzMz08Exkn6NemKoW/kvy0qfdMR8bucqPxe0qyIuAE4nXTFzT2Sfgu8SqoSfRl4ICKurLT9LhxHStRulXQxqXryKWBzYGxHd/iVdDzpZnvj8vafzTEdUbbpuqTP0+ZyHpNiZvOKcaQuiPIv+ENJlybfSqqgrJOX7wVcQrq09kZgBWDLiCivpDxEuhrm16RLmZ8Etqkgnt+RBuLukV9fm/82KW2Qj7U9aRDqHaR7lXyneK+WSkTEacApwFWSNo+IN0i35H+W1J1yJ+mS4sVIVzD1WUQ8l4/xLnA+cBtwPGk8yfOd7PYoqWpyLun97kdKds4sbZC7gdYh3YnX5nKD2tt7291oZtZYJJ0JrBIRo/qpvXHAGxGxfXfbWv+QtA/wU2C13nQjWWNxJcXM5iWnAZtIquhGaFZf8rignwAnO0GZNzhJMbN5RkT8m3Szsr5eHmy1sRRwOemOtDYPcHePmZmZ1SVXUszMzKwu+RJks15qb29vnzOnrfsN69DgwYP44IPGrKI69tpp5Pgde+0U459//sFvAMMr3ddJilkvtbfD9Onld01vDM3NQx17DTRy7NDY8Tv22inGP3z4IhO72fwj3N1jZmZmdclJipmZmdUlJylmZmZWl5ykmJmZWV1ykmJmZmZ1yUmKmZmZ1SUnKWZmZlaXnKSYmZlZXfLN3Mz6YPjwRfqtrdbZc5g1o7Xf2jMza3ROUsx6qalpECOPuLXf2msZPYpZ/daamVnjc3ePmZmZ1SUnKWZmZlaXnKTYXEHSWEkX1joOMzPrPx6TYlUnaR3gSGBDYCjwBjAeODsi7qlg/3HA3RFx0kDGaWZmteVKilWVpM2BB4EXgHWBRYBPA1cA29YwtI+QNH+tYzAzm9e5kmLV9jvgsog4rLBsJvB/+Q9JOwE/A1YE3gFuAg6OiHcknUWqwKwv6Qjg1YhQbmcBSRcAO+T9ToiI80oHkbQhcAqwBjANOAc4PSLaJW0M3A38ADgeGE5KoMzMrEacpFjVSFoNWBnYp5tN3wa+AzwDrERKUo4CfhYR+0tai467e7YHdsztbwNcLen2iJgoaQ3gT8D3gFuAVYHbgKnApXn/wcA3gM8C7/fhrfZac/PQqhxn8OCmqh2rvzn22mnk+B177fQlficpVk3D8+OrpQWStiIlCYOABSJiwYi4rbDP85LOAXapoP17IuKm/Pw6SdOBtYGJwA+BayPixrz+2VyV2YUPkxSAwyPi7Z69rf4zffq7VTlOc/PQqh2rvzn22mnk+B177RTj7+kNMJ2kWDW9kR+XBZ4FyElFs6QNgPvhv+NWjgFWBxYgVTimVND+pLLX7/Bhl82KwKaStiusbwJeKbxuK3ttZmY15CTFquk54EVgJ9L4j4+RNAS4ATgMuDgiWiXtD/y0sFlbL449Mbf3oy62aY+I9l60bWZmA8BJilVNHqD6I+BGSW8CZwH/BhYC1subDSFVT6blBGUNYP+ypiYDq/Tw8OcA90m6HbgdaAdWA4ZHxH29ekNmZjagfAmyVVVE3A5sQEoQHgdmAU8BXwI2jYhZwH7AqZJmAWeTLk8uOgNYV9J0SU9VeNwngS2BA0ndQlOAsXw4TsbMzOrMoPZ2V7fNeqm9vycYnDp1Zr+115VGHojn2GunkeN37LVTNnB2POkeWRVxJcXMzMzqksekmPVSW1s7LaNH9Vt7rbPn9FtbZmZzAycpZn1Qre4ZM7N5kbt7zMzMrC45STEzM7O65O4esz7o6S2eK9U6ew6zZrQOSNtmZo3CSYpZLzU1DaI/L0Euahk9ilkD0rKZWeNwd4+ZmZnVJScpZmZmVpfc3WN1Q9IRwEHAwsAmEfFojUMyM7MacpJi/UbSSsAYYENgGDANeAzYMSLe62bfZYFfAGtFxNN5WTuwYUQ8MKCBm5lZXXJ3j/WnP5Em7xOwCLA+cAcwqIJ9RwJtpQTFzMzMlRTrF5I+SUpOtouIt/PifwPnFrbZjzQL8VLAM8ChEXG/pB1JMxIPzjMfvw7/vbjlTkltwFURsaekFuBC4CvA54CXgO8CawInkmY1vhbYNyLm5OP+HtgMaAZeAU6KiCvyuj3yfmtHxBRJI4B/AEdHxEX9eIrMzKyHPAuy9RtJTwIzSInJY8AzEdGe1+0M/BYYBYwHdgV+A6wRERMlbQzcHRHzFdr7WHdPTlLeB7YCngd+T6rY/Jk0nuWT+dgHRcTleZ89gBuA6cAOwKWkpKTUrXQJsAzwDeA24NWI2LWCt9yvsyAXtYwexfvvfzAgbQMMHtzEBx+0DVj7A8mx104jx+/Ya6cY//zzD+7RLMiupFh/2hg4mFQtWQuYLum3wEnAD4DzIuJveduLJO0JfAc4pYfHOT8ingGQdAWpkvKFiHgHeEfSONJ/BJcDlFVErpL00xxrqWtpP+BR4BFgflICVHMDOTV7I0/97thrp5Hjd+y1U4y/pzfAdJJi/SYi3gCOBI6UNBT4NnAB8CqwHHBN2S4v5OU9Nanw/F3gg4iYWrZsEQBJTcBxwI6kbqZ20tVDwwtxvyvpQuB0YPeIaNz/G5iZzUU8cNYGRES8GxFjgQnA2qSxICPLNlspL+9Mf/RF7gzsCXwLWDwimoEnKAzmlbQ6KZE5BzhF0lL9cFwzM+sjV1KsX0haHDiM1MUSpARja1K3z2jgYeBMSTcBjwPfJyUvO3fR7GRgVaAvlyAvCswBpgJNknYDPgPckuMeShpo++uIOFbSAsCVkjaLiIEbFGJmZt1yJcX6y3vACOA64C1SUnAUcEBEXJuvpjkeuAx4kzQO5BsRMbGLNn8OnCBpmqTzehnXJcDfSINsXwXWAO4vrD8bmJJjA/gxafDtcb08npmZ9RNf3WPWewN6dc/UqTMHpG1o7IF4jr12Gjl+x147ZQNne3R1jyspZmZmVpecpJiZmVld8sBZs15qa2unZfSoAWm7dfacAWnXzKyROEkx64OBHDdiZjavc3ePmZmZ1SUnKWZmZlaX3N1j1gc9nYeir1pnz2HWjNaqHtPMrFacpJj1UlPTIAbqPimdaRk9illVPaKZWe24u8fMzMzqkpMUMzMzq0vu7rGGI2ld0rxAXwIWIE1E+CdgTERM6kO77cCGEdGXCQ3NzKyfuJJiDUXS5qRZkQNYOyIWBb5MmrTwy7WMzczM+pcrKdZozgGuiIjDSwty9eREAEk7AT8DVgTeAW4CDo6Id/L6A4CDgCWAGcAlEXGkpCdyc3dKagOuiog9q/SezMysA66kWMOQtBqwCnBFF5u9DXwHaAY2zH9HFfYfDWwZEYsAa5KSGCLiM3n/r0bEMCcoZma150qKNZLh+fHVzjaIiNsKL5+XdA6wS349BxgErClpYkRMBx4eiEAHUnPz0D63MXhwU7+0UwuOvXYaOX7HXjt9id9JijWSqfnxU8AzHW2Qx6wcA6xOGlQ7GJgCEBEvSvousB9woaQJwAkRcedAB96fpk9/t89tNDcP7Zd2asGx104jx+/Ya6cYf09vgOnuHmsYEfEc8Dywc0frJQ0BbgCuApbPg2oPJ1VPSm1cFxGbk8akXAPcKKmU4rcPXPRmZtZTrqRYo/khcLOk14GzIuI1SUsCuwOvkKon0yKiVdIawP6lHSWJNKD2L0ArafxKO9CWN5kMrEq6esjMzGrMlRRrKBFxF7ABsAbwT0kzSUnFCOBuUlfOqZJmAWfz0UG2Q0hdQZOA6cABwLci4j95/c+BEyRNk3ReFd6OmZl1wZUUazgR8RiwTSerL8h/RSfk/f4JfLGLdn8P/L4fQjQzs37gSoqZmZnVJScpZmZmVpfc3WPWS21t7bSMHlXVY7bOnlPV45mZ1ZKTFLM+mDp1Zq1DMDOba7m7x8zMzOqSkxQzMzOrS+7uMeuDnt7iub+1zp7DrBmtNY3BzGygOEkx66WmpkGMPOLWmsbQMnoUs2oagZnZwHF3j5mZmdWlPicpkr4r6Yn+CKaLY4yVdGHh9VOSdiy83kLS85JmSjpY0pGSbu7jMedI2rgvbVgiaZykowqvZ0laf4CONeD/Hs3MrDoq6u6RtBIwBtgQGAZMAx4DdoyIy4HLByzCDkTEmmWLfgOcHhHnDMTxJO0GHBURqwxE+z0laSTwEvAcsGZEzMnLNwDuj4hBXexecxExrD/akTQWmBMRexbarvq/RzMzGxiVVlL+RJqUTcAiwPrAHUC9fBmuBEyodRDVIGn+wstPAvsOUNtmZmY11W0lRdInScnJdhHxdl78b+DcvH43ClUGSeOAx4EVgc2AKcDepITm18DywJ+BXSJiZt6nHTgI2A1YmVSl2Ssinu8kphbgKOAeUjVhMHCnpDbgf4HvABtExGZ5+6GkSea+BSwGPALsX2pf0iLAWcA3gZmkmXIrImlZ4EJgHdIsuxOAAyNivKTFgdeAL0bE3wv7/AW4KyJOlDQfcFh+7yOAp4Cf5En0StWC+YH3ga2Aq0lVLfJ7OlbSpRExo4PY5gOOzG0vTvpcfhIRT3bWtqTXSRWzx4DdSYnsycD/kSbf+1w+59+LiGdyOzsBPyN95u8ANwEHR8Q7nZyzdmDDiHhA0njSv6+SBYBbI2IbSV8BfgGsBswh/bs5ICKmSDoM+G7h+JA+2+/z0X+PQ4FTgO2AhUgzJh8QES/n9eOA8cBI4Kukf68HR8SNHcVuZmbV020lJSLeJH1xXihpF0lrSOqugvJ9YDTQTPpS/QMpUdmI9GUg4ICyffYGtufDL+qbJA3uJrbXCl0HX42IYRHxXAebXgCsDnwBWAr4G3BLoXLwa2BVYA3gf4CtSYlPJZqAc4AVctuPA9dJmj8ipgHXAv/tjpC0GqkSdXFedHw+3hakysjFwO05wSnZAbgNGA4cUlh+HRCkRKQjhwK7AN/Isd0P3CVp0W7a3gj4V97ne8BpwEXAj4BPAM+QuthK3iYlhs2kBGdDUhLZrYhYJ39uw4D1gBnApXn1bGD/HNungWWAM/N+p5K6dS4p7R8RH3RwiDNIn/sXSJ/RG8DNZf+2dgV+RUpyzgIuycmNmZnVUKWXIG8MHAwcCKwFTJf0W+CkTra/JiL+BiDpMtKv7NMi4q287BZg3bJ9flWobBxGGveyHvBQpW+mI5KWIH2BrhARr+dlx+f3sp6kh0i/yEdFxOS8/nBg20raz7/IXy4c7yhSArYq8DRwPulL8ZCI+A+wB3B7RLyak70D8rFfzE1cJOlAYBRwWV72QERcnZ+/KxULD/wUuEdSR+NxfgCMiYhnc2wnkBKmUcCVXbT9XESUBirfJulN4I5C5eQKCuM+IuK2wjGfz7Hs0ulJ64CkZUjJ0gkRcV1u94HCJpMlncqHyV0lbTaREpBvRsSredmBwFvA54G/5k2vjoiH8vrzgdNJn19DDMBtbu55PjV4cFOv9qsHjr12Gjl+x147fYm/oiQlIt4g/Vo/Mv/C/DapOvEq0NbBLpMKz9/tZFn5XbBaCsd7V9JUYNlK4uvGivlxQtmX+/zAcqRf6QsUj08alFqRnASdTkrkmvnwfAyH9EUr6TVge0lXkb40987bLEEaiHxz7gIpxlZ878XYPiIiHs5XMp0MnFe2ernie4mIttxVtlw3bU8qe/0uXXx+kjYndZGtTjqXg0ndJhXJ3W1/Aq6NiDMLy9chdfd8BhhK6jLsyaDb0mdbPAezJE0hnYNSkjKpsP6d/O+ktndp64Hp09/tfqMyzc1De7VfPXDstdPI8Tv22inG39MbYPb4Zm4R8S4wVtKPgbVJ3Rv9YWTpSU6EhpPGvvTVxPy4akRMLV+Zy/7v5eO/UB5LBU4BlgbWi4hJ+Qt3Bh8dVHweqYIyC/gAKN0B7A3SGI7NIuLRLo7RUSJYdASpalPexit89Lw25dev9KDtLkkaAtxAGldzcUS0StqfVOGpZP/5SeNdnutgn6uAPwI7RMQMSVsCxUvLu4t9KqnLaCRQqtINI3UpvtL5bmZmVg8qGTi7OOkL6HLS+Id20hiKtUjjThbup1gOyoMYX83tvkgaO9IneZDlFcA5kg7M3SzNwCakwauz8vrjJT0JtObjlxskacGyZe8Di5IqC9PyF+CYj+2ZxuScAhwL/L40diIi2iWdCfxS0p4R8a/cxpeAf0bEaxW+x5dyF8vRZavGAoflgbotwOGkz7w/b5M6hFStmJYTlDVI40gqdQFpQOs3I6K9bN2ipPEuMyUtT0rGiiYDX5DUFBEfS1hy5ehS4ERJTwPTSWNPniUNnjYzszpWySXI75F+eV5H6sufShoUeUBEXNuPsVyYjzGVVN7fupOBkL2xFynBGidpJvBP0oDR0pfiT0hdAs/mdTeTKh5FK5ESmOLfoaRujhHAm6Qrex4q3zcPoP1jfl8XlbV7LHAjcKOkGaQBq/vS8xvtndTBPqeRxp7cCbwObEoaYPyxK4F6KyJmAfsBp0qaBZwNXNGDJnYljU96M9/kbZak0niZvUljaGaS/m2U/3u7kJQkvylpeicDrQ8iXan0KGns0NLAVv34b8vMzAbIoPb28h+v1Ve8JLXWsQwUSceRLkX+aq1jsX7TXg9z90ydOrPH+zVyH7djr51Gjt+x107ZmJTxfPzCmU55gsEqkLQkqZqzd3fbmpmZWeIJBgeYpNNJ42tujoja/uw2MzNrIHVRSan3uWb6IiIOJt1jxuYybW3ttIweVdMYWmfPqenxzcwGUl0kKWaNqjfjQczMrDLu7jEzM7O65CTFzMzM6pK7e8z6oKe3eK4nxdhbZ89h1ozWGkZjZvZxTlLMeqmpaRC1vk9Kf2kZPYpZtQ7CzKyMu3vMzMysLjlJMTMzs7rkJMWQ1CLpe5UuNzMzqwYnKWZmZlaXPHDWuiVpN9LM178BDiPNPHwN8MOI+EDSAsBvgW2ABUkzLh9ZmiVb0u7Az4HhpBmfBwFzImI3SSNJM1AvFxH/Lh4vIlbJr4cCJwDfAhYDHgH2j4jn8/r5cly7kWakfgr4SUQ8JmkEaVqCoqHAwRHx6+7aNjOz2nElxSq1ArAksDLwOWAHYKe8bte87P9FxKLApqREAUkbAmcD+wKfAO4CduzhsS8AVge+ACwF/A24RdL8ef3xwNbAFsAngYuB2yUtHhFTImJY6S/H8QZwS4Vtm5lZjbiSYpVqBY6JiA+A5yX9mTTd9uXAe8AwYA1Jf42IVwr77QL8MSLuyq8vlbRPpQeVtATwHWCFiHg9LzseOBBYT9KDwAHAqIgoVUwuknQgMAq4rNDWpsBZwBYR8Xx3bQMPVBrn3KC5eWitQ6jI4MFNDRNruUaOHRo7fsdeO32J30mKAbwPdFQ5mD+vmw+YkhOUkneA0t3ALiNVWc4AVs0JzGG5y2RZ4LGydl/qQWwr5scJkspjWw5YgpQg3SypvWz9sqUXkj4N/BHYLSIerrDtecr06e/WOoSKNDcPbZhYyzVy7NDY8Tv22inG39MbYDpJMYAWYJXiAknDSN0fLwJrdrVzRMwBxgBjJDWTqhUXAxsBrwIjy3YZCZTGfJRm6Fu4sH6ZwvOJ+XHViJhafmxJg0gJ02YR8WhH8UlaFvgTqRJ0Q6Vtm5lZbXlMigGMBfaWtKGkwZIWB84E/gn8vbudJW0qaZ08jqOVlDSUqi5/ALaX9BVJ8+VLmtcr7RsRb5KShd3zsT8N7FVYPwW4AjhH0qfy8ZolbStpWES051h/KWnVvH6YpK9JWkbSoqQE5cqIOKsYd3dt9+wUmplZf3OSYkTE5cCRpAGubwFPAgsB38xVku4sSUpGpgGTSINs985t3wf8GLgwt70FcHXZ/rsCWwJvA6cDF5Wt3wsIYJykmaTkaQeg1L1zLOmqoRslzQD+RRog2wT8L/Bp4IeSZhX+flhh22ZmViOD2tv9/2KrLkkXAvNFxG61jqWP2uemuXumTp3Z/YZ1oJH75xs5dmjs+B177ZSNSRlPuuiiIq6kmJmZWV1ykmJmZmZ1yVf3WNVFxJ61jqE/tLW10zJ6VK3D6BetsysZemRmVl1OUsz6oFHGcZRr9D5uM5s3uLvHzMzM6pKTFDMzM6tL7u4x64Oe3uK5nnQUe+vsOcya0VqDaMzMPs5JilkvNTUNYm65T0pJy+hRzKp1EGZmmbt7zMzMrC45SbG6JWlsvjutmZnNg9zdY30maRywPvA+aWLBl4CTI+LaWsZlZmaNzZUU6y8nRsQw4JOkWZWvkLRKbUMyM7NG5kqK9auImCPpAuAMYG3geUnbAEcDK5NmST4pz7yMpJHAecB6pJmHXwJ2jojITS6Q29sBeAc4ISLOy/suS5pdeR1gCDABODAixuf1xwEb5uW7AK3AWRExuhSvpLWAX5FmS24FLgeOiYj3+/nUmJlZD7mSYv1K0hBgv/zyOUmbAxcBBwKfAHYFzpK0Ud7mF8DLwJLAEsBuwLRCk9sDN+d9f5z3XSGvawLOAVYAlgIeB66TNH9h/42A14Glga2BgyV9J8c6ArgPuA74FKnLanPgZ308DWZm1g9cSbH+8nNJPwUWIY1N2TMiJki6BTgzIu7P2z0i6TJSZeMvwHukBGOliHiGVPUouicibsrPr5M0nVShmRgRL5MSHAAkHQUcAKwKPJ0XTwLGREQ7MF7S+aRE6IocwxOlygzwqqRTgDHACX09IY2quXlorUPo0uDBTXUfY2caOXZo7Pgde+30JX4nKdZfTo6IkyQtTqqcbJIfVwQ2kXRwYdvBQClpOZTUFXSzpIWBPwI/i4jS7TomlR3nHVIihKQlgNOBjYFmoC1vM7yw/cScoJS0ANvl5ysCX8qJT8mgHN88q97n9GnkeYcaOXZo7Pgde+0U4+/pDTCdpFi/iohpkvYEXpC0NTARGBsRp3Wy/VRS9eMASSsBNwKHAcdUcLhTSN0460XEJEmLADNIiUbJCpIGFRKVkcC/8/OJwN0RMXdMZWxmNpdxkmL9LiLeknQ6abzJQcBYSQ8DD5GqFJ8GBkXEY5J2BB4hVTjeJnX/fFDhoRYF3gWmSRpG6qYptzRwqKQzgLWAvYBSVedS4BBJu5O6f94jJTGrRcTtPXrTZmbW7zxw1gbKmaQEYRlSYnAa8Aap++YMYFje7rOkwauzgKdIg187rLp04BhgBPAmaSzLQ3w8wbk/xzEZuCXHdQVAREwmdUttQ0qSpgHXAytV/jbNzGygDGpvb+9+K7MGlC9B3iAiNhugQ7TPjXP3TJ06s9ZhdKmR++cbOXZo7Pgde+2UjUkZD6xb6b6upJiZmVldcpJiZmZmdckDZ22uFRHHDWT7bW3ttIyeuy4Map09p9YhmJn9l5MUsz6o9/EbnWn0Pm4zmze4u8fMzMzqkpMUMzMzq0vu7jHrg57e4rmeVDP21tlzmDWjtWrHM7O5g5MUs15qahrE3HaflIHSMnoUs7rfzMzsI9zdY2ZmZnXJSYqZmZnVJScpNk+RdJSkcV2s30CS54owM6sDTlJsriDp55LaJe1a61jMzKx/OEmxhiepiTTT8lvA3jUOx8zM+omv7rG5wdeATwHbALdIWisingSQNAo4DVgeGAc8X9xR0qrABcA6wIvA76sWtZmZdclJis0N9gZui4hbJU0A9gF+LGll4DpgD+AqYFPgeuBRAEnzAbcAdwNfB5YFbq5++POG5uah/dLO4MFN/dZWtTVy7NDY8Tv22ulL/E5SrKFJWgbYEtghL7oIOF7SYcBOwCMRcVled6ekG0hVF4D1gJHAoRHRCvxL0q+A86sU/jylv+YKauR5hxo5dmjs+B177RTj7+lNJD0mxRrdHqSxKLfk15cBCwE7kiojLWXbv1R4viwwJSLe7WS9mZnVkJMUa1h5wOweQDPwb0mTgaeBwaQun1dJlZKi4utXgRGShnay3szMasjdPdbItgCWAz5PSjhKPgPcThqrcoyknYFrgY1Jg2sfy9s9DEwExuTuoWWAg6sRuJmZdc9JijWyfYAbImJ82fLJkv6a128PjCFdwXMfcCGwNkBEzJG0FXAeMIV0dc/5wBlVid7MzLrkJMUaVkRs3cW6LxZe3tTFds8CXy5b/Ou+RWZmZv3BY1LMzMysLrmSYtZLbW3ttIweVeswGkLr7Dm1DsHMGpCTFLM+mDp1Zq1D6JVGv++Cmc0b3N1jZmZmdclJipmZmdUld/eY9UFPb/FcTxx7Gisza0Zrv7RlZv3PSYpZLzU1DWLkEbfWOgzrg5bRo5hV6yDMrFPu7jEzM7O65CTFzMzM6pKTFDMzM6tLHpNiVSdpXeAo4EvAAsBk4E/AmIiYVMO4dgOOiohVahWDmZl9yJUUqypJmwMPAAGsHRGLkubOeZOPz6FjZmbzMFdSrNrOAa6IiMNLC3L15EQASUOBU4DtgIVICc0BEfFyXj8OGA+MBL5Kmr344Ii4sdSepO2AI4FVgP8AF0XEzyUtS5oFeR1gCDABODAixktaHzgXGCKpdMHHlhExbgDOgZmZVcCVFKsaSauREocrutjsDOAL+W8F4A3gZkmDC9vsCvwKWAw4C7gkJzdI+jpwCXAcsASwGnBb3q+JlCStACwFPA5cJ2n+iPgrsC/wYkQMy3/j+vqezcys91xJsWoanh9f7WilpCZSAvLNiHg1LzsQeAv4PPDXvOnVEfFQXn8+cDqwKvAE8GPg3Ii4JW87g1SNIVdjXi4c7yjggLzv0/3yDq3hNDcPrdqxBg9uqurx+lsjx+/Ya6cv8TtJsWqamh8/BTzTwfrhpIG0L5UWRMQsSVOA5fgwSZlUWP+OJIDSLUhHAtd3dHBJS5ASmo2BZqCtcFybR1VzosVGn9ixkeN37LVTjL+nd4t2d49VTUQ8BzwP7NzJJlOB2aREAwBJw4ARwCsVHqaFVBnpyCnA0sB6ecDucnn5oPzY1uFeZmZWE66kWLX9kDTG5HXgrIh4TdKSwO6kCsqlwImSngamk8aePAs8UmH7ZwNXSboXuAsYCvxPRDwALAq8C0zLyc+Ysn0nAyMkLRoRM/ryJs3MrO9cSbGqioi7gA2ANYB/SppJGjMyAhgHHAQ8BjxKGj+yNLBVRHxQYfu3AnsAvyCNZQnga3n1Mfk4b5Ku7HkIKLZbSmxekjRdki+JNjOroUHt7e21jsGsUbV7gsHG1jJ6FFOnzqza8eamsQWNxrHXTtmYlPHAupXu60qKmZmZ1SUnKWZmZlaXPHDWrJfa2tppGT2q1mFYH7TOnlPrEMysC05SzPqgmuMZ+lMj93E3cuxm1jPu7jEzM7O65CTFzMzM6pK7e8z6oKe3eK4njr1zrbPnMGtG64Aew8y65yTFrJeamgbh+6TMnVpGj2JWrYMwM3f3mJmZWX1ykmJmZmZ1yd091iFJxWr3AvlxdmlBRAyrbkRmZjavcZJiHSomIZIuBOaLiN062lbS/BHxfrViMzOzeYOTFOsxSeOAfwAjgU2BX0i6DLgQWAcYQppl+MCIGJ/3OQ7YEPgbsGdu6ncRcWxevzhwfm5vPuDfwL4RcX9h3wnALkArcFZEjC7E9GXgVGB1YBJwRkSc113bef02wNHAynnfkyLi8v45W2Zm1lsek2K9tTvwG2Cx/NgEnAOsACwFPA5cJ2n+wj4bAS8DywBbAUdK+lJedygwNO/fDGxLSiaK+74OLA1sDRws6TsAklYEbgd+B3wS2A04RdIO3bUtaXPgIuBA4BPArsBZkjbq9ZkxM7N+4UqK9dYfI+Ke/PxdUvLxcmmlpKOAA4BVgafz4uci4tz8/GFJ/yBN2f0g8B4pwRDw94h4rux4k4AxEdEOjJd0PikZuQLYGXg8IsYW2j6PVLG5tpu2fwKcWaqqAI/kqtAuwF96elJs7tHcPLTf2xw8uGlA2q2WRo7fsddOX+J3kmK91VJ8IWkJ4HRgY1K1oi2vGl7YbFJZG+8ApbtynQbMD1wCLC3pFuCwiHg9r5+YE5Ti8bfLz5cDXipr+wVSxaW7tlcENpF0cGHfwcD92DxtIOYHavR5hxo5fsdeO8X4e3ojRicp1lttZa9PIXXFrBcRkyQtAswABlXSWES8A/wc+LmkpYDLSMnFLnmTFSQNKiQqI/mwO+gV4BtlTa6Ul3fX9kRgbEScVkmcZmZWPU5SrL8sSur2mSZpGDCmJztL+ibwPPAcMAv4D/BBYZOlgUMlnQGsBewFlKofVwJHS9qF1P3zv8A+wH4VtP1rYKykh4GHSFWUTwODIuKxnrwHMzPrXx44a/3lGGAE8CbpKpyH+GiS0Z2VgZtJ1ZcW0hU8hxfW309KVCYDtwBnkhISIuIlUiVl/3z8PwBHR8Q13bUdEXeSEp7TgDfIVwYBvg+MmVmNDWpvb+9+K7MaypcgbxARm9U6ljLtnrtn7tQyehRTp87s93bnprEFjcax107ZmJTxpAsmKuJKipmZmdUlJylmZmZWlzxw1upeRBxX6xg60tbWTsvoUbUOwwZA6+w5tQ7BzHCSYtYnAzFuoRoauY+7kWM3s55xd4+ZmZnVJScpZmZmVpd8CbJZL7W1tbc3NVV0Q10zs7lC6+w5zJrR2qN9+nIJssekmPVSU9MgfJ8UM5uXtIwexawqHs/dPWZmZlaXXEkxyySNJM2mvFxE/Lubzc3MbIC5kmIDTtI4Se2Svl22fL28vKUH7RxVtuy43MY5ZcsXlPRWXjeyr+/BzMyqz0mKVcszpIn8ivbKy/vqOWAnSUMLy7YnTUZoZmYNykmKVct1wGclrQQgaRHgW8DvSxtI2knSE5JmSJok6TxJC+d1ZwEbAkdLmiUpCm2/AjwMFCs1ewEXFAPIVZe7y5Z9rDpjZmb1wUmKVct/gMuBPfLrnYH7gEmFbd4GvgM0kxKSDYGjACJif+B+4MSIGBYRKmv/AnKlRpKA1YEbB+KNmJlZdXjgrFXTBcCdko4F9gaOBRYvrYyI2wrbPp/HmexSYds3A+dIWhP4AXAp8F6/RG1mZv/V3Dy0+40KBg9u6vE+JU5SrGoi4klJE4GjgRHA7aSKCgCSNgeOIVVBFgAGA1MqbHuOpLHAj0jjUTbo1+DNzAygx3Nnld3MrUf7urvHqu18UpJycUR8UFooaQhwA3AVsHxELAocDhRv6drWTdsXAPsAT0fEcx2snwksXLZsmR5Fb2ZmVeNKilXblaSBruPLlg8hVU+mRUSrpDWA/cu2mQys0lnDEfGipI346DiXovHALyStAzwB7Aus2PO3YGZm1eBKilVVRPwnIu6OiGlly2cB+wGnSpoFnA1cUbb7GcC6kqZLeqqT9h+MiBc7WTcOOJ3UzTQJWBJ4sC/vx8zMBo4nGDTrvXbP3WNm85KW0aOYOnVmj/bpywSDrqSYmZlZXXKSYmZmZnXJA2fNeqmtrZ2W0aNqHYaZWdW0zp5T1eM5STHrg572zdaLYh9xo3HstdPI8Tv2xuTuHjMzM6tLTlLMzMysLjlJMTMzs7rkJMXMzMzqkpMUMzMzq0tOUszMzKwuOUkxMzOzuuQkxczMzOqSJxg0672pwMRaB2Fm1kBWAIZXurGTFDMzM6tL7u4xMzOzuuQkxczMzOqSkxQzMzOrS05SzMzMrC45STEzM7O65CTFzMzM6tJ8tQ7ArJFIGgyMBnYDFgTuBPaJiDdqGVclJI0FvgvMLiw+LCLOqU1EnZO0E/Aj4DPA0IiYr2z9FsCvgJWAF4CDI+LOqgfaia7il7QxcC/wTmGXCRHxxaoG2QlJY4AtgeWAWcCtwOER8VZhm12AY4GlgX8CP4yI8TUI9yO6i13SbsDFwLuF3W6OiJ2rHGqHJJ0MfAf4JPAf4C+kf9sv5/V1ed6h69j7ct6dpJj1zBHA1sB6wJuk//D+AHy9lkH1wCURsWetg6jANOAcYCHg/OIKSSsB1wF7A9cAOwDXS1ozIlqqHGdnOo0/+yAihlU3pIp9AHwPeBJoBi4FxgJbAUjaAPgdsC1wH/AT4E+SVo2IGTWIt6jL2LMXI2KVqkdWmT8Ap0bE25KGAicBVwFfrPPzDl3Entf36rw7STHrmb2BEyLiRQBJhwHPS1ohInz32X4SEXfAf6sO5XYFxkfEZfn15ZL2zcuPr06EXesm/roWEUcWXk6VdCYpGSzZC7iuVLmSdBqwP+nL85KqBdqBCmKvaxHxbOHlIKANUH5dt+cduo2915ykmFVIUjOwPPDf8mpEvCBpBqms3whJyrckbQe8AdwIHB8Rs2ocU099hsJnkD2elzeKwZJeAeYnvZcjI+KJGsfUma8Axdg+Q6pOABAR7ZL+Tn2e//LYAZaTNBl4H3gQ+FlEvFT1yDoh6TukismiwBzg4Lyq7s97F7FDL8+7B86aVW6R/Ph22fLppP8o691vgdWBJUi/vr4MXFDTiHpnERr3MwB4FlgbWJH0eUwA7pG0TC2D6oikbwH7kroWShri/HcS+1+ATwPLAJ8jjZ24S9LC1Y+wYxFxRUQsRhp3chxp7Ak0wHnvIvZen3dXUswqNzM/Lla2vBmohz7hLpUNsHtK0kHAOEm7RcTszvarQzNp0M8AICImA5Pzy+nAzyRtTxrXdFGt4ionaQfgPGCriHi8sKqz8/9ClULrVmexl7pps8mS9iJ98X8B+HN1o+xaREyWdAHwoqTlaYDzXlIee1/OuyspZhWKiOnAy8D/lpblQZyLkn4NN5q2/DioplH03BMUPoPss3y8rN9I2qijz0HSD0hf8t+MiHvLVn/k/EsaRKoM1cX57yb2cu35r27OfZn5gIVJFYi6Pu8dKMZeruLz7kqKWc+cDxwu6V7S1T1jgDvq6KqSTuXLYm+PiOmSViVdwntTRPynxqF9TL7Ue35gSH69YF41m3TFxqGSdgb+CGwPrAPsUoNQO9RN/JuQkt0XgaHAT4ElgTuqH+nHSTqAdJnr1yLi0Q42uQC4XdIlwP3AAaTL8a+vXpQd6y52SaNIX+qvAosDp5DGZz1czTg7IqkJ+CFwTURMkbQsqYu2hdRFWM/nvcvY+3LeXUkx65nRwM3Ao6T/4AaTLnlsBPuSyq/vkO7v8jDwg9qG1KnvA62kL+7B+XkrsEJEvABsBxxF6uI5Cti2zhLFTuMnDXT8M6l8/yKp5L15RLxSm1A/5kxSdfBeSbNKf6WVEfEA6QvpAlLJ/tvAN+rkMtguYwc2Bh4h3UPlKdI9PTavo8Hj3wCezP+N/o10X5HNImJOnZ936CJ2+nDeB7W3tw9YxGZmZma95UqKmZmZ1SUnKWZmZlaXnKSYmZlZXXKSYmZmZnXJSYqZmZnVJScpZmZmVpecpJiZDQBJ4ySd1cX6jSW1S1qih+3uLellSW2SjutzoA1C0nGSnqx1HFZdTlLMrK5J+q6kVyRNk3R62bpPSWqRtGQF7bTnOXJ6evxe7VeBh0gTsb3Zg1gWB84GTgM+BfxyAOKqKUkj8zlft2zVL0mTYto8xLfFN7O6lasMFwK7ke7OequkeyLilrzJ2cCJEfF6jULstYh4jw8nGqzUCqT/b98SEZN6e2xJQ/LxG0a+O2m93BnWqsRJipnVs5WAtyPiaoA8Z9L/A26R9C3SrLAXd9eIpJb89FpJABMjYmRetw9wKLA8aU6dMRFxQVf7SVoZOB1YD1gECOCYQvLULUkbA/cCwyPiDUm7AWcBW5Nu774i6Vbiu0fES3n97/PuL+Z4VoyIFknfBI4D1gQmAVcAx5cSkfw+xub3uB1wF7CDpC+S5lH5HDANuAk4vHSrdUnjgKdJszXvTZoI8VLgsIhoy9sMycf+LrAUabqIX0fEb/L6NUiVn41IUwP8GTgozwbdkZfy46P5Pd4XERvnrq3tI2Kt3O5YYAnSPDYHAQsBvwOOBI4h3UK+DTgjIsYUzvtiOZ5t8j6PA4dExGOdxGM15O4eM6tn/wKGSvqspE+QvkwnFL5o9o6ISub2+Fx+3IvUxfI5AEnbkhKDXwNrkZKDc/KXfqf7AcOA24DNSXPx/B9wnaTVe/k+SxYAfgbsDqwPNAPn5nVXA1vk55/P8bwi6WvA5fl9rJn33R74RVnbB5MmqlsXOFLSp0lzON2U38N2pFl1y5O+7wJzgC8C+wMHAjsW1l9CmtzxYFICuQcpqUHS0sBfgCdzzJuRzt2NeVK6jnw+P26R3+N2nWwHKfFZkTQ3zL7AYcCfSOdxA1LyNFrSOjmeQcCtpK6yLUmzZ/8FuCfHanXGlRQzq1sRMU3SrqRf7wsBl0bEHZLOAy4Chku6kjQl/JkRcW4n7UzNv8qnl/2C/ynwh4goDXB9Ln+hHQ7c3Nl+EfEEaVbXkpNzYrM9cFIf3vJ8wI8iIgAk/RK4WNKgiGiVVBq/MrUUj6SfA6dFRKnK8oKkw4HLJB1aSOLui4hTSweSdClwdUT8qrBsP+DvkkZExJS8+OmIOKZwfvYCvgJcmWfT3gn4ekTcnrd5sfB+9gOeiIjDC8fYBXiLlCw90sE5mJof3+yi2lLydj5fH5Bm2z0EWDoiSsncc5KOIM08PT4/rk2qXrXmbY7On933gVOxuuIkxczqWkRcT2E6ekkbkGYOPoTUzbILqUtigqQHI+KfPWj+//HxysEDwFZd7SRpYeBY0q/xpYH5gQWBCT04dkdmlxKU7DVgCGl6+7c62Wcd4PM5MSlpIiV1S5G6fwDKuzPWAVaRVKyKDMqPKwOlJKX8Pb0GjMjPP0vqUrm3i9g2KpuJuGRlOk5SeuLpnKCUvE6u4pQtK8W7DjAUKCWfJQvmeKzOOEkxs4YhaQFS98eepPEqQyLiz3ndOFLZvydJSme660L6Jak74qekLql3SdWeIX087pxO4uiqa74JOB64toN1UwvP3+lgvwuBMzrY79XC8/c7iKnSoQJNpO6Vn3awrj8GO3cUW1fxNuXjbthBWzP6IR7rZ05SzKyRHAncExEPS1qbj/4/bAgwuIt93+9g/TPAl0hdRyUbkCozXe23Aanr6f8AJJV+iT9X2dvoV48Dq0fE873Yb81e7Ff0D9IX/ybA7R2sfxz4NmnAcXny0JnSVUddfZa99TiwJNAWES92t7HVnpMUM2sI+SqR75K6GCB19cyRtC/wFGmcxIldNNECfEXSfaRulWmkwbfXShpPGkS6RT7Gdt3s9xywraQbSUnMsaQug1o4gXS100TgGlI1Zi3g8xFxWBf7jQEelnQucB4wE1gd+GZE7FPJgSPiOUnXABdK+gkpCVgWGBkRfyBdIr4XcLWkMaTKzkqkxOWQiJjZQbNTSFcBfS1flfSfiHi7kngqcDfwIGng7mGkgcRLkT73uyPi/n46jvUTX91jZnUvX5VxPunS1ZkAeeDj90mXD18PnNzNZaSHkH7xvwL8PbdxA/Bj0iWsTwM/AX4YETd3tR/pSpYppMtfbwMezs+rLiLuAEblGB/Jf0eQLqfuar8JpKtjRgL3kQYCn0LPu2F2IV3y/BvSl/5Y0qXhRMRrpEpVG6nS8hQpcZmd/zqKaw5wAKlL7zXgxh7G06k8iPgbwD3ABaRE9xpA+VhWZwa1t1dy9Z6ZmZlZdbmSYmZmZnXJSYqZmZnVJScpZmZmVpecpJiZmVldcpJiZmZmdclJipmZmdUlJylmZmZWl5ykmJmZWV1ykmJmZmZ16f8DrYdoCAkL/IEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
"enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
"dec_onnx = create_model_for_provider(\n",
" dec_if_fp16_model_path, \"CUDAExecutionProvider\", enable_profiling=True, log_severity=3\n",
")\n",
"dec_onnx_binding: IOBinding = dec_onnx.io_binding()\n",
"_ = model_gen.generate(inputs=input_ids, max_length=10, min_length=10)\n",
"profile_name = dec_onnx.end_profiling()\n",
"\n",
"with open(profile_name) as f:\n",
" content = json.load(f)\n",
"\n",
"op_timings = defaultdict(lambda: 0)\n",
"for c in content:\n",
" if \"op_name\" not in c[\"args\"]:\n",
" continue\n",
" op_name = c[\"args\"][\"op_name\"]\n",
" if op_name == \"If\":\n",
" continue # subgraph\n",
" time_taken = c[\"dur\"]\n",
" op_timings[op_name] += time_taken\n",
"\n",
"op_timings_filter = dict(sorted(op_timings.items(), key=operator.itemgetter(1), reverse=True)[:10])\n",
"total_kernel_timing = sum(op_timings.values())\n",
"op_timings_percent = {k: 100 * v / total_kernel_timing for k, v in op_timings_filter.items()}\n",
"\n",
"plt.barh(list(op_timings_percent.keys()), list(op_timings_percent.values()))\n",
"plt.title(\"Time spent per kernel\\n(top 10 kernels)\")\n",
"plt.xlabel(\"% total inference time\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "366de2154be95d5d8dfb409ee394df3294ef97f2f15d871b0df4dd91a89cdb4b"
},
"kernelspec": {
"display_name": "Python 3.9.12 ('fast_transformer')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|