File size: 193,814 Bytes
e0c2d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "# Inference acceleration of `T5` for large batch size / long sequence length / > large models\n",
    "\n",
    "Every week or so, a new impressive few shots learning work taking advantage of autoregressive models is released by some team around the world.  \n",
    "Still `LLM` inference is rarely discussed and few projects are focusing on this aspect.  \n",
    "In this notebook, we describe our take to significantly improve autoregressive model latency.\n",
    "\n",
    "We plan to intensively test large autoregressive models, so we want something:\n",
    "\n",
    "* which **scales**: the improvement exists on small and large models, for short and long sequences, in greedy and beam search;\n",
    "    * This is very important in a few shots learning where sequences are most of the time hundreds or thousands tokens long and beam search is used to improve text quality.\n",
    "* that has **no hidden cost**: no big increase in memory usage, no degradation in quality of generated text, support state-of-the-art decoding algorithms;\n",
    "* that is **generic**: works for any transformer based architecture, and not specific to an inference engine;\n",
    "* that is **easy to maintain**: no hard-coded behaviors or other technical debt if it doesn't bring a clear advantage.\n",
    "\n",
    "To be clear, **we are not targeting the best performance ever but the right trade off** (for us at least) between simplicity to use/maintain and acceptable latency.\n",
    "\n",
    "## The challenge\n",
    "\n",
    "In most situations, performing inference with `ONNX Runtime` or `TensorRT` usually bring large improvement over `Pytorch` implementations.\n",
    "It's very true with `transformer` based models.\n",
    "\n",
    "The main reason is that these tools will perform `kernel fusions` (merging several operations into a single one) and therefore reduce the number of memory bounded operations. Sometimes they also replace some operations by a much faster approximation.\n",
    "In the very specific case of autoregressive languages, things are a bit more complicated.\n",
    "\n",
    "On most `Pytorch` implementations of these models, there is a `cache` of `K` and `V` values.\n",
    "Let's remind us that in attention blocks, each token is projected on 3 matrices called `Query`, `Key`, and `Value`.\n",
    "Then, those projections will be used to compute a representation of each token which takes into account the information from the related other tokens of the sequence.\n",
    "\n",
    "As autoregressive models generate the sequence one token at a time, they should recompute final representation of all past tokens for each new token to generate.\n",
    "Because each token can only attend to the past, the result of these computations never changes; therefore one simple trick to reduce latency is to just memorize them and reuse them later, avoiding lots of computation.\n",
    "\n",
    "Out of the box, the cache mechanism can't be exported to `ONNX` from `Hugging Face` models (and all other `Pytorch` implementations we are aware of).\n",
    "The reason is that those models are not `torchscript` scripting compliant (it requires `Pytorch` code to follow some [restrictive rules](https://pytorch.org/docs/stable/jit_builtin_functions.html)).\n",
    "Because of that, `ONNX` export is done through `tracing` which erases any control flow instructions (including the `If` instruction to enable or not a cache).\n",
    "\n",
    "## Existing solutions\n",
    "\n",
    "Some interesting solutions targeting inference latency that we have considered and/or tested:\n",
    "\n",
    "* [TensorRT](https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-`TensorRT`/), which targets `GPU`, heavily optimizes the computation graph, making `T5` inference very fast (they report X10 speedup on `small-T5`). The trick is that it doesn't use any cache (see below for more details), so it's very fast on short sequence and small models, as it avoids many memory bounded operations by redoing full computation again and again... but as several users have already found ([1](https://github.com/NVIDIA/TensorRT/issues/1807), [2](https://github.com/NVIDIA/TensorRT/issues/1642), [3](https://github.com/NVIDIA/TensorRT/issues/1799), [4](https://github.com/NVIDIA/TensorRT/issues/1845), ...), this approach doesn't scale when the computation intensity increases, i.e., when base or large models are used instead of a small one, when generation is done on moderately long sequence of few hundred of tokens or if beam search is used instead of a greedy search;\n",
    "* [FastT5](https://github.com/Ki6an/fastT5), which targets `CPU`, exports 2 versions of the decoder, one with cache and one without. You need the `no cache` version to compute the first token and the first `past state` tensors (aka the cached tensors), and for all the other tokens you use the `cache` version of the computation graph. Basically, it makes the memory foot print 2 times bigger as all weights are duplicated. As generative models tend to be huge, they work around the memory issue by using dynamic `int-8` quantization, the final memory foot print of the decoders is now the same as `Hugging Face` in `FP16`... but 1/ dynamic quantization only works on `CPU`, and 2/ according to several reports dynamic quantization degrades significantly generative model output, to a point where it may make them useless ([1](https://github.com/huggingface/transformers/issues/2466#issuecomment-572781378), [2](https://github.com/huggingface/transformers/issues/2466#issuecomment-982710520), and [here](https://github.com/microsoft/onnxruntime/issues/6549#issuecomment-1016948837) you can find a report in the `GPT-2` context from a Microsoft engineer: \"*int8 quantization are not recommended due to accuracy loss*\").\n",
    "* [ONNX Runtime T5 export tool](https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers/models/t5) targets both `GPU` and `CPU`. It works in a similar way than `FastT5`: `decoder` module is exported 2 times. Like `FastT5`, the memory footprint of the decoder part is doubled (this time there is no `int-8` quantization).\n",
    "* [FasterTransformer](https://github.com/NVIDIA/FasterTransformer/blob/main/docs/t5_guide.md#translation-process) targets `GPU` and is a mix of `Pytorch` and `CUDA`/`C++` dedicated code. The performance boost is huge on `T5`, they report a 10X speedup like `TensorRT`. However, it may significantly decrease the accuracy of the model ([here](https://github.com/NVIDIA/FasterTransformer/blob/main/docs/t5_guide.md#translation-process) when sampling is enabled, it reduces BLEU score of translation task by 8 points, the cause may be a bug in the decoding algorithm or an approximation a bit too aggressive) plus the speedup is computed on a [translation task](https://github.com/NVIDIA/FasterTransformer/blob/main/examples/pytorch/decoding/utils/translation/test.en) where sequences are 25 tokens long on average. In our experience, improvement on very short sequences tends to decrease by large margins on longer sequences. It seems to us that their objectives are different from ours.\n",
    "\n",
    "With the existing solutions, you need to choose one or two items of the following:\n",
    "\n",
    "* double decoder memory footprint;\n",
    "* be slower than `Hugging Face` for moderately long sequence length / beam search;\n",
    "* degrade output quality.\n",
    "\n",
    "## Our approach\n",
    "\n",
    "Our approach to make autoregressive `transformer` based models 2.8X faster than `Hugging Face` `Pytorch` implementation (the base line) is based on 3 key ingredients:\n",
    "\n",
    "* storing 2 computation graphs in a single `ONNX` file: this let us have both cache and no cache support without having any duplicated weights,\n",
    "* `zero copy` to retrieve output from `ONNX Runtime`: we built over our past work to connect in the most efficient way `Pytorch` tensors (used in the decoding part) and `ONNX Runtime`. Our previous work was to avoid `host` <-> `GPU` tensor copy, but it still required a `GPU` <-> `GPU`. It is now part of the official `ONNX Runtime` documentation (apparently [thanks of our project](https://github.com/microsoft/onnxruntime/pull/10651)!). This time we found out a way to directly expose the internal state of `ONNX Runtime` through a `Pytorch` tensor in zero copy way. Combined with cache mechanism, this is responsible for most of the speedup we have obtained.\n",
    "* a generic tool to convert any model (whatever the architecture) to `FP16` without any risk of having out of range values or rounding to zero: `FP16` is still the way to reduce memory footprint of a model. The main issue is that some nodes may output values outside of `FP16` range or round others to zero, resulting in `NaN` output; moreover, very small values may be rounded to zero which is an issue for log and div operations. We have built a tool which detect those nodes so we can keep their precision in `FP32`. It's quite important to reduce memory footprint of these models, not just because they tend to be huge, but also because past states (that we cache) and internal buffers can be even bigger than the weights of the model itself.\n",
    "\n",
    "## Results\n",
    "\n",
    "As demonstrated at the end of this notebook, **we are able to provide a X2.8 speedup** whatever the batch size, the sequence length or the model size.\n",
    "\n",
    "> For `TensorRT` we have our own implementation of our approach described above which helps to provide similar latency to `ONNX Runtime`. It's in a Python script in the same folder as this notebook. We had to work around a documented limitation. Because of that the code is slightly more complex and we wanted to keep this notebook easy to follow.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:02:20.975344Z",
     "iopub.status.busy": "2022-06-25T23:02:20.974743Z",
     "iopub.status.idle": "2022-06-25T23:02:21.579668Z",
     "shell.execute_reply": "2022-06-25T23:02:21.578207Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sun Jun 26 01:02:21 2022       \r\n",
      "+-----------------------------------------------------------------------------+\r\n",
      "| NVIDIA-SMI 515.48.07    Driver Version: 515.48.07    CUDA Version: 11.7     |\r\n",
      "|-------------------------------+----------------------+----------------------+\r\n",
      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\r\n",
      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\r\n",
      "|                               |                      |               MIG M. |\r\n",
      "|===============================+======================+======================|\r\n",
      "|   0  NVIDIA GeForce ...  On   | 00000000:03:00.0  On |                  N/A |\r\n",
      "| 45%   49C    P8    42W / 350W |    234MiB / 24576MiB |     24%      Default |\r\n",
      "|                               |                      |                  N/A |\r\n",
      "+-------------------------------+----------------------+----------------------+\r\n",
      "                                                                               \r\n",
      "+-----------------------------------------------------------------------------+\r\n",
      "| Processes:                                                                  |\r\n",
      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\r\n",
      "|        ID   ID                                                   Usage      |\r\n",
      "|=============================================================================|\r\n",
      "|    0   N/A  N/A      2422      G   /usr/lib/xorg/Xorg                 96MiB |\r\n",
      "|    0   N/A  N/A      8156      G   /usr/bin/gnome-shell               35MiB |\r\n",
      "|    0   N/A  N/A      9002      G   ...on/Bin/AgentConnectix.bin        4MiB |\r\n",
      "|    0   N/A  N/A     85822      G   ...458042145133945570,131072       94MiB |\r\n",
      "+-----------------------------------------------------------------------------+\r\n"
     ]
    }
   ],
   "source": [
    "! nvidia-smi"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## `ONNX Runtime`\n",
    "\n",
    "Version 1.11.1 of `ONNX Runtime` and older have a bug which makes them much slower when most inputs are used by subgraphs of an `If` node.  \n",
    "Use a version >= 1.12.0 instead."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:02:21.585535Z",
     "iopub.status.busy": "2022-06-25T23:02:21.585167Z",
     "iopub.status.idle": "2022-06-25T23:02:24.417678Z",
     "shell.execute_reply": "2022-06-25T23:02:24.417030Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import json\n",
    "import random\n",
    "from transformer_deploy.backends.ort_utils import get_keep_fp32_nodes\n",
    "from transformer_deploy.backends.ort_utils import convert_fp16\n",
    "import time\n",
    "from typing import Callable, Dict, Optional, List\n",
    "import matplotlib.pylab as plt\n",
    "from onnxruntime import IOBinding\n",
    "import numpy as np\n",
    "import torch\n",
    "from pathlib import Path\n",
    "from typing import Tuple\n",
    "from transformer_deploy.backends.onnx_utils import save_onnx, merge_autoregressive_model_graphs\n",
    "from transformer_deploy.backends.ort_utils import search_fp32_nodes\n",
    "from transformer_deploy.backends.ort_utils import add_output_nodes\n",
    "import onnx\n",
    "\n",
    "from torch.nn import Linear\n",
    "from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PretrainedConfig, T5ForConditionalGeneration, TensorType\n",
    "from transformers.generation_utils import GenerationMixin\n",
    "from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput\n",
    "from transformers.models.t5.modeling_t5 import T5Stack\n",
    "from nvtx import nvtx\n",
    "from copy import copy\n",
    "\n",
    "from transformer_deploy.backends.ort_utils import create_model_for_provider, inference_onnx_binding\n",
    "from transformer_deploy.backends.pytorch_utils import convert_to_onnx\n",
    "import seaborn as sns\n",
    "import operator\n",
    "from collections import defaultdict\n",
    "import gc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Loading `Hugging Face` model / tokenizer\n",
    "\n",
    "Below we load the model and set global variables of this notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:02:24.423237Z",
     "iopub.status.busy": "2022-06-25T23:02:24.422920Z",
     "iopub.status.idle": "2022-06-25T23:03:19.364579Z",
     "shell.execute_reply": "2022-06-25T23:03:19.364011Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "np.random.seed(123)\n",
    "torch.random.manual_seed(123)\n",
    "# other possible values: t5-small, t5-base, t5-large. t5-3b should work when ORT library is fixed\n",
    "model_name = \"t5-3b\"\n",
    "# shape of output generation for benchmarks (seqlen, batch).\n",
    "# You can provide 2 tasks to benchmark.\n",
    "# On 3b model, 128 tokens with batch 2 is the maximum without OOM Exception on GPU with 24Gb of RAM.\n",
    "# On smaller models/more ram GPUs, use bigger values like [(1024, 1), (1024, 4)]\n",
    "benchmark_tasks = [(128, 1), (128, 2)]\n",
    "# T5 has no max len\n",
    "# https://github.com/huggingface/transformers/issues/5204\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=512)\n",
    "input_ids: torch.Tensor = tokenizer(\n",
    "    'translate English to French: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new \"Colossal Clean Crawled Corpus\", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.',\n",
    "    return_tensors=TensorType.PYTORCH,\n",
    ").input_ids\n",
    "input_ids = input_ids.type(torch.int32)\n",
    "pytorch_model: T5ForConditionalGeneration = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
    "pytorch_model = pytorch_model.eval()\n",
    "\n",
    "pytorch_model.config.use_cache = True  # not really needed, just to make things obvious\n",
    "num_layers = pytorch_model.config.num_layers\n",
    "# tolerance between ONNX FP16 and Pytorch FP32.\n",
    "# Rounding errors increase with number of layers: 1e-1 for t5-small, 5e-1 for large, 3 for 3b (depending of how aggressive you are on FP16, it can raises up to 5-7). 11b not tested.\n",
    "# Do not impact final quality\n",
    "fp16_default_tolerance = 10\n",
    "\n",
    "\n",
    "def are_equal(a: torch.Tensor, b: torch.Tensor, atol: float = fp16_default_tolerance) -> None:\n",
    "    assert np.allclose(a=a.detach().cpu().numpy(), b=b.detach().cpu().numpy(), atol=atol), f\"{a}\\n\\nVS\\n\\n{b}\"\n",
    "\n",
    "\n",
    "def prepare_folder(path: str) -> Tuple[str, str]:\n",
    "    p = Path(path)\n",
    "    p.mkdir(parents=True, exist_ok=True)\n",
    "    [item.unlink() for item in Path(path).glob(\"*\") if item.is_file()]\n",
    "    return path + \"/model.onnx\", path + \"/model_fp16.onnx\"\n",
    "\n",
    "\n",
    "# create/clean folders where each model will be stored.\n",
    "# as multiple files will be saved for T5-3B and 11B, we use different folders for the encoder and the decoders.\n",
    "encoder_model_path, encoder_fp16_model_path = prepare_folder(path=\"./test-enc\")\n",
    "dec_cache_model_path, dec_cache_fp16_model_path = prepare_folder(path=\"./test-dec-cache\")\n",
    "dec_no_cache_model_path, dec_no_cache_fp16_model_path = prepare_folder(path=\"./test-dec-no-cache\")\n",
    "dec_if_model_path, dec_if_fp16_model_path = prepare_folder(path=\"./test-dec-if\")\n",
    "\n",
    "# some outputs to compare with\n",
    "out_enc: BaseModelOutputWithPastAndCrossAttentions = pytorch_model.encoder(input_ids=input_ids)\n",
    "out_full: Seq2SeqLMOutput = pytorch_model(input_ids=input_ids, decoder_input_ids=input_ids)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "# Export to ONNX\n",
    "\n",
    "First step is to export the model to `ONNX` graph.\n",
    "`T5` is made of 2 parts, an `encoder` and a `decoder`.\n",
    "\n",
    "## Export encoder part\n",
    "\n",
    "The `encoder` part export doesn't imply any specific challenge.\n",
    "We use export function built for `Bert` like model, exported model is in `FP16`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:03:19.367413Z",
     "iopub.status.busy": "2022-06-25T23:03:19.367191Z",
     "iopub.status.idle": "2022-06-25T23:03:52.884148Z",
     "shell.execute_reply": "2022-06-25T23:03:52.883494Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "convert_to_onnx(\n",
    "    model_pytorch=pytorch_model.encoder,\n",
    "    output_path=encoder_model_path,\n",
    "    inputs_pytorch={\"input_ids\": input_ids},\n",
    "    var_output_seq=True,\n",
    "    quantization=False,\n",
    "    output_names=[\"output\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Export decoder\n",
    "\n",
    "The decoder export part is more challenging:\n",
    "\n",
    "* we first need to wrap it in a `Pytorch` model to add the final layer so it's output provide scores for each vocabulary token and can be directly used by the `Hugging Face` `decoding` algorithm\n",
    "* then, we need to manipulate the `ONNX` graph to add support of `Key`/`Value` cache\n",
    "\n",
    "The second point is the key ingredient of the observed acceleration of `ONNX` vs `Hugging Face` inference.\n",
    "\n",
    "\n",
    "### Wrapper to include some post-processing on the decoder output\n",
    "\n",
    "The post-processing is mainly a projection of the decoder output on a matrix with one of its dimensions equal to model vocabulary size, so we have scores for each possible token."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:03:52.889647Z",
     "iopub.status.busy": "2022-06-25T23:03:52.889304Z",
     "iopub.status.idle": "2022-06-25T23:03:55.282126Z",
     "shell.execute_reply": "2022-06-25T23:03:55.281480Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "class ExportT5(torch.nn.Module):\n",
    "    def __init__(self, decoder: T5Stack, lm_head: Linear):\n",
    "        super(ExportT5, self).__init__()\n",
    "        self.decoder = decoder\n",
    "        self.lm_head = lm_head\n",
    "\n",
    "    def forward(self, input_ids: torch.Tensor, encoder_hidden_states: torch.Tensor, past_key_values: Tuple = None):\n",
    "        out_dec = self.decoder.forward(\n",
    "            input_ids=input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values\n",
    "        )\n",
    "        # weight tying -> rescale output before projecting on vocab\n",
    "        # to comment for T0 for instance\n",
    "        out_dec[\"last_hidden_state\"] = out_dec[\"last_hidden_state\"] * (pytorch_model.model_dim**-0.5)\n",
    "        out_dec[\"last_hidden_state\"] = self.lm_head(out_dec[\"last_hidden_state\"])\n",
    "        return out_dec\n",
    "\n",
    "\n",
    "model_decoder = ExportT5(decoder=pytorch_model.decoder, lm_head=pytorch_model.lm_head).eval()\n",
    "out_model_export: torch.Tensor = model_decoder(input_ids=input_ids, encoder_hidden_states=out_enc.last_hidden_state)\n",
    "\n",
    "are_equal(a=out_model_export[\"last_hidden_state\"], b=out_full.logits)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "### Export decoder part to `ONNX`\n",
    "\n",
    "Below we export 2 versions of the decoder, one without cache support and one with it.\n",
    "\n",
    "Model inputs with past states (cache support):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:03:55.286261Z",
     "iopub.status.busy": "2022-06-25T23:03:55.285980Z",
     "iopub.status.idle": "2022-06-25T23:03:57.600567Z",
     "shell.execute_reply": "2022-06-25T23:03:57.599993Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# decoder output one step before\n",
    "out_dec_pytorch = model_decoder(input_ids=input_ids[:, :-1], encoder_hidden_states=out_enc.last_hidden_state)\n",
    "\n",
    "model_inputs = {\n",
    "    \"input_ids\": input_ids[:, -1:].type(torch.int32),\n",
    "    \"encoder_hidden_states\": out_enc.last_hidden_state,\n",
    "    \"past_key_values\": out_dec_pytorch.past_key_values,\n",
    "}\n",
    "\n",
    "input_names = [\"input_ids\", \"encoder_hidden_states\"]\n",
    "\n",
    "for i in range(num_layers):\n",
    "    input_names.append(f\"past_key_values.{i}.decoder.key\")\n",
    "    input_names.append(f\"past_key_values.{i}.decoder.value\")\n",
    "    input_names.append(f\"past_key_values.{i}.encoder.key\")\n",
    "    input_names.append(f\"past_key_values.{i}.encoder.value\")\n",
    "\n",
    "output_names = [\"logits\"]\n",
    "\n",
    "for i in range(num_layers):\n",
    "    output_names.append(f\"present.{i}.decoder.key\")\n",
    "    output_names.append(f\"present.{i}.decoder.value\")\n",
    "    output_names.append(f\"present.{i}.encoder.key\")\n",
    "    output_names.append(f\"present.{i}.encoder.value\")\n",
    "\n",
    "dynamic_axis = {\n",
    "    \"input_ids\": {0: \"batch\", 1: \"encoder_sequence\"},\n",
    "    \"encoder_hidden_states\": {0: \"batch\", 1: \"encoder_sequence\"},\n",
    "    \"logits\": {0: \"batch\", 1: \"decoder_sequence\"},\n",
    "}\n",
    "\n",
    "\n",
    "for i in range(num_layers):\n",
    "    dynamic_axis[f\"past_key_values.{i}.decoder.key\"] = {0: \"batch\", 2: \"past_decoder_sequence\"}\n",
    "    dynamic_axis[f\"past_key_values.{i}.decoder.value\"] = {0: \"batch\", 2: \"past_decoder_sequence\"}\n",
    "    dynamic_axis[f\"past_key_values.{i}.encoder.key\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
    "    dynamic_axis[f\"past_key_values.{i}.encoder.value\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
    "\n",
    "    dynamic_axis[f\"present.{i}.decoder.key\"] = {0: \"batch\", 2: \"decoder_sequence\"}\n",
    "    dynamic_axis[f\"present.{i}.decoder.value\"] = {0: \"batch\", 2: \"decoder_sequence\"}\n",
    "    dynamic_axis[f\"present.{i}.encoder.key\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}\n",
    "    dynamic_axis[f\"present.{i}.encoder.value\"] = {0: \"batch\", 2: \"encoder_sequence_length\"}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "Export of the model with cache support:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:03:57.603501Z",
     "iopub.status.busy": "2022-06-25T23:03:57.603304Z",
     "iopub.status.idle": "2022-06-25T23:04:51.077733Z",
     "shell.execute_reply": "2022-06-25T23:04:51.077086Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/geantvert/.local/share/virtualenvs/fast_transformer/lib/python3.9/site-packages/transformers/modeling_utils.py:781: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
      "  if causal_mask.shape[1] < attention_mask.shape[1]:\n",
      "In-place op on output of tensor.shape. See https://pytorch.org/docs/master/onnx.html#avoid-inplace-operations-when-using-tensor-shape-in-tracing-mode\n",
      "In-place op on output of tensor.shape. See https://pytorch.org/docs/master/onnx.html#avoid-inplace-operations-when-using-tensor-shape-in-tracing-mode\n"
     ]
    }
   ],
   "source": [
    "with torch.no_grad():\n",
    "    pytorch_model.config.return_dict = True\n",
    "    pytorch_model.eval()\n",
    "\n",
    "    # export can works with named args but the dict containing named args as to be last element of the args tuple\n",
    "    torch.onnx.export(\n",
    "        model_decoder,\n",
    "        (model_inputs,),\n",
    "        f=dec_cache_model_path,\n",
    "        input_names=input_names,\n",
    "        output_names=output_names,\n",
    "        dynamic_axes=dynamic_axis,\n",
    "        do_constant_folding=True,\n",
    "        opset_version=13,\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "Export of the model computing Key/Values for the whole sequence (we basically just remove past states from the input, the `Pytorch` code will recompute them):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:04:51.080696Z",
     "iopub.status.busy": "2022-06-25T23:04:51.080503Z",
     "iopub.status.idle": "2022-06-25T23:05:52.002319Z",
     "shell.execute_reply": "2022-06-25T23:05:52.001626Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "model_inputs_no_cache = {\n",
    "    \"input_ids\": input_ids,\n",
    "    \"encoder_hidden_states\": out_enc.last_hidden_state,\n",
    "}\n",
    "\n",
    "with torch.no_grad():\n",
    "    pytorch_model.config.return_dict = True\n",
    "    pytorch_model.eval()\n",
    "\n",
    "    # export can works with named args but the dict containing named args as to be last element of the args tuple\n",
    "    torch.onnx.export(\n",
    "        model_decoder,\n",
    "        (model_inputs_no_cache,),\n",
    "        f=dec_no_cache_model_path,\n",
    "        input_names=list(model_inputs_no_cache.keys()),\n",
    "        output_names=output_names,\n",
    "        dynamic_axes={k: v for k, v in dynamic_axis.items() if \"past_key_values\" not in k},\n",
    "        do_constant_folding=True,\n",
    "        opset_version=13,\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Conversion to mixed precision\n",
    "\n",
    "### Why mixed precision?\n",
    "\n",
    "As `T5` can have up to 11 billion parameters, it requires lots of computation, and even more important, it takes lots of space in device memory.\n",
    "We convert the `encoder` to half precision.\n",
    "\n",
    "If we blindly convert the whole graph to `FP16`, we will have 2 issues:\n",
    "* `overflow`: some nodes, like exponential nodes, will try to output values out of the `FP16` range, at the end you get some `NaN`.\n",
    "* `underflow`: values very close to 0 will be rounded to 0, which may be an issue for some operations like `Div` and `Log` .\n",
    "\n",
    "### The challenge\n",
    "\n",
    "Mixed precision is done out of the box by `Pytorch` and follow some strict rules described in https://pytorch.org/docs/stable/amp.html\n",
    "\n",
    "Those rules are generic and quite conservative. Many nodes will be kept in `FP32` even if their output is always in the `FP16` range.\n",
    "\n",
    "Other approaches we have found:\n",
    "* `ONNX Runtime T5` [demo](https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/models/t5/t5_helper.py): provide a list of operations to keep in `FP32` (Pow, ReduceMean, Add, Sqrt, Div, Mul, Softmax, Relu). We have found this approach to need more an more tweaking on larger networks and encoder part (decoder part seems simpler to manage, https://github.com/microsoft/onnxruntime/issues/11119);\n",
    "* `TensorRT T5` [demo](https://github.com/NVIDIA/TensorRT/tree/main/demo/HuggingFace/notebooks): provide the exact pattern of nodes to keep in `FP32`. This approach is much more effective, but imply lots of code to describe the patterns and may not generalize well, basically what works for a `base` model may not work for 11 billion parameters model. And it does not scale to other architectures without adaptations, for a library like `transformer-deploy`, it would lead to unmaintainable technical debt.\n",
    "\n",
    "\n",
    "### Our approach\n",
    "\n",
    "We have chosen an architecture agnostic approach: we inject random input sequences and audit the output of each computation graph node; finally, we make a list of all nodes that have output values out of the `FP16` range /close to zero values and perform some cleaning (to avoid unnecessary casting).\n",
    "\n",
    "We have chosen to use random values only for the `input_ids` field as the search space is limited: positive integers lower than the vocabulary size.\n",
    "You can also decide to send real data from a dataset you want to work on.\n",
    "\n",
    "To finish, we provide the list of nodes to keep in `FP32` to the conversion function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:05:52.007617Z",
     "iopub.status.busy": "2022-06-25T23:05:52.007426Z",
     "iopub.status.idle": "2022-06-25T23:09:26.776124Z",
     "shell.execute_reply": "2022-06-25T23:09:26.775503Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3790"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def get_random_input_encoder() -> Dict[str, torch.Tensor]:\n",
    "    max_seq = 128\n",
    "    seq_len = random.randint(a=1, b=max_seq)\n",
    "    batch = max_seq // seq_len\n",
    "    random_input_ids = torch.randint(\n",
    "        low=0, high=tokenizer.vocab_size, size=(batch, seq_len), dtype=torch.int32, device=\"cuda\"\n",
    "    )\n",
    "    inputs = {\"input_ids\": random_input_ids}\n",
    "    return inputs\n",
    "\n",
    "\n",
    "keep_fp32_encoder = get_keep_fp32_nodes(onnx_model_path=encoder_model_path, get_input=get_random_input_encoder)\n",
    "assert len(keep_fp32_encoder) > 0\n",
    "enc_model_onnx = convert_fp16(onnx_model=encoder_model_path, nodes_to_exclude=keep_fp32_encoder)\n",
    "save_onnx(proto=enc_model_onnx, model_path=encoder_fp16_model_path, clean=False)\n",
    "\n",
    "del enc_model_onnx\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:09:26.781118Z",
     "iopub.status.busy": "2022-06-25T23:09:26.780819Z",
     "iopub.status.idle": "2022-06-25T23:09:26.786044Z",
     "shell.execute_reply": "2022-06-25T23:09:26.785319Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "20 first nodes to keep in FP32 (total 1255):\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "['Pow_29',\n",
       " 'Log_89',\n",
       " 'Div_91',\n",
       " 'Mul_93',\n",
       " 'Softmax_109',\n",
       " 'MatMul_110',\n",
       " 'Transpose_111',\n",
       " 'Reshape_115',\n",
       " 'Pow_120',\n",
       " 'Mul_128',\n",
       " 'Pow_135',\n",
       " 'Mul_143',\n",
       " 'Softmax_168',\n",
       " 'Pow_179',\n",
       " 'Pow_194',\n",
       " 'Softmax_227',\n",
       " 'Pow_238',\n",
       " 'Mul_246',\n",
       " 'Pow_253',\n",
       " 'Softmax_286']"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_encoder)}):\")\n",
    "keep_fp32_encoder[:20]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "Compare the output of the `ONNX` `FP16` model with `Pytorch` one"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:09:26.792026Z",
     "iopub.status.busy": "2022-06-25T23:09:26.791846Z",
     "iopub.status.idle": "2022-06-25T23:09:28.357582Z",
     "shell.execute_reply": "2022-06-25T23:09:28.356930Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
    "enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
    "enc_onnx_out = inference_onnx_binding(\n",
    "    model_onnx=enc_fp16_onnx,\n",
    "    binding=enc_fp16_onnx_binding,\n",
    "    inputs={\"input_ids\": input_ids},\n",
    "    device=input_ids.device.type,\n",
    ")[\"output\"]\n",
    "are_equal(a=enc_onnx_out, b=out_enc.last_hidden_state)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Conversion of decoder module to mixed precision\n",
    "\n",
    "Decoder module has different kinds of inputs, `input_ids` but also some float tensors.\n",
    "It would a bit more complicated to generate random values for those tensors: in theory it can be of any value in the FP32 range, but because of how models are initialized and trained, most of them are close to 0.\n",
    "\n",
    "To avoid too  much guessing, we have decided to just take the output of the real model being fed with random `input_ids`.\n",
    "\n",
    "### Conversion of the decoder module without cache support\n",
    "\n",
    "This is the easiest part, it takes as input encoder output and `input_ids`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:09:28.360273Z",
     "iopub.status.busy": "2022-06-25T23:09:28.360078Z",
     "iopub.status.idle": "2022-06-25T23:21:19.962781Z",
     "shell.execute_reply": "2022-06-25T23:21:19.962002Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "def get_random_input_no_cache() -> Dict[str, torch.Tensor]:\n",
    "    inputs = get_random_input_encoder()\n",
    "    encoder_hidden_states = inference_onnx_binding(\n",
    "        model_onnx=enc_fp16_onnx,\n",
    "        binding=enc_fp16_onnx_binding,\n",
    "        inputs=inputs,\n",
    "        device=\"cuda\",\n",
    "        clone_tensor=False,\n",
    "    )[\"output\"]\n",
    "    # it will serve as input of a FP32 model\n",
    "    inputs[\"encoder_hidden_states\"] = encoder_hidden_states.type(torch.float32)\n",
    "    return inputs\n",
    "\n",
    "\n",
    "keep_fp32_no_cache = get_keep_fp32_nodes(onnx_model_path=dec_no_cache_model_path, get_input=get_random_input_no_cache)\n",
    "\n",
    "onnx_model_no_cache_fp16 = convert_fp16(onnx_model=dec_no_cache_model_path, nodes_to_exclude=keep_fp32_no_cache)\n",
    "save_onnx(proto=onnx_model_no_cache_fp16, model_path=dec_no_cache_fp16_model_path, clean=False)\n",
    "del onnx_model_no_cache_fp16"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:21:19.967983Z",
     "iopub.status.busy": "2022-06-25T23:21:19.967479Z",
     "iopub.status.idle": "2022-06-25T23:21:19.973357Z",
     "shell.execute_reply": "2022-06-25T23:21:19.972838Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "20 first nodes to keep in FP32 (total 2063):\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "['Constant_74',\n",
       " 'Pow_78',\n",
       " 'Log_135',\n",
       " 'Div_137',\n",
       " 'Mul_139',\n",
       " 'Softmax_154',\n",
       " 'Pow_165',\n",
       " 'Softmax_212',\n",
       " 'Pow_223',\n",
       " 'Pow_238',\n",
       " 'MatMul_250',\n",
       " 'Reshape_254',\n",
       " 'Transpose_255',\n",
       " 'Softmax_272',\n",
       " 'Pow_283',\n",
       " 'Softmax_317',\n",
       " 'Pow_328',\n",
       " 'Pow_343',\n",
       " 'Softmax_377',\n",
       " 'Pow_388']"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_no_cache)}):\")\n",
    "keep_fp32_no_cache[:20]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "### Conversion of the decoder module with cache support\n",
    "\n",
    "This module requires output from `encoder` but also from `decoder` module without cache support (as the cache is supposed not to be empty).\n",
    "\n",
    "It introduces a new challenge: memory footprint. Indeed, we need to load 3 `Onnx` files in RAM: \n",
    "\n",
    "* encoder: to generate module input;\n",
    "* decoder without cache support: to generate module input;\n",
    "* decoder with cache support: to perform the search of nodes to keep in `FP32`.\n",
    "\n",
    "To limit RAM usage, we will use a trick explained in detail below where we share weights between the 2 decoder modules.\n",
    "\n",
    "Below we perform this merge:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:21:19.975670Z",
     "iopub.status.busy": "2022-06-25T23:21:19.975468Z",
     "iopub.status.idle": "2022-06-25T23:22:13.229475Z",
     "shell.execute_reply": "2022-06-25T23:22:13.228253Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "6775"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dec_cache_model: onnx.ModelProto = onnx.load_model(f=dec_cache_model_path, load_external_data=False)\n",
    "dec_no_cache_model: onnx.ModelProto = onnx.load_model(f=dec_no_cache_model_path, load_external_data=False)\n",
    "assert len(dec_cache_model.graph.output) == len(dec_no_cache_model.graph.output)\n",
    "original_nb_output_nodes = len(dec_cache_model.graph.output)\n",
    "\n",
    "dec_cache_model_fp32_all_nodes = add_output_nodes(model=dec_cache_model)\n",
    "dec_cache_model_fp32_all_nodes_path = dec_cache_model_path + \"_all_nodes.onnx\"\n",
    "save_onnx(proto=dec_cache_model_fp32_all_nodes, model_path=dec_cache_model_fp32_all_nodes_path, clean=False)\n",
    "# reload after shape inference\n",
    "dec_cache_model_fp32_all_nodes = onnx.load_model(f=dec_cache_model_fp32_all_nodes_path, load_external_data=False)\n",
    "\n",
    "ort_np_type_mapping = {\n",
    "    onnx.TensorProto.FLOAT: float,\n",
    "    onnx.TensorProto.INT64: np.int64,\n",
    "    onnx.TensorProto.INT32: np.int32,\n",
    "    onnx.TensorProto.BOOL: bool,\n",
    "}\n",
    "\n",
    "\n",
    "# If node requires that the 2 models merged have the exact same number/type of output nodes\n",
    "# Above we added many output nodes to the model with cache support...\n",
    "# ... we need to add fake output nodes to the other decoder model.\n",
    "no_cache_output_nodes = {item.name: item for item in dec_no_cache_model.graph.output}\n",
    "\n",
    "while dec_no_cache_model.graph.output:\n",
    "    dec_no_cache_model.graph.output.pop()\n",
    "\n",
    "nb_outputs_to_create = len(dec_cache_model_fp32_all_nodes.graph.output)\n",
    "nodes_to_be_added = list()\n",
    "for i in range(nb_outputs_to_create):\n",
    "    node_name = dec_cache_model_fp32_all_nodes.graph.output[i].name\n",
    "    if node_name in no_cache_output_nodes:\n",
    "        node_to_insert = no_cache_output_nodes[node_name]\n",
    "        nodes_to_be_added.append(node_to_insert)\n",
    "    else:\n",
    "        fake_node_name = f\"output_{node_name}\"\n",
    "        fake_node_ort_type = dec_cache_model_fp32_all_nodes.graph.output[i].type.tensor_type.elem_type\n",
    "        fake_node_np_type = ort_np_type_mapping[fake_node_ort_type]\n",
    "        fake_data = np.array([1.0], dtype=fake_node_np_type)\n",
    "        fake_node = onnx.helper.make_node(\n",
    "            op_type=\"Constant\",\n",
    "            inputs=[],\n",
    "            outputs=[fake_node_name],\n",
    "            value=onnx.helper.make_tensor(\n",
    "                name=\"const_tensor\",\n",
    "                data_type=fake_node_ort_type,\n",
    "                dims=fake_data.shape,\n",
    "                vals=fake_data.flatten(),\n",
    "            ),\n",
    "            name=fake_node_name,\n",
    "        )\n",
    "        dec_no_cache_model.graph.node.append(fake_node)\n",
    "        nodes_to_be_added.append(onnx.ValueInfoProto(name=fake_node_name))\n",
    "\n",
    "\n",
    "dec_no_cache_model.graph.output.extend(nodes_to_be_added)\n",
    "\n",
    "dec_no_cache_model_fp32_all_nodes_path = dec_no_cache_model_path + \"_all_nodes.onnx\"\n",
    "save_onnx(proto=dec_no_cache_model, model_path=dec_no_cache_model_fp32_all_nodes_path, clean=False)\n",
    "\n",
    "# now that each model has the same number of output nodes, we can merge them!\n",
    "merge_autoregressive_model_graphs(\n",
    "    model_cache_path=dec_cache_model_fp32_all_nodes_path,\n",
    "    model_no_cache_path=dec_no_cache_model_fp32_all_nodes_path,\n",
    "    output_path=dec_if_model_path,\n",
    ")\n",
    "del dec_cache_model_fp32_all_nodes, dec_no_cache_model, dec_cache_model\n",
    "\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:22:13.233449Z",
     "iopub.status.busy": "2022-06-25T23:22:13.233130Z",
     "iopub.status.idle": "2022-06-25T23:30:20.275528Z",
     "shell.execute_reply": "2022-06-25T23:30:20.274874Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "dec_if_ort_model = create_model_for_provider(dec_if_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
    "\n",
    "# use info from tokenizer size and max shape provided through the command line\n",
    "\n",
    "\n",
    "def get_random_input_cache() -> Dict[str, torch.Tensor]:\n",
    "    inputs = get_random_input_no_cache()\n",
    "    inputs[\"enable_cache\"] = torch.tensor([False], device=\"cuda\")\n",
    "    dec_past_states = inference_onnx_binding(\n",
    "        model_onnx=dec_if_ort_model,\n",
    "        inputs=inputs,\n",
    "        device=\"cuda\",\n",
    "        clone_tensor=False,\n",
    "    )\n",
    "    for k, v in dec_past_states.items():\n",
    "        if \"present\" not in k:\n",
    "            continue\n",
    "        new_k = k.replace(\"present\", \"past_key_values\")\n",
    "        inputs[new_k] = v\n",
    "    batch, _ = inputs[\"input_ids\"].shape\n",
    "    complement = torch.randint(low=0, high=tokenizer.vocab_size, size=(batch, 1), dtype=torch.int32, device=\"cuda\")\n",
    "    inputs[\"input_ids\"] = torch.concat(tensors=[inputs[\"input_ids\"], complement], dim=1)\n",
    "    inputs[\"enable_cache\"] = torch.tensor([True], device=\"cuda\")\n",
    "    return inputs\n",
    "\n",
    "\n",
    "keep_fp32_cache = search_fp32_nodes(\n",
    "    original_model=dec_if_model_path,\n",
    "    modified_model_session=dec_if_ort_model,\n",
    "    get_input=get_random_input_cache,\n",
    "    early_stop=100,\n",
    ")\n",
    "\n",
    "\n",
    "# the output node names are those from the decoder module without cache support\n",
    "# basically it's the fake node names we added above, we need to remove the output_ prefix to their names\n",
    "keep_fp32_cache = [item.replace(\"output_\", \"\") for item in keep_fp32_cache]\n",
    "\n",
    "\n",
    "del dec_if_ort_model, enc_fp16_onnx, enc_fp16_onnx_binding\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()\n",
    "\n",
    "onnx_model_cache_fp16 = convert_fp16(onnx_model=dec_cache_model_path, nodes_to_exclude=keep_fp32_cache)\n",
    "save_onnx(proto=onnx_model_cache_fp16, model_path=dec_cache_fp16_model_path, clean=False)\n",
    "\n",
    "del onnx_model_cache_fp16\n",
    "gc.collect()\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:30:20.279738Z",
     "iopub.status.busy": "2022-06-25T23:30:20.279249Z",
     "iopub.status.idle": "2022-06-25T23:30:20.284321Z",
     "shell.execute_reply": "2022-06-25T23:30:20.283807Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "20 first nodes to keep in FP32 (total 1306):\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "['onnx::Mul_515',\n",
       " 'onnx::ReduceMean_519',\n",
       " 'onnx::Div_612',\n",
       " 'onnx::Mul_614',\n",
       " 'onnx::Cast_616',\n",
       " 'onnx::MatMul_645',\n",
       " 'onnx::ReduceMean_666',\n",
       " 'onnx::MatMul_732',\n",
       " 'onnx::ReduceMean_750',\n",
       " 'onnx::ReduceMean_767',\n",
       " 'onnx::Add_768',\n",
       " 'onnx::Sqrt_770',\n",
       " 'onnx::MatMul_833',\n",
       " 'onnx::ReduceMean_851',\n",
       " 'onnx::Add_852',\n",
       " 'onnx::Sqrt_854',\n",
       " 'onnx::MatMul_883',\n",
       " 'onnx::ReduceMean_901',\n",
       " 'onnx::Add_902',\n",
       " 'onnx::Sqrt_904']"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(f\"20 first nodes to keep in FP32 (total {len(keep_fp32_cache)}):\")\n",
    "keep_fp32_cache[:20]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Merge `ONNX` computation graph to deduplicate weights\n",
    "\n",
    "Finally, we will merge the 2 decoders together.\n",
    "The idea is simple:\n",
    "\n",
    "* we prefix the node / edge names of one of them to avoid naming collision\n",
    "* we deduplicate the weights (the same weight matrix will have different names in the 2 models)\n",
    "* we join the 2 computation graphs through an `If` node\n",
    "* we generate the `ONNX` file\n",
    "\n",
    "The new model will take a new input, `enable_cache`. When it contains a `True` value, computation graph with cache support is used.\n",
    "\n",
    "> code below is written to be easy to read, but could be made much faster to run"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:30:20.287722Z",
     "iopub.status.busy": "2022-06-25T23:30:20.287499Z",
     "iopub.status.idle": "2022-06-25T23:30:55.187877Z",
     "shell.execute_reply": "2022-06-25T23:30:55.187290Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "merge_autoregressive_model_graphs(\n",
    "    model_cache_path=dec_cache_fp16_model_path,\n",
    "    model_no_cache_path=dec_no_cache_fp16_model_path,\n",
    "    output_path=dec_if_fp16_model_path,\n",
    ")\n",
    "\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "### Check `ONNX` decoder output\n",
    "\n",
    "Compare `ONNX` output with and without cache, plus compare with `Pytorch` output."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:30:55.192078Z",
     "iopub.status.busy": "2022-06-25T23:30:55.191597Z",
     "iopub.status.idle": "2022-06-25T23:30:56.622668Z",
     "shell.execute_reply": "2022-06-25T23:30:56.621901Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "pytorch_model = pytorch_model.cuda()\n",
    "model_decoder = model_decoder.cuda()\n",
    "input_ids = input_ids.cuda()\n",
    "pytorch_model = pytorch_model.eval()\n",
    "model_decoder = model_decoder.eval()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Zero copy output\n",
    "\n",
    "Below, we check that the new model output is similar to the ones from `Pytorch`.\n",
    "\n",
    "We use our new implementation of inference call.  \n",
    "The idea is the following:\n",
    "\n",
    "* we ask `ONNX Runtime` to output a pointer to the `CUDA` array containing the result of the inference;\n",
    "* we use `Cupy` API to wrap the array and provide information regarding tensor shape and type. `Cupy` doesn't own the data;\n",
    "* we use `Dlpack` support to convert the `Cupy` tensor to `Pytorch`, another zero copy process.\n",
    "\n",
    "This pipeline is unsafe, as the content of the tensor may change or disappear silently: only `ONNX Runtime` has the control of the array containing the data. It will happen at the next inference call. Because we know that during the text generation we discard each output before recalling `ONNX Runtime`, it works well in our case.\n",
    "\n",
    "A second benefit of this approach is that we do not have anymore to guess the output shape.  \n",
    "Before using this approach, to avoid the output to be stored on host memory (RAM) which made inference slower, we had to provide `ONNX Runtime` with a pointer to `Pytorch` tensor with the right size. As the size change with the sequence length (so it changes for each generated token), we had to store the logic to guess the size somewhere in the code. The new approach frees us from this burden."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:30:56.627680Z",
     "iopub.status.busy": "2022-06-25T23:30:56.627098Z",
     "iopub.status.idle": "2022-06-25T23:30:58.826841Z",
     "shell.execute_reply": "2022-06-25T23:30:58.826297Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "with torch.inference_mode():\n",
    "    out_enc_pytorch: BaseModelOutputWithPastAndCrossAttentions = pytorch_model.encoder(input_ids=input_ids)\n",
    "    previous_step_pytorch: BaseModelOutputWithPastAndCrossAttentions = model_decoder(\n",
    "        input_ids=input_ids[:, :-1], encoder_hidden_states=out_enc_pytorch.last_hidden_state\n",
    "    )\n",
    "    out_dec_pytorch: BaseModelOutputWithPastAndCrossAttentions = model_decoder(\n",
    "        input_ids=input_ids, encoder_hidden_states=out_enc_pytorch.last_hidden_state\n",
    "    )\n",
    "pytorch_model = pytorch_model.cpu()\n",
    "model_decoder = model_decoder.cpu()\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:30:58.830668Z",
     "iopub.status.busy": "2022-06-25T23:30:58.830474Z",
     "iopub.status.idle": "2022-06-25T23:31:28.358065Z",
     "shell.execute_reply": "2022-06-25T23:31:28.357374Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
    "enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
    "dec_onnx = create_model_for_provider(dec_if_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
    "dec_onnx_binding: IOBinding = dec_onnx.io_binding()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:28.362691Z",
     "iopub.status.busy": "2022-06-25T23:31:28.362409Z",
     "iopub.status.idle": "2022-06-25T23:31:29.072363Z",
     "shell.execute_reply": "2022-06-25T23:31:29.071563Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "def decoder_pytorch_inference(decoder_input_ids: torch.Tensor, encoder_hidden_states: torch.Tensor, **_):\n",
    "    with torch.inference_mode():\n",
    "        return model_decoder(input_ids=decoder_input_ids, encoder_hidden_states=encoder_hidden_states)\n",
    "\n",
    "\n",
    "def decoder_onnx_inference(\n",
    "    decoder_input_ids: torch.Tensor,\n",
    "    encoder_hidden_states: torch.Tensor,\n",
    "    enable_cache: torch.Tensor,\n",
    "    past_key_values: Optional[torch.Tensor],\n",
    "):\n",
    "    inputs_onnx_dict = {\n",
    "        \"input_ids\": decoder_input_ids,\n",
    "        \"encoder_hidden_states\": encoder_hidden_states,\n",
    "        \"enable_cache\": enable_cache,\n",
    "    }\n",
    "\n",
    "    if past_key_values is not None:\n",
    "        for index, (k_dec, v_dec, k_enc, v_enc) in enumerate(past_key_values):\n",
    "            inputs_onnx_dict[f\"past_key_values.{index}.decoder.key\"] = k_dec\n",
    "            inputs_onnx_dict[f\"past_key_values.{index}.decoder.value\"] = v_dec\n",
    "            inputs_onnx_dict[f\"past_key_values.{index}.encoder.key\"] = k_enc\n",
    "            inputs_onnx_dict[f\"past_key_values.{index}.encoder.value\"] = v_enc\n",
    "\n",
    "    result_dict = inference_onnx_binding(\n",
    "        model_onnx=dec_onnx,\n",
    "        inputs=inputs_onnx_dict,\n",
    "        binding=dec_onnx_binding,  # recycle the binding\n",
    "        device=decoder_input_ids.device.type,\n",
    "        clone_tensor=False,  # no memory copy -> best perf and lowest memory footprint!\n",
    "    )\n",
    "    past_states = list()\n",
    "    for index in range(pytorch_model.config.num_layers):\n",
    "        kv = (\n",
    "            result_dict[f\"present.{index}.decoder.key\"],\n",
    "            result_dict[f\"present.{index}.decoder.value\"],\n",
    "            result_dict[f\"present.{index}.encoder.key\"],\n",
    "            result_dict[f\"present.{index}.encoder.value\"],\n",
    "        )\n",
    "        past_states.append(kv)\n",
    "    return BaseModelOutputWithPastAndCrossAttentions(\n",
    "        last_hidden_state=result_dict[\"logits\"],\n",
    "        past_key_values=past_states,\n",
    "    )\n",
    "\n",
    "\n",
    "out_dec_onnx_no_cache = decoder_onnx_inference(\n",
    "    decoder_input_ids=input_ids,\n",
    "    encoder_hidden_states=out_enc_pytorch.last_hidden_state.half(),\n",
    "    enable_cache=torch.tensor([False], device=\"cuda\", dtype=torch.bool),\n",
    "    past_key_values=None,\n",
    ")\n",
    "are_equal(a=out_dec_onnx_no_cache.last_hidden_state[:, -1:, :], b=out_dec_pytorch.last_hidden_state[:, -1:, :])\n",
    "\n",
    "# check that past states are identical between ONNX and Pytorch\n",
    "assert len(out_dec_onnx_no_cache.past_key_values) == len(out_dec_pytorch.past_key_values)\n",
    "for (o_dec_k, o_dev_v, o_enc_k, o_enc_v), (p_dec_k, p_dev_v, p_enc_k, p_enc_v) in zip(\n",
    "    out_dec_onnx_no_cache.past_key_values, out_dec_pytorch.past_key_values\n",
    "):\n",
    "    are_equal(a=o_dec_k, b=p_dec_k)\n",
    "    are_equal(a=o_dev_v, b=p_dev_v)\n",
    "    are_equal(a=o_enc_k, b=p_enc_k)\n",
    "    are_equal(a=o_enc_v, b=p_enc_v)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:29.077196Z",
     "iopub.status.busy": "2022-06-25T23:31:29.076902Z",
     "iopub.status.idle": "2022-06-25T23:31:29.758912Z",
     "shell.execute_reply": "2022-06-25T23:31:29.758374Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# convert ONNX inputs to FP16\n",
    "previous_step_pytorch.past_key_values = tuple(\n",
    "    [tuple([past.half() for past in layer_state]) for layer_state in previous_step_pytorch.past_key_values]\n",
    ")\n",
    "out_enc_pytorch.last_hidden_state = out_enc_pytorch.last_hidden_state.half()\n",
    "\n",
    "out_dec_onnx_cache = decoder_onnx_inference(\n",
    "    decoder_input_ids=input_ids[:, -1:],\n",
    "    encoder_hidden_states=out_enc_pytorch.last_hidden_state,\n",
    "    enable_cache=torch.tensor([True], device=\"cuda\", dtype=torch.bool),\n",
    "    past_key_values=previous_step_pytorch.past_key_values,\n",
    ")\n",
    "\n",
    "are_equal(a=out_dec_onnx_cache.last_hidden_state[:, -1:, :], b=out_dec_pytorch.last_hidden_state[:, -1:, :])\n",
    "\n",
    "# check that past states are identical between ONNX and Pytorch\n",
    "assert len(out_dec_onnx_cache.past_key_values) == len(out_dec_pytorch.past_key_values)\n",
    "for (o_dec_k, o_dev_v, o_enc_k, o_enc_v), (p_dec_k, p_dev_v, p_enc_k, p_enc_v) in zip(\n",
    "    out_dec_onnx_cache.past_key_values, out_dec_pytorch.past_key_values\n",
    "):\n",
    "    are_equal(a=o_dec_k, b=p_dec_k)\n",
    "    are_equal(a=o_dev_v, b=p_dev_v)\n",
    "    are_equal(a=o_enc_k, b=p_enc_k)\n",
    "    are_equal(a=o_enc_v, b=p_enc_v)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Benchmarks!\n",
    "\n",
    "Finally, we will compare the performances of 4 setup in end-to-end scenarii:\n",
    "\n",
    "* `Pytorch`\n",
    "* `Pytorch` + cache\n",
    "* `ONNX`\n",
    "* `ONNX` + cache\n",
    "\n",
    "For the comparison, we first do a sanity check by just generating a short sequence (we already have checked that output tensors are OK).\n",
    "\n",
    "Then we force each model to generate:\n",
    "\n",
    "* 256 tokens + batch size 1 (similar to `TensorRT` demo)\n",
    "* 1000 tokens + batch size 4\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:29.763346Z",
     "iopub.status.busy": "2022-06-25T23:31:29.763084Z",
     "iopub.status.idle": "2022-06-25T23:31:31.363367Z",
     "shell.execute_reply": "2022-06-25T23:31:31.362735Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "text generated by ONNX:\n",
      "L'apprentissage par transfert, où un modèle est d'abord préentraîné sur une tâche riche en données avant sa mise au point à l'égard de tâches ultérieures, est devenue une technique puissante dans le domaine du traitement de langue naturelle (PLN).\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "def encoder_onnx_inference(input_ids: torch.Tensor, **_) -> BaseModelOutputWithPastAndCrossAttentions:\n",
    "    last_hidden_state = inference_onnx_binding(\n",
    "        model_onnx=enc_fp16_onnx,  # noqa: F821\n",
    "        inputs={\"input_ids\": input_ids},\n",
    "        device=input_ids.device.type,\n",
    "        binding=enc_fp16_onnx_binding,\n",
    "    )[\"output\"]\n",
    "    return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=last_hidden_state.type(torch.float16))\n",
    "\n",
    "\n",
    "def encoder_pytorch_inference(input_ids, **_) -> BaseModelOutputWithPastAndCrossAttentions:\n",
    "    with torch.inference_mode():\n",
    "        res = pytorch_model.encoder(input_ids=input_ids).type(torch.float16)\n",
    "        return res\n",
    "\n",
    "\n",
    "# https://github.com/NVIDIA/TensorRT/blob/main/demo/HuggingFace/T5/export.py\n",
    "class ExtT5(torch.nn.Module, GenerationMixin):\n",
    "    def __init__(self, config: PretrainedConfig, device: torch.device, encoder_func: Callable, decoder_func: Callable):\n",
    "        super(ExtT5, self).__init__()\n",
    "        self.main_input_name = \"input_ids\"  # https://github.com/huggingface/transformers/pull/14803\n",
    "        self.config: PretrainedConfig = config\n",
    "        self.device: torch.device = device\n",
    "\n",
    "        self.encoder_func = encoder_func\n",
    "        self.decoder_func = decoder_func\n",
    "        self.use_cache = True\n",
    "        self.timings = list()\n",
    "\n",
    "    def get_encoder(self):\n",
    "        return self.encoder_func\n",
    "\n",
    "    def get_decoder(self):\n",
    "        return self.decoder_func\n",
    "\n",
    "    def set_cache(self, enable: bool) -> None:\n",
    "        self.use_cache = enable\n",
    "\n",
    "    # from transformers library (modeling_t5.py)\n",
    "    def _reorder_cache(self, past, beam_idx):\n",
    "        reordered_decoder_past = ()\n",
    "        for layer_past_states in past:\n",
    "            # get the correct batch idx from layer past batch dim\n",
    "            # batch dim of `past` is at 2nd position\n",
    "            reordered_layer_past_states = ()\n",
    "            for layer_past_state in layer_past_states:\n",
    "                # need to set correct `past` for each of the four key / value states\n",
    "                reordered_layer_past_states = reordered_layer_past_states + (\n",
    "                    layer_past_state.index_select(0, beam_idx),\n",
    "                )\n",
    "\n",
    "            assert reordered_layer_past_states[0].shape == layer_past_states[0].shape\n",
    "            assert len(reordered_layer_past_states) == len(layer_past_states)\n",
    "\n",
    "            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)\n",
    "        return reordered_decoder_past\n",
    "\n",
    "    def prepare_inputs_for_generation(self, input_ids, past=None, use_cache=None, **kwargs) -> Dict[str, torch.Tensor]:\n",
    "        params = {\n",
    "            \"encoder_hidden_states\": kwargs[\"encoder_outputs\"][\"last_hidden_state\"],\n",
    "        }\n",
    "        if past is None:  # this is the 1st inferred token\n",
    "            self.timings = list()\n",
    "        if not self.use_cache:\n",
    "            past = None\n",
    "        if past is None:\n",
    "            params[self.main_input_name] = input_ids\n",
    "            params[\"enable_cache\"] = torch.tensor([False], device=\"cuda\", dtype=torch.bool)\n",
    "        else:\n",
    "            params[self.main_input_name] = input_ids[:, -1:]\n",
    "            params[\"enable_cache\"] = torch.tensor([True], device=\"cuda\", dtype=torch.bool)\n",
    "            params[\"past_key_values\"] = past\n",
    "\n",
    "        return params\n",
    "\n",
    "    def forward(\n",
    "        self,\n",
    "        input_ids: torch.Tensor,\n",
    "        encoder_hidden_states: torch.Tensor,\n",
    "        enable_cache: torch.Tensor,\n",
    "        past_key_values: Optional[torch.Tensor] = None,\n",
    "        **_,\n",
    "    ):\n",
    "        start_timer = time.monotonic()\n",
    "        dec_output = self.get_decoder()(\n",
    "            decoder_input_ids=input_ids,\n",
    "            encoder_hidden_states=encoder_hidden_states,\n",
    "            enable_cache=enable_cache,\n",
    "            past_key_values=past_key_values,\n",
    "        )\n",
    "        self.timings.append(time.monotonic() - start_timer)\n",
    "        return Seq2SeqLMOutput(logits=dec_output.last_hidden_state, past_key_values=dec_output.past_key_values)\n",
    "\n",
    "\n",
    "model_gen = (\n",
    "    ExtT5(\n",
    "        config=pytorch_model.config,\n",
    "        device=pytorch_model.device,\n",
    "        encoder_func=encoder_onnx_inference,  # encoder_pytorch_inference\n",
    "        decoder_func=decoder_onnx_inference,  # decoder_pytorch_inference\n",
    "    )\n",
    "    .cuda()\n",
    "    .eval()\n",
    ")\n",
    "\n",
    "torch.cuda.synchronize()\n",
    "with torch.inference_mode():\n",
    "    print(\"text generated by ONNX:\")\n",
    "    onnx_tokens = model_gen.generate(\n",
    "        inputs=input_ids,\n",
    "        min_length=10,\n",
    "        max_length=128,\n",
    "        num_beams=2,\n",
    "        no_repeat_ngram_size=2,\n",
    "    )[0]\n",
    "    print(tokenizer.decode(onnx_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True))\n",
    "    print(\"\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:31.367833Z",
     "iopub.status.busy": "2022-06-25T23:31:31.367648Z",
     "iopub.status.idle": "2022-06-25T23:31:42.820566Z",
     "shell.execute_reply": "2022-06-25T23:31:42.820023Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "seq len: 128 / # beam (batch size): 1\n",
      "ONNX: 2.9, including inference: 2.8 (97.2%)\n",
      "ONNX + cache: 1.4, including inference: 1.3 (94.4%)\n",
      "seq len: 128 / # beam (batch size): 2\n",
      "ONNX: 4.7, including inference: 4.4 (94.5%)\n",
      "ONNX + cache: 1.7, including inference: 1.4 (85.1%)\n"
     ]
    }
   ],
   "source": [
    "def print_timings(name: str, total: float, inference: float):\n",
    "    percent_inference = 100 * inference / total\n",
    "    print(f\"{name}: {total:.1f}, including inference: {inference:.1f} ({percent_inference:.1f}%)\")\n",
    "\n",
    "\n",
    "all_timings: Dict[str, Dict[str, List[float]]] = defaultdict(dict)\n",
    "for seq_len, num_beam in benchmark_tasks:\n",
    "    timings_key = f\"{seq_len} / {num_beam}\"\n",
    "\n",
    "    print(f\"seq len: {seq_len} / # beam (batch size): {num_beam}\")\n",
    "    task = \"ONNX\"\n",
    "    with nvtx.annotate(\n",
    "        task, color=\"red\"\n",
    "    ):  # nvtx is for Nvidia nsight profiler, you can remove the line or install the library\n",
    "        model_gen.set_cache(enable=False)\n",
    "        # warmup\n",
    "        model_gen.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
    "        start = time.monotonic()\n",
    "        model_gen.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
    "        total_time = time.monotonic() - start\n",
    "        print_timings(name=task, total=total_time, inference=sum(model_gen.timings))\n",
    "        all_timings[timings_key][f\"{task}\"] = model_gen.timings\n",
    "\n",
    "    task = \"ONNX + cache\"\n",
    "    with nvtx.annotate(task, color=\"red\"):\n",
    "        model_gen.set_cache(enable=True)\n",
    "        # warmup\n",
    "        model_gen.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
    "        start = time.monotonic()\n",
    "        model_gen.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
    "        total_time = time.monotonic() - start\n",
    "        print_timings(name=task, total=total_time, inference=sum(model_gen.timings))\n",
    "        all_timings[timings_key][f\"{task}\"] = model_gen.timings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:42.823167Z",
     "iopub.status.busy": "2022-06-25T23:31:42.822970Z",
     "iopub.status.idle": "2022-06-25T23:31:44.648023Z",
     "shell.execute_reply": "2022-06-25T23:31:44.647389Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "del enc_fp16_onnx, enc_fp16_onnx_binding, dec_onnx, dec_onnx_binding\n",
    "\n",
    "pytorch_model = pytorch_model.cuda()\n",
    "model_decoder = model_decoder.cuda()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:44.651402Z",
     "iopub.status.busy": "2022-06-25T23:31:44.651208Z",
     "iopub.status.idle": "2022-06-25T23:31:47.566756Z",
     "shell.execute_reply": "2022-06-25T23:31:47.566232Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "text generated by Pytorch:\n",
      "L'apprentissage par transfert, où un modèle est d'abord préentraîné sur une tâche riche en données avant sa mise au point à l'égard de tâches ultérieures, est devenue une technique puissante dans le domaine du traitement de la langue naturelle (PLN).\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "torch.cuda.synchronize()\n",
    "with torch.inference_mode():\n",
    "    print(\"text generated by Pytorch:\")\n",
    "    pytorch_tokens = pytorch_model.generate(\n",
    "        inputs=input_ids,\n",
    "        min_length=10,\n",
    "        max_length=128,\n",
    "        num_beams=2,\n",
    "        no_repeat_ngram_size=2,\n",
    "    )[0]\n",
    "    print(tokenizer.decode(pytorch_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True))\n",
    "    print(\"\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:31:47.571595Z",
     "iopub.status.busy": "2022-06-25T23:31:47.571410Z",
     "iopub.status.idle": "2022-06-25T23:32:07.257300Z",
     "shell.execute_reply": "2022-06-25T23:32:07.256672Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pytorch: 4.1, including inference: 4.0 (98.6%)\n",
      "Pytorch + cache: 3.5, including inference: 3.4 (98.3%)\n",
      "Pytorch: 4.3, including inference: 4.2 (97.8%)\n",
      "Pytorch + cache: 3.7, including inference: 3.6 (95.7%)\n"
     ]
    }
   ],
   "source": [
    "for seq_len, num_beam in benchmark_tasks:\n",
    "    timings_key = f\"{seq_len} / {num_beam}\"\n",
    "\n",
    "    # monckey patching of forward function to add a timer per generated token\n",
    "    old_fw = pytorch_model.forward\n",
    "    timing_pytorch = list()\n",
    "\n",
    "    def new_fw(self, *args, **kwargs):\n",
    "        timer_start = time.monotonic()\n",
    "        res = old_fw(self, *args, **kwargs)\n",
    "        torch.cuda.synchronize()  # makes timings correct without having significant impact on e2e latency\n",
    "        total_time = time.monotonic() - timer_start\n",
    "        timing_pytorch.append(total_time)\n",
    "        return res\n",
    "\n",
    "    task = \"Pytorch\"\n",
    "    with nvtx.annotate(task, color=\"orange\"):\n",
    "        pytorch_model.config.use_cache = False\n",
    "        with torch.inference_mode():\n",
    "            with torch.cuda.amp.autocast():\n",
    "                # warmup\n",
    "                pytorch_model.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
    "                pytorch_model.forward = new_fw.__get__(pytorch_model)\n",
    "                start = time.monotonic()\n",
    "                pytorch_model.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
    "                total_time = time.monotonic() - start\n",
    "                pytorch_model.forward = old_fw\n",
    "                inference_time = np.sum(timing_pytorch)\n",
    "                print_timings(name=\"Pytorch\", total=total_time, inference=inference_time)\n",
    "        timing_pytorch_no_cache = copy(timing_pytorch)\n",
    "        all_timings[timings_key][f\"{task}\"] = copy(timing_pytorch)\n",
    "        timing_pytorch.clear()\n",
    "    torch.cuda.empty_cache()\n",
    "\n",
    "    task = \"Pytorch + cache\"\n",
    "    with nvtx.annotate(\"Pytorch + cache\", color=\"green\"):\n",
    "        pytorch_model.config.use_cache = True\n",
    "        with torch.inference_mode():\n",
    "            with torch.cuda.amp.autocast():\n",
    "                # warmup\n",
    "                pytorch_model.generate(inputs=input_ids, max_length=10, num_beams=num_beam, min_length=10)\n",
    "                pytorch_model.forward = new_fw.__get__(pytorch_model)\n",
    "                start = time.monotonic()\n",
    "                pytorch_model.generate(inputs=input_ids, max_length=seq_len, num_beams=num_beam, min_length=seq_len)\n",
    "                total_time = time.monotonic() - start\n",
    "                pytorch_model.forward = old_fw\n",
    "                print_timings(name=\"Pytorch + cache\", total=total_time, inference=sum(timing_pytorch))\n",
    "        all_timings[timings_key][f\"{task}\"] = copy(timing_pytorch)\n",
    "        timing_pytorch.clear()\n",
    "    torch.cuda.empty_cache()\n",
    "\n",
    "pytorch_model = pytorch_model.cpu()\n",
    "model_decoder = model_decoder.cpu()\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Benchmark analysis\n",
    "\n",
    "Below, we plot for each setup (short and long sequence):\n",
    "\n",
    "* the time spent on each token generation\n",
    "* the full time to generate the sequence (for each length)\n",
    "\n",
    "We can see that for short sequence and batch size of 1, cache or not, latency appears to be stable.\n",
    "However, for longer sequences, we can see that the no cache approach (being `Pytorch` or `ONNX` based) doesn't scale well, and at some point, `ONNX` is even slower than `Hugging Face` code with cache support.\n",
    "\n",
    "On the other side, `ONNX` timings are mostly stable whatever the sequence length which is quite remarkable.\n",
    "It's because we are working one token at a time and converted a quadratic complexity in the attention layer into a linear one."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:32:07.262946Z",
     "iopub.status.busy": "2022-06-25T23:32:07.262462Z",
     "iopub.status.idle": "2022-06-25T23:32:08.269837Z",
     "shell.execute_reply": "2022-06-25T23:32:08.269184Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABCQAAAJICAYAAAC5cDUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD7T0lEQVR4nOzdd5gURf7H8fdm0sISlhxVKAFFEDGCqKceior5Z0CCWc9w6hnu9ExnTmfOARTMOWLGdEZUUNQSVJLksLCkzb8/umdphp60OztpP6/n4WF2uqe7qid017e/VZVVU1ODiIiIiIiIiEgiZSe7ACIiIiIiIiLS+CggISIiIiIiIiIJp4CEiIiIiIiIiCScAhIiIiIiIiIiknAKSIiIiIiIiIhIwikgISIiIiIiIiIJp4CESIIZY3oaY2qMMbnu31ONMScnsTx7GWMWJGv/0TLGTDDGXJPscvhx389tkl2OWAV/FjNJfT8vxpg5xph941mmhuCtZ6zf5WR8940xVxpjJtXxtfV9T58yxhzqPj7eGPNODK+9xhiz3BizuK77TyRjTAdjzM/GmIJkl0VERCScjLsIFakrY8xQ4CagP1AF/Az83Vr7dVILJpKBjDFzgJOtte95nqsB1gM17lNPW2t9g3XGmH7A48DW7lPTgHOstT81WKHrwBgzAZhqrZ1gjBmHU+ehYdafCkyy1j7cAGWpAXpba2fHe9upzhgzANgBOA7AWjsZmBzla7sDFwA9rLVLG6yQcWStXWKM+RA4FbgrltcaY/bC+Qx2bYiyiYiIeClDQgQwxrQEXse5cGsDdAGuAsqSWS6JP2NMljGm0fz2pWH2ww7W2hbuv3CZQwuBI3G+r+2AV4GnE1FASUunAZOttTUR19xSd2BFXYIRSf69mYxT74RKw98cERFJIp00RBx9AKy1T7l/bwBq03ndO5unAF8B44GVwGj3df8BCoALrbUT3fVHAtfg3L1dDTxirb0y1kIZY3YG7nX3swHngvp8d9muwG1AP2AucK61dqq7rBcwAdgR+AKwQJG1dnQU++yME5jZE1gL/Ndae6e77Ep3fxuBw4B5wFhr7TchtnUHcDjQCpiFk3HySTTbMsYMAh4BegNvsumuud9+cnCyW8YCpcCtbh3yrLWV7l3nz4C93GOyvXvRfBcwGFgG/Nta+6y7vQLgWuBonPf2JeA8a+0Gd/mFwPlumS7zlGMITmCrs7W2yn3ucOAKa+0OPuU+ELgF6AascY/1Le6yg3A+Qz2Bn4DTrbUz3GWX4Hwe2wPzgUuttS+5y8ax6bM6BrjPGHOtu60jgSLgB2A/T1GON8b8B2jmluHaEMe5lXvMDsDJZHgIuM5aWx24+4/zeTsJKAHOtNa+5bOdJ3Aaea8ZY6qAq621N/ntMxRrbYm7D4wxWThZTcHdZtoZY94FdgW+BcZYa+eGqNsJOMeoBc73yrusALgR5/MA8CxwsbW2LHA3GfgvcLFbjn9Zax8L2kZf4H4gzxizFqi01hYFrXMtMAzY1RhzOzDBWnuWMWZbQnxWo2WM+dh9ON3NlDgJWOIuu8Cv7JG+B0Hbnwscbq2dZow53j0m21lrZxpjTgIOttYe6q6eb4x5HP/vfV/gPmAg8CfwT2vtqyHqFPI74uMAnO9D4LXj8GSruMfkDJxMiGKcxvxZwF+A14AC93173lo7LsLv71Ri+72ZAKxz67GnW5fjrLW/ucv7A7e7r60A7rDWXucGOi7C+b4XAe+7x2ClW80vga2MMT38Pvd+vz84x/4tT33BOf+sIPJ34C7gPOBd9/f7n9ba19x95QGLgP2std/5vUEiItI4KSAh4vgVqDLGTMS5y/qFtXZV0Dq7AA8DbXGyJ57GuVDdBhgOvGCMecFauxbn4nIMMBPYDucC7Xtr7csxlusOnIvPJ4wxLdxtYYzpArwBnABMwblofsEYs621dhnwJPA5sL9b7jeAVyLtzL3Afc1d91igK/CeMcZaa992VzsEJ8gwHqcxcDdOg8/P18DVOEGZc4HnjDE9rbUbw23LGJMPvIxzEX43MAp4CueC2M8pOA2OgTjH/jmfdU5w17FAc+BH4HL3ue1x3qMf3ZT/G3CCSQNxGgBPuuv+0xgzAvgHzjH/A6dRDoC19mtjzAqc4x5oiJ+A07XAzyPA0dbaT4wxrYFeUBuMeRQ4GPgGJ/j1qnHeiDLgN5yG62LgKGCSMWYba+0id7u74Hw+OwB5OI2O/sDu7mt2Aao95RgKGJyGx1fGmBettT/7lPcunODSVjjfg3dwGhmPePY7ESdj4VTgEWNMl+C70tbaE4wxwwjqsuH62P0c/g8431o7J8Sxwz1WJThBhGyc98jreGAkTsPsJpxG5hbdJdzuH/cBB7rrXo/z2Q+4FOczPhAnCPUKTiDq3+7yjjjHpQtOoOd5Y8zL1tpV1tpxnv2cTpguG9baS40xe+DpsmGMaQ68S+jPalSstXu6je4dAl023IZkyLIT5nvgs4uPcBrg03B+D3/HaVzPdP/+yLNuqO99Hs7vz6M436GhwCvGmJ2stda7syi+I951m+N8tzbbho+DgCFAS7cer1lrpxhjDsDThSGK31+I7fcG4Bh32bc436FrgWOMMYXAezjf4YNxvs/93NecDRzqHt9lwJ3APTi/3bjB2Nk4XVX8AnFb/P5Ya9cF19et89VE/g60AXrgfBfPxnlPXnOXHwgsUjBCpO6mTZv215yc3Ctqamo6oix3SQ/VWVlZi6uqKq8aPHjw26FWUkBCBLDWrjHOGBIX4zQwOxpj3gROsdYucVf7w3Pn8BmcRsrV7sXvO8aYcpzgxPeBO2WuGcaYp3AuGl+OsWgVwDbGmHbW2uU4d5/BudB701r7pvv3u8aYb4AD3X7DQ4B93bJ9bIx5bYst+xsCFFtrr3b//t0Y8xDOxXLgh+TTwH7dO91/D7Uxa6138LpbjTGX4TR8p0fY1q44F963u43Z540x54cp99E4gZsF7rZuwGkkeE2w1s50l48A5njuYn9njHkBOMq98D4VGBC402iMuQ6nMfZPd1+PWWt/dJddidsAcE3EeX/eMsa0Af4KnBmi3BVAP2PMdLcBGAiCnQo8YK39MrBNY8y/3OPykbXWG3B5xhjzT2BnNgWdFlpr73LLVw2cCOxqrf3TXf4/d1lgG1e5d72nG2Om4zRgNgtIGCcL5RhgoLW2FCg1xtyK0/AKBCTmWmsfctefiJPd0wEnCBKN4Tif8WY4DdXXjTEDrbWVoV5grS1yG5xj2bLR9Ya19mO3PJcCq40x3ay184PWOxJ43bPuv3HujgccD5wdSNk3xlwFPMCmxlgFzm9BJfCme2fZsOn7Wh8HEeKzihMYrS/fshtjviT89yDYRziBw1txgmXXA/viBHqG4wQXA8J971sAN1hrq4EPjDGv43y/rgzaX9jvSNC6Re7/pRGOxQ2BzBv3d3QgTsAhWMjfX5zvP0T5e8Om9/Ala+1X7vqT2ZSlcxCw2Fp7q/v3RpygGcDpwFme370rgXnGmBM835lST/2Dhfr98RPpO1CNkwlW5i6fBPzbGNPSWrsG53fiiTDbF5Ewpk2b9tfc3Py727btUJ6f32RVVlZWXbqfiSRUTU1NVnn5xlYrViy5e9q0aWeFCkooICHicu8IjwMwTor0JJyL6EBjc4ln9Q3ua4Kfa+G+fhecu4vbAfk46c5+d+0jOQknw+AXY8wfOA3H13HuQh1ljDnYs24e8CHQGVhlrV3nWTYXJy03kh5AZ/euc0AO8Innb2/jcj3QxBiT69doNMb8w61DZ5y7ai1x7p6H3Za7/p9Bd9Z9U+1dnXG6LgQENziDn+sB7BJUz1ycC+ZinAbxNE+DPQvnOAT2NS1MuSYBP7uN5KOBTzyZC8GOwLnLeIMxZgZwibX2c7d8Y40xZ3vWzXf3jTFmDE6XkZ7ushZsfly9dW0HNMHJqggl+H1o4bNOO5zPmLe+c3HurG+xHWvtevf4+W3LVyAgAJQbY87FSSPva4xZjZPGHlivRdDr1hlj7geWGWP62k19/ed71llrjFnJlp8Vgp9zt7ciaHlwvTt7/l4R9PkPdQzrItxnNR5ClT3S9yDYR8AtxphO7jrPAlcYY3riZGB871k33Pd+vhuMCAj+jAWE/Y4EKXH/L8Rp0IcSzfcgsO9Qv78B0f7eRNp3N0J/d3sAL7lBx4AqnCBgIPhYyKb6Bwv1++Mn0ndgmSfzDWvtQmPMZ8ARxpiXcLI/zg2xbRGJICcn94q2bTuUFxQ03aLLnEiqysrKqikoaLqhbdsOLF++6Ao23dzcjAISIj6stb8Yp19vXQcEexInDfkAa+1G4/QHbxf+Jb7lmAUc66awH46TKdAW52L3CWvtKcGvMcb0AFobY5p7ghLdCTMGg8d8nEyQ3rGW1accw3D6N/8FmGmdcQZW4TRqIlkEdDHGZHmCEt0JfWG+iM1T7P2CL976z8fJNNgveCX3WG8A+nsyCoL35d1+d+9Ca+2fxpjPcd6vE3DuEPuyzgwuo9xU9bNwGnHd3PJda33GcnDf34dwjuvn1toqY8z3bH5cvXVdjtMI25pNmSl1sRznjmoPNgUHurOp4ROraD6PNUCWtXYekRv42TgN6C5AICBR+z4Zp8tTG5zBMIMtAvp61m2G0yUlYCFOvWe6f3cPsZ1Ioq2zV8jPagNbTvjvwWastbONMetxUvU/drPOFuNkMnwaFGQIZSHQzRiT7Vm/O06XumAhvyM+ZVtnjPkNp0vSskjrRyHk769HVL83Ue7rmDDLTrTWfua30A3ybEOI732Y3x+/z2mk74DfaybijCuTi/NbVdffCpFGr6ampmN+fpNwWUwiKSs/v8lGt6uRLwUkRKjNiBgJPGOtXWCM6YaTGVHXlOtCYKUbjNgZZ6q5qOe895RrNPC2tXaZ5+5aNc5d+K+NMX/F6V+ch5OqPNtaO9dNH77KTWHeGafvse/AcEG+wknFvxinP3I5TkOtqY19+tNCoBKnAZBrnIEYW0b52s/d155jjLnXLf/ObH4H0utZ4FxjzBs4Y0hcHGH7r+PcFTyBTTMzDATWWmt/drup/NcYc5a1dqlx+oxvZ51xNJ4FHjPOoHxzgCt8tv84cAnOBfyLfgUwzjgZR+F0FVhtjFnDpnEdHsK58/keznvSDKd//sc4/dFrcBtWxpjxuGOL+HEDQY8Ct7n1XYJzLL8Nf4i22E6VMeZZ4Fo3Q6MNTpbGLbFsx2MJzlgUQO3AfXk4A242xemy8SdBXUc86++H02iegXNMrsFJOfeuf6BxumJ9hTP47Bc+3TUAnge+9Kx7NZv3z30KuMwY8zXOsb8c5zsYqyVAV2NMvrW2PMw6W3n+DvtZrcP+twIiTvvpfm7CfQ/8fITTsP2b+/dU9+//RFm+L3GyAy5yuwPtgfPdH+KzbsjviNulKNibOF1HfBvvMQr3+7vAZ/36vIev43x3/44T3MwH+rldVe7H+T6OdX/3i4HdrbWBrls743QV8RvQMtzvzxKgrTGmlbV2tftcXb4DL7Op21ZMg9aKyBay1U1D0pX72Q057okGRBFxlOIMyPelMWYdTiDiR5wR1+viTOBqY0wpzoVbTCPie4wAZrr9uu8AjrHWbnAbVaOAf+E0TOcDF7LpO32cW5+VOA3mUIMqbsY6M0MchHOx/AdOg+9hnJTrWL2N0//6V5z03o34d6XwK0c5TobBOJw6/B8hGvauh3ACPjOA73AaH5U46ct+2y/FGTTvGJy7fItxBswscFe5GKfR9oV7of4ezpgAWGfWiNuBD9x1PvDZxUu46dTW2vVhyn0CMMfdx+k4/bSxzowDp+Bk2axy9zPOXfYTTj/9z3EaDtsTuZH1D5yG/tc4x/NG6vb7fzZOwOd34FOcTKBH67AdcMYYuMwYU+J27ekAPIPTTeN3nO4oB1lrK0K8vginkbQaJ3Nma2CEN23cLd8VOHUejNP3fwtuX/+/uesvwjnm3oblNTgDJ87AOY7fus/F6gOcO8yLjTHLQ6xzB3CkMWaVMebOKD6rsbgSZ6yFEmPM0ZFWJsz3IISPcAKRH4f4Oyz3e38wTnr/cpzG7Bhr7S8+64b8joTwIM5sMtFkaEUqZ6Tf3+D16/weuq/dD+e4LMaZrWhvd/EdOIHmd9xzzRc4v/sBx+MELUIJ9fvzC85363f3s9KZOnwHrDMuzQs4A4q+CGCMecsNlOP+vdbNpsMYM8xsmtlDREQaiayaGgXbRDKdcQY728ZGMe1nJjDOKPH3W2t7JLEMvwGn2S1nkRCRJDDGPAk8a2Of7SjtGGPa4wSEBgUF6RJdjsuBPo3l3CPSUL777vs5XbtuHSqQLZLyFiz4rd2gQQN7+i1ThoSIpD1jTFNjzIHGmFw3rfwKnCyFZJXnCJy0Zr/sCRFJAmvtcY0hGAFgrV1qre2b5GBEG5xBjR9MVhlEJPXU1NTw3HNPtx079pht//KXPQbtu+/QQSefPMa8885bm2XjXnrphT2HDt1p8JVXXrrFzaUTTji676WXXtgz8Pdzzz3ddujQnQYfddQh/aurNx+y6MYbr+166KEjtg/8/cILz7YdNmzI4GnTvm7uXa+0tDT7oIP2G3Dxxef3ilddJToKSIhIJsjCmT5vFU6XjZ9xusoknDFmKk5f779FOZCfiEhGMcacgtOV5S3P7DkiIlx99b+733XXbT379Nl23eWXX/Pbv/51xW/t23cou/rqf2/zwAP3bDHw4dSp77dduPDPvGi2vWjRwiZvvvla63DrHHHE0Sv69Nl27W233dS9qmpTz9677vpvl7Kysuzzz78oqu7FEj8a1FKkEbDWXpnsMjQkd5wGv4HvEs5au1eyyyAikkzW2odwxvYREak1ZcobRe++O6X4jDPOnnf88WNrZz3aZ5/91txyy/UVkyZN6LLbbnusGTBg4HqALl26biwtXZM7YcIjHf/1r8sjBgr69u1f+tRTT3Q66KBRYWckufDCf8497bTx/Z544rH248advPSHH2Y0nTLl9fYnnXTa/A4dOm4xjb00LGVIiIiIiIiINAKlGyuzJ3+zoN0N783qMvmbBe1KN1YmrD34wgvPtu/QoWPZMceM3mIK5lNOOXNxkyZNq5599qn2gefy8/OrR406Ysl7773dbvnyZRFvpI8Zc+KiuXPnNH3vvbfDDsa+7bb9No4cecjSyZMndl648M+8W265vkf37j3Wjx49bmm410nDUEBCREREREQkw30+Z2WLAx/4Yof7PpvT7YXpizre99mcbgc+8MUOn89Z2aKh911ZWcmsWb+2GDJkl5KcnJwtlrdq1aqqf//tSn/66cfNynLccWOW5uXl1kyY8EiHSPsYNGjwuu22G7Bm0qQJnSKte+aZ5y5s2rRp9Zlnnrzt77/Pbn7eeRfN8yuXNDwFJERERERERDJY6cbK7Ite+an3xsrq7LLK6myAssrq7I2V1dkXvfJT77VlDZspsWLF8tzKyoqsDh06lYdap337juWrVq3M9z5XWFhYPXLkqKVTprzeftWqVREjBmPGjF88e/as5p988lFhuPVatGhRfeSRxyxavnxZ/rBhe60YPHjIuuhrI/GkgISIiIiIiEgGe/XHxW1qQiyrcZcnsjyxOOGE8UsAJk2a0D7SurvvPqy0T59t1z7++KNhsySqqqp4++232mVlZWHtzy3Ky8uz4lVeiY0CEiIiIiIiIhlsfsmGgkBmRLCyyurs+as2FDTk/tu2bVeZm5tXs2TJovxQ6yxduji/des2W2RQtG7dumrEiJFLX3/9lQ5r166N2H4dPXrsop9/nln49ddfNg+1zhNPPNZ+wYJ5TS+99MrfVqxYkf/ww/dH7BIiDUMBCRERSTvGmH7GmG+MMQm7o2GMmWCMuSZR+/Ps90pjzKRE7zcdGGPmGGP2DbFsgDHmf4kuk4hIKupW1LSsIDfbdzrygtzs6m6tm5Y15P5zc3Pp3bvP2m+++aqounrLYqxZsyb7p59+LOzXb7u1fq8fO/akJRUV5VlPPvl4caR97bPPfmt69dpq/YQJD/tmSSxZsjh38uSJnQ86aNTSESNGlowadfji559/ptP8+XNDBkuk4SggISISI2NMT2NMjTGmwadOdhve/3MfX22MOcezLN8Y87zbKKsxxuwV47aPNsb8zxiz3hgzNWhZH2PMK8aYZcaYlcaYt40xxrM8yxhzjTHmT2PMamPMVGNM/wj762yMWRBi2X+MMT8YYyqNMVdGUfz/ALdYa0NloKYdY8wDxphTk12OTGGtnQGUGGMOTnZZRESS7ZDtOq4MFcHPcpc3dBmOOOLopYsXLyp45pnJ7YKXPfzwfZ02bNiQc/TRx/rOdFFc3L5y333/uvzll1/oWF5eHrENe9xxYxdNn/5dq99+m9UseNltt93YrWnTptVnnHHOQoDTTz9rUcuWhZW33npjt7rUS+pHAQkRkdQ2GPjG8/jboOWfAqOBxXXY9krgduAGn2VFwKuAAToAXwGveJYfBZwIDAPaAJ8DT0TY34HAlBDLZgMXAW9EKrQxphOwN/BypHXTzAHAm8kuRCqJQ9BvMnBaPMoiIpLOCpvkVt80qt+sJrnZ1YFMiYLc7OomudnVN43qN6tFQa5v9kQ8jRgxsmS//UYsu//+u7tfd93V3T7+eGrhhx++1/Kyyy7q+eKLz3UcPXrsnwMGDFwf6vVjx560eP36dTl//rmgSeR9HVjSpUvXjT/99ONmg1t++unHhZ999kmb0047a36LFi2qAZo2bVpz+ulnz//mm6+KPvzwvZb1r6nEosHv7omIpDJjzMXAOUBLYCFwprX2fWNMNk4D+RScxvn7wOnW2pXAx+7LS9ykgf2AvwLbWGtHu9vtCfwB5FlrK90MhM+BvwDbAh8C493thbMTMM19PAj4PrDAWluOE1DAGFMVa92tte+5rz3ZZ9lXOEEI3HX+C1xmjGlrrV0B9AI+tdb+7i6fBJwXYZcHAr5dD6y1E93tHB9F0fcDvrXWbvSUry7vI8aYE4BrgBbAbe56JweOTTjGmIPc1/YEfnK3O8NdNge4GxgD9MAJxIz1ljloWwOAEmutbwYJ0MQY8wzOMZyF89mZ7r62M3AXsCewFvivtfZOd9nOwB1AX2AD8AJwvvvZwRhTA/wN573riPN5moATXNrOLffowPpBZd4GeAQYCFQA71tr/89dtq1bpsHAMuDf1tpn3WUj3eO2NbAaeMRae6W7rCfO9+Zk4ApgDrCnMeYU4HygKzDfLVMgODfQGHNbiOM8FXjYGFNgrW3QdGQRkVS3W882a986fdfpr/64uM38VRsKurVuWnbIdh1XJiIYEXD55f+Z16/fdutef/3l4vfee7tddnYWPXtutf7yy/8ze//9D1gd7rVdunStGD58nxXvv//OFhkWwbKysjj22BMW3XLL9b0Cz5WXl2fdccct3bfffoc1I0cessq7/ogRI0tef/2V1XfffXv33XcfNrOgoCBjMjBTnQISItJouV0QzgKGWGsXuo2hwJRSZwOHAsNxGlR3AvcAx+I0/P4Aiqy1le62/hrFLsfgBC7+AB53tzk6RNneBYbgNJTXG2PuApoDC4wxn1trD4iifscBl1hrB0RRtkj2BBa7wQiAp4GjjTF9cOozltDZDxhj8txtjI1DWbYHrGfbdXofjTH9gPtwGvlfAtfjNHgjMsYMAh4FDsbJYBkNvGqMMZ6G79HACGAj8BkwDrg/xCYPJHx2yCicz95o4FzgZffYVwGv4WSvHOuW/z2nGPZtd/l5bhm7Am8BZ+IGslx/xQkcdMPJwNnd3c8KnCDascBEnzL9B3gHJ1slHyd4hjGmOfAucDlO1sf2wLvGmB+ttT8B63C+CzNxgh7vGmO+t9a+7Nn2cJwgSrUx5ijgSpz38RucQEaFZ92Qx9la+6cxpgIn02dGiGMrItJotCjIrT5ucNflydp/VlYWRx11zIqjjjpmRbj1rr325jl+z1911XVzr7rqurne50Jt79BDj1h56KFH1N74yc/Pr3nuuVdnhtrn3Xc/ODtiBSTuFJAQkcasCigA+hljlllr53iWnQ6cFbhj7Y5rMM+9o15XT1hrf3S392/ge2PMWGvtFtkN1tr93Abnk9banYwx/wIqrLU3R7sza+2TwJP1KC9uWbviNOLP9zy9CKe7iMU5jvOBfcJsZk9gurW2tL7lwcl08F541PV9PBJ43Vr7sbvs3ziBjWicCjxgrf3S/Xui+x7tCnzkPnentXahu+3XcDIJQhkJ/CvM8mnW2ufdbd0GXODuqxwottZe7a73uzHmIeAY4G1r7TTPNuYYYx7Aaezf7nn+JmvtGmCmMeZH4B1P5stbOJk5fgGJCpyshM7u8f3Uff4gYI619jH37++MMS/gdPO5ylo71bONGcaYp9wyvex5/kpr7Tq3DCe7ZfzaXRZ8wRjpOJfifGZEREQkxSggISKNlrV2tjHm7zh3X/sbY97GSWdfiNPQeskY401jrMIZT6Gu5nsezwXygHbAEu9KxpizcFLaC9y/S4BCYK0x5lKgj7XWd9CneDPGFOPcBb/XWvuUZ9HlOBkc3XDGrxgNfGCM6W+t9ev/eSDxGx9hFc7xAOr1PnbG855Ya9cZY8LesfHoAYw1xpzteS7f3WaAd1yP9UHLahljinC68YSbEcJbzmp3cNDOONPHd3Y/IwE5wCfutvvgdEXZCWiGc973Bilg88/fBp+/O4Yo00U4WRJfGWNWAbdaax/FOTa7BJUpF3eMEWPMLjjjlmyHc8wKgOdC1RfnM/ZbiDJA5ONcCJQgIiIiKUcBCRFp1AJZBMaYlsADwI3ACTgNohOttZ8Fv8YY08NnU+twGnwBfo047+jN3XHuMG+RNmmtvRu42xgzBbgKZ3yCH6y13aOqVJwYY1rjBCNetdZeG7R4IPCMZ8yDCcaY24F+bBqE0+tA4PA4FW0GQV0/6vg+LsLpFhD4uxnQNsoyzAeu9TkudfFX4AO/TBmP2s+OOy5GV5yxMiqBP6y1vUO87j7gO+BYa22pG7g5Mg5lxlq7GGfMDYwxQ3G6inyMc2w+stbuF+KlT+KMr3GAtXaj+7kJ7g/s7bs7H6ebRsyMMV1wgh420roiIiKSeApIiEij5Y490AWn3/lGnLvBgbEH7geudbtUzHUzBXa31r6CMxZBNbAV8Ku7/vfAxcaY7jgD9f3TZ5ejjTGP4wzUdzXwfIRG6EBgOrALW86uEahDAc6MXQD5xpgmQFk002EaY3JwsjRygWz3tVXW2gq3Yf828Jm19hKfl38NHGWMeRrneBzvbmuL/pfGmF5AgbX25zBlycM59tlArluWihDH513gDmNME7dBW9f38XngS7cx/RXOexLt7FMP4WRevOe+thmwF/BxHbqlRBo/AmCwMeZwnJlPzgHKgC9wPoel7qCed+J04egLNHW7OBQCa3Cya7YFzsB5v+rNHdvhczcotQoniFANvA7c4HaLedpdfSCw1v0MFAIr3fduZ+A4nMBXKA8DtxljPsX5HmyN89mYG+Y1AcNxgj0a0FJERCQFadpPEWnMCnBSx5fjpH23Z1Mg4Q6cxt87xphSnMbfLgBul4Rrgc+MMSXGmF2tte8Cz+DcvZ+G0ygL9gTODAaLgSY4DUtfbmBjhbuvHdkyzT7A4jTAu+AEEDbgpMxjjDneGBNy8CacDIINOHfRh7mPH3KXHYbTJWO8MWat518gS+NGnGDJ9zjp8OcBR1hrS3z2M5LI3TUecvd/LHCp+9h3vA5r7RLgA5yBHqHu7+NMnBkmnsQZE2MVEGqWi+AyfIOTHXC3+7rZOIMpxsQYk4WTIRFyQFDXK8D/ufs6ATjcWhsI2ByE0+D/A+cYPAy0cl/3D5wGfynOMX4m1jKGMQQnoLMW5xifa6393Q3I7I8zjsVCnPfkRtwuSDiDal7tvh+XA8+G24m19jmc79uTbj1explqNhrHE3ogUREREUmyrJoazWgiItLQjDPt5yRr7cPJLkuiGWPeBO621sZrDAncGTImAjtHkw0Sw3bnEOW0n3Ha3844x2bnROyvMTHOVKoPWGt3S3ZZRETq47vvvp/TtevWSZsZQ6S+Fiz4rd2gQQN7+i1Tlw0REWloU4EP47lBd/rIIfHcZhJdkewCZCJr7QxAwQgREZEUpoCEiIg0KGvtTckuQ6qy1n6V7DKIiIiIJIsCEiIiCWCt3SvZZZDIrLU9k10GERERkcZCg1qKiIiIiIhIg6qpqeG5555uO3bsMdv+5S97DNp336GDTj55jHnnnbdaBa976aUX9hw6dKfBV1556RZTrZ9wwtF9L730wp6Bv5977um2Q4fuNPioow7pX11dvdm6N954bddDDx2xfeDvF154tu2wYUMGT5v2dXPveqWlpdkHHbTfgIsvPr9XPOqabPPmzckfOnSnwe+99/YWxzbVKCAhIiIiIiIiDerqq//d/a67buvZp8+26y6//Jrf/vWvK35r375D2dVX/3ubBx64p6Pfa6ZOfb/twoV/5kWz/UWLFjZ5883XWodb54gjjl7Rp8+2a2+77abuVVWbZha/667/dikrK8s+//yL5sdUKak3BSRERERERESkwUyZ8kbRu+9OKT7ttL/Nu/TSK+cPH773mn322W/NddfdPOfQQ49YPGnShC4zZnzfzPuaLl26bmzWrFnVhAmP+AYrgvXt27/0qaee6BRpvQsv/OfcBQvmNX3iicfaA/zww4ymU6a83n706LELO3ToWBlLvQ49dMT2zz33dNtYXiObU0BCREREREREGswLLzzbvkOHjmXHHDN6WfCyU045c3GTJk2rnn32qfbe5/Pz86tHjTpiyXvvvd1u+fJlEcc+HDPmxEVz585pGqmbwrbb9ts4cuQhSydPnth54cI/82655foe3bv3WD969Lilsdesbp56alK7Y445rN9ee+2244EH7rPD+eefvdXq1atzAL755qvm55xz+jYjR+47YJ999hh03HFH9HvppefbBG9j/vy5+Rdd9PdeI0bstcM+++w+6NhjD+/38ssvbLbehg0bsq+88tIe++03bODBB+8/4M47b+0c3K3l559nNjnrrFO32XffoYP23XfooAsuOHurJUsWJ2ysSQUkREREREREGoGsstXZTb9/sF2Lqf/s0vT7B9tlla1u8PZgZWUls2b92mLIkF1KcnJytljeqlWrqv79tyv96acfWwQvO+64MUvz8nJrJkx4pEOk/QwaNHjddtsNWDNp0oSIWRJnnnnuwqZNm1afeebJ2/7+++zm55130Ty/sjWEe+65o9O9997RY7vtBqy94or/zD777PPnNm/evGrdurXZAAsX/pnfv//2a88//+K5V199/ew99hi26vbbb+75yisv1gYbli1bmnvGGSdtO3v2rOYnnXT6gquuun72/vsfuHzJksX53n098sj9XZs2bVp12WVX/z58+D4rnn32qU5vvPFqbbeW33//reCcc07ftqKiPPvCC//1x/nnX/zH/Pnzmv7jH+f2rqmpScjx0CwbklGMMROA7ay1O8XwmvbAmcAEa+2cBipagzHGnAL8C+gGfJrOszkYY3oCfwAHW2tfj/G1pwJLrbUv12G/E4jxcyMiqUnngYY5DxhjLgK+stZODXq+BjjbWnt3vPfpbn8UcAOwNbAw2plwjDFXAmdZa9u5f+8FfAhsb639sSHKKpLq8uZNbdHqrVN6U1NDVtXG7JqcJtXNv7y52+oDHppV0X2vtQ213xUrludWVlZkdejQqTzUOu3bdyyfPv27LTIbCgsLq0eOHLX01Vdf7HDSSactbt26dZXf6wPGjBm/+KKLzuvzyScfFQ4bNrw01HotWrSoPvLIYxY9+OC93ffcc+8VgwcPWRdNXSort+zRUVNTvdnzOTk5ZGVl+b6+pKQk54UXnuk4cuQhSy655N8LAs8fcMBBJYHHhxxy2KpN265h1113L122bFn+G2+82m7UqMNXAjz++KMd1q/fkPPww0/83LFjpwoAv/r27btd6cUXX7YAYPjwvdd8++3XrT7+eGrrgw8+dBXAQw/d27lVq6LKu+56cFZ+fn4NgDF9N4wbd+x277//bqt9991/dTTHpT4UkBCB9sAVwFRgTlJLEiNjTEfgPuBu4DlgVfhXZLRTgR+Bl5NcDhFJPzoPRHaRu4+pDbT9LRhjcoDHgbeAU4CoGgwisqWsstXZrd46pXdW5YbajIisqo3ZAK3eOqX3inHTptcUtKwOvYXkOeGE8UteffXFDpMmTWh/9tnnLQq37u67Dyvt02fbtY8//mincAGJqqoq3n77rXZZWVlY+3OL8vLyrECDPJy99tp1cPBzd955W88777ytZ+Dvc8/9x5yjjjpmhd/rv/326+bl5eXZhxxymO9ygFWrVuXce+8dnb/66ouiVatW5ge6WLRu3aYisM6MGd8XDhw4aE0gGBHKzjvvssb7d7du3TcsW7asNotixozphXvvve+K7OzsmkBQpUePnmXt2hWX/fzzzGYKSIhIJNsAOcCj1toZ9dmQMaaptXZDfIolIiIJksnngU5AS+BJa+2nyS6MSDpr8vMzbQiVgl9TQ5Ofn2mzYeApyxti323btqvMzc2rWbJkUX6odZYuXZzfunUb3wyK1q1bV40YMXLp66+/0mH8+FOWRNrf6NFjF11++T97f/31l81DrfPEE4+1X7BgXtNLL73ytxtuuGarhx++v8OZZ56zONK27777wZ+9f1922UXb7L//gcv33HOvksBz3bv3KAv1+tWrS3IBOnToGDKQcOWV/+o5a5ZtccwxoxdutdU2G1u0aFH1wgvPFn/99RdFgXVKS0tze/c26yOVt7Cw5WYZJbm5uTUVFeW1Qam1a0tzX375+Y4vv/z8FgOHLlu2JOT7FU8KSEhGM8Z0Aq4F9sK5sJkPPAtcba0td7sI/OCu/qExBgBrbZb7+jY4qaKjgFbAt8B51tovPfuoAf4OdMC5g1ODc5fqfGttmWe9Hu629gOaAbOBG6y1TxpjvgJ+staOCyr/BGAHa+0gn7pdiXNHD2C6W/bx1toJxph2wK3AQUBT4CvgH9babzyvnwO8AJQAp7nlDzmtkjHmZOA8nIvfxcA91tqbPMt3A/4JDMG5gJwF3GytnRy0nZDHwbNaM2PMA8AxQCnwCHCVtdY3cm+MmQoMBgYbY8a6TweORQ7wb+BEt46zgWuD9he8vXzgaWAnYB9r7WxjTHfgJmB/oAnwCXCOtda6r+mJ093k/4C/RFt2EWlYOg/U/zzgrtcWuMIYE9jf3p7uGznGmOsi1D3sb6jPPscBj7l/vuLW7SpgAj5d++LR9c4YkwdcDxyNcyxWAF8C/2etLY+2HsaYbsADwN7AEuAaYATQLtCdxq+8ft0WjTHZONkpJ+N0yZmLcw6b6HndVGA58CJwNU7Gz2fAKdbaBZ71muIcw/8DOgILgaettf/0rBP2XC/pK6fkj4JARkSwrKqN2Tmr/yhoqH3n5ubSu3eftd9881VRdXX1guzszYuxZs2a7J9++rFw5513Kwm1jbFjT1ry5puvtX/yyceLI+1vn332W/PYYw+tnzDh4U7du/fcGLx8yZLFuZMnT+x80EGjlo4YMbLk559/Wvz88890OvjgUSu7desRslsJwMCBO24WBMjNza3p1KlzWfDzobRqVVTpliGvbdt2W/T/2LhxY9a3335TdPrpZ807/vixtQOAPv/805v1ASksLKxcuXJFVNOhhtO8efOqXXbZbdWoUUdsEYxq06ZNTDOO1JUGtZRM1w5YCZyPczFwMzAeuMtdvgg43n38N2A39x/GmALgPWBf4ELgUGAZ8J6bIut1AdAZGO3u4zTg3MBCt3/y5ziN9X8AB+M0VLu5qzwCHGmMaeF5TQvgSODREHV72C0zbh12A95w/34Z+Ku7r//D+a5/aIzZJmgbxwHDcfpO/1+I/WCMuRAnJfhlnIvb+4D/GGPO8qzWA+cC6CS3fi8Ajxljjo3hOATcBKx16z8JuNx9HMqZwC/Am2x6DwPH4mrgUuBB4BC3jJO95QqqaxPgJWAHYJgbjGgDfAoY4HSci9XmOJ+FpvUsu4g0LJ0H6n8eOAxY7ZYxcHy+jaHusfyGBrwBHO4+/oe7z4dDrBsv/8Q5jv/GCRr9HafeORBdPYwxWcArwHY458PzcY7FbnUs013AZTjnsJE456dHjTEHBa23C3AWzntxKrCj+xqCynUGcA9wIE4wq51nnWjO9ZKmqop6ldXkNPG9OVKT06S6qlWvkHf14+GII45eunjxooJnnpncLnjZww/f12nDhg05Rx99bMhZLoqL21fuu+9fl7/88gsdy8vLI7Zhjztu7KLp079r9dtvs5oFL7vtthu7NW3atPqMM85ZCHD66WctatmysPLWW28Mvh6Nux13HLIuPz+/+rXXXvGdKrSsrCy7pqaG/Pz82veqtLQ0++uvvyryrrfDDoNKp0//ruXSpUvqlWCw/fY7rJk3b27THXYYtH7gwB03+9e9e8+wwZl4UYaEZDRr7Q84FzIAGGM+w+mD+qgx5mxrbZkxJpDi+pO19gvPy0fjXFD0t9bOcl//HmBxTvgXetad47mr9bYxZg+cC6nAXYXzcO6sDbbWBvq+ve95/VPAbcBRbLojdDTOnSrfO/nW2gXGmJ/cP2cEBukyxowA9gD2stZ+5D73AU6/6AtxLhS9DrLWbhE9DjDGtMS5aLnGWnuV+/S7xphmwGXGmPustVXW2qc9r8kCPga64twxeyrK4xDwsbX2As++RuAcz2dDHIufjDHrgGXe99C9ePy7W/Zr3KffNsZ0Ba70lCuwfjPgVbfce1pr//SUuzkw0Fq70l33M5xjeiLOxV2dyi4iDUvngfqfB6y13xljKoEFQccnlrpH+xsa2OcyY8x3m/509utmETSUnXG6h0z0POf97Y6mHgcAg4BdA1k0xphpwG84mYNRc4NHZ+BkvQTK9J6b9XMF4B38uSUw0lq7yn1tR+C/nm44++MEWUZZa1/1vO5xd/2ozvWxlF9Sy8a+/7ey+Zc3+ze4s7LY2Pf/Vjbk/keMGFny5ZefL7v//ru7//HHH02HDt2zpKqqMuv9999pM3XqB21POGHcnwMGDAybZTB27EmL33nnreI1a1bnbrNN77BjyowYcWDJhAkPbfzppx8L27VrV9uw/vTTjws/++yTNv/85+W/t2jRohqgadOmNaeffvb8a665YusPP3yv5d5777sm9Jbrp6ioqOroo49bNHnyxC6VlRVZu+8+dHV5eXn2//73aavTTvvbws6du1RstdXW6ydPfrxz8+YtqrKysnn66Sc6NmvWrGrDhvW1gZgxY05c8uGH77c944yTtj322BMWdezYqfyPP35rsmHDhuxTTz0zYreWgFNOOXPhGWec1Pess07d5sADD17RunXryiVLluR9882XLUeOPGTF7rsPCzkOR7woICEZzW0Yn4tzt6AXTnplQHecdNlQ9gWmAX8YY7zflY9wUvm93gn6+6egdfYBpnguQjdjrV1jjHkeGMemC9FxwKvW2pCD3oSwM85sEx95tr/OGPM6MDRo3ffDXYS6dsO5AHsu6Dh8gHMXqSsw1xjTGicVdBTQBfeOEvCn5zVhj4OH3/HsHuE1frbDSYt+Luj5Z4AJxphia20gHa45MAUoAoZba70/5vsC7wJrPMegFOfzEc1noS5lF5E40Hmgdvv1OQ9EEqnusfyGJtP3wBnGmCU454MfrLXeTvfR1GNnYIm3S4+1dq4blIjVX4Bq4KWgz9/7wLHGmBxPkODrQDDCFQhUdcH5jO8DrAwKRnhFda6vQx0kRdQUtKpefcBDs4Jn2SAri9UHPDQrEQNaXn75f+b167fdutdff7n4vffebpednUXPnlutv/zy/8zef/8DIg6e2KVL14rhw/dZ8f7772yRZREsKyuLY489YdEtt1zfK/BceXl51h133NJ9++13WDNy5CGbDQA8YsTIktdff2X13Xff3n333YfNLCgoaLA5L08//azFLVu2rHz55Rc6vPvulOJmzZpX9evXv7RFi8IqgCuvvO73G2/8T49bbrmhV4sWLSoPOmjU0o0bN+a8+eartd1V2rUrrrz33od+ufPO27o++OA93SorK7M6dOhUduyxoyNdY29mm216l91770O/3Hff3Z3vvPPWHuXl5dmtW7cpHzBgYGmPHr3qe26IigISkun+jpM+eiPOBeQqnHTZe9j8otRPO2BXwG/Qmd+C/i4J+rs8aPttga8j7O8RYKoxZisgCxiGk1IZq06AX8rbEqCNz3ORBH70Z4ZYHujTOgHneP0H50JoDc6dnVGedaM5DhD5eEYrMA91cD0Df7fBSb8GJ924N07f3OD1A58Fv3Tm4AyPkqC/61p2EYmPv6PzQEBdzwORlAT9HVz3WH5Dk+kanADAmTiflz+NMTdba+9wl0dTj474H/ulQGGM5WmHE9wP1VDrBATGiCgJWha4Ixx4H9ridE8Kty+IfK6XNFbRfa+1K8ZNm97k52fa5Kz+o6CqVa+yjX3/b2WiZtfIysriqKOOWRFqBgqva6+9eY7f81dddd3cq666brPPYqhtHnroESsPPfSI2syP/Pz8mueeezXUZ5y7734wXIDa18svT/kh8lpbOu64McuPO26M7yCiW221ddkDD0z4Nfj5c845f6H3727depTffPMdv/tto3v3nuWffvrNFoFQv+Pau7fZeNttd/luJxEUkJBMdxTwvLX20sATxph+Ub52JfANTqM6WKz97FawqXHsy1r7sTFmFs4dsSycwaaC7zpFYxHOgFbBOuDUySua6G/gNQfhf+Fq3XEXDgL+Zq29P7DAHYzLK+JxiLPAxVd7d98BHdz/vcdjFnAHTubEYmvtfZ5lK3G6cvzHZx8NnsomIvWi88AmdT0P1Fc8f0MDd+yCR39vHWuhgrmZIpcDlxtjeuOME3G7McZaa6cQXT0W43/s2wPeGUw2ErkOK4FKnO43fg3GkP3tfUT6/EU818ewL0lhNQUtqxtqNg2RulBAQjJdU7a8aDw+6O/guwgB7+P0uZxnrY3lpO/nfeAcY0wHn7vvXo/i3JkBeLyO/TW/BK4yxuxprf0YasdGCAyGFavPcS6iOltr3/BbwRjTCmfANO+I6oU4g0h6L3ajPQ514ZeJ8COwHqdBcrXn+aOBXz3dNQCw1j7hDiJ3tzGm1Fo7yVPuo4GZNrWmxBORyHQeoN7nAahftlc8f0OX4mSs9A084f5u704c7+Bba2cZY/6BM2hoP5wuHNHU42uc2Uh28Ywh0R1nkMnPPOstAHoaY5p4uszsH7StD3AyJFpZa9+tZ5XeBy4yxhzknZ3EI+K5XkSkISggIZnuXZwLwC9x0muPx5nKymsezkl4rDFmNVDhTov2OM7dkanGmFuA33FSHncGFltr/xtDOf4LjAE+McZcizPtXF+gedB0WhNxUkZz2dSHOCbW2reNMf8DnjHGXIJzV+QfOBflN9dheyXGmVruDuNMWfcxTvChD860b4dZa1cbY77Guau0BudOziU4aaYtPZuL9jjUxS/AX40xf8Wp8x/W2hXGmNtxBuSqxLnTeThOCrTvLBvW2vvci9vHjDFrrbUv4ww0Nxr4wBhzF864GB1wRqb/1Fr7lN+2RCQl6DxQz/OA6xdgpDFmCs5MQtZaG212Q9x+Q6211caYV4DzjDFzcboqXMDm2Qd1Yox5CWc8iO/c7R2J8z58HEM93gSm44zFcDFOMOwqtsxmeBknUP6wcaYAHYQzMKa3rtYYcz/wtDHmJpxzWBOgP9DHWntyDNV7F3gbeNIYczXOLCmdcAZwPi2ac30M+xIRiZqm/ZRMdzXOyOXXuP+XA+d4V3DvTJwCDMbpX/y15/m9cU7iV+Gkzd6BM87AV7EUwr0TvwfORc7tOCNjn4pzEexdbzHOna3PrLVb9B2LwaFuuW/HGdAxC9jHWhtz3zi3XDe55T0AZ9qwp3Au6j/xrHYczsX64zjH6QX3sXc7UR2HOroG+BlnRPSvcabUAyf99nqclOvXgT2B0d5ZQYJZa292X/O0MWY/a+1ynH7Dv+A0Kt7BGT2+FTAj1HZEJCXoPBCH8wDO7BzrcKbj/BrnWEWlAX5Dz8LJNrgXZyyQp3CyCerrfzjH7Umcc91g4Ag3OBVVPdxBMA/BGUvpUXe9u3EyEGq5M6KciDOY5Ks4QY3xPmX6G04XkTE4wY4JOJkuH/usG5JbrsNwpgL9O/AWzndiuWedaM71IiJxlVVTk4iugyISDXeayj+Bs6y1jyS7PCIiklg6D2QmdwaVdtbavZJdFkk/3333/ZyuXbfWuA+SthYs+K3doEEDe/otU5cNkRTgjrfQD2dqulKcuxIiItJI6DwgIiKNkQISIqlhMPAhzoBcY6y165NcHhERSSydB0REpNFRQEIkBVhrp+L07xURkUZI54HMZq09MtllEBFJRRrUUkREREREREQSTgEJEREREREREUk4ddkIobq6uqaqqv4zkOTkZBGP7aSqTK5fJtcNMrt+mVw3UP0SJS8vZzlQ3FDbj8d5JlWOVUNR/dJXJtcNMrt+mVw3SJ36NfQ5JtXceedtnZ999slOgb+Liooq+vTZdt3ZZ5+/oFevrcqi2cZTTz3RrnXrNpUjRowsabCCBrnzzts6v/nmq8VTpkydnqh9NjYKSIRQVVVDSUn9x5MqKmoWl+2kqkyuXybXDTK7fplcN1D9EqW4uHBuQ24/HueZVDlWDUX1S1+ZXDfI7Pplct0gderX0OeYVNS0abOqG264ZRbA/PnzCyZOfKTzeeed2Wfy5BdmNm/evDrS699887Xi7t17bEhkQEIangISIiIiIiIi0qBycrJrBg/eeR3A4ME7r+vUqXP5BRecbT788L1WBx00alUiy1JVVUVVVVVWfn5+8tNlGrmEBySMMTnADcA4oAnwDnCatXZ5iPVHALcCWwG/Aedba99xl7UBXga2dbe1DHgMuNZaW+OuMxXYDajwbPYYa+3rca6aiIiIiIhIylpbUZr91oLX2/y5bkFBl+Zdyw7oetDKFnmFEbMTGsKAAQPXAfzxx+9Nhg0bMnjSpOd+6NGjZ3lg+dy5c/JHjz5q+8suu+q3559/usMff/ze7I8/fm82dOhObQHOPfcfc4466pgVVVVV3HPPHZ3fe+/ttmvWrM7r0KFj2bHHnrDo0EOPWBnY1qWXXthz3ry5TY8/fuyixx57qMvixYsKbrzxv7/uuuvua996642ip556vNP8+fOa5ucXVG+zTe+1l1xy2bxu3XrUluWHH6Y3veWWG3rMnz+3aadOncvOPvv8ebvuuvvaRB6vTJWMDIlLgFHALsAK4FHgCeCA4BWNMVsBLwKnAs8CRwEvGWP6W2vnAOuAM4BfrbUVxphewJvAUuBBz6b+Y629psFqJCIiIiIiksK+XvZliyu+/Wfv6poayqvLsvOzC6of+/WhblfteP2sIcW7JLxxPX/+3AKATp06lxcVta545ZUX251zzvkLA8tfeeWFdoWFLSv/8pf9S3r27LXxsssu3rpDh45l48efvAigR49eZQB33nlrl5dffqHD0Ucft6h//+3Wffjh+61vueX6XllZWYwadXhtUGLZsqX5Dz10X9fRo8cubNu2uKJbt+5lL774bJvbbrup1+67D115wgnjF9bU1PDNN1+3XLFiRW4gIFFeXp593XVX9Tr88KOWtG3brmLixEc7X3XVpVu/8MIbPzRr1iwpwZxMkoyAxKnA1dba3wGMMRcBs40xPay1wX2pxgLTrLWT3L8nG2NOd5+/ylpbBswMek01YBqu+CIiIiIiIuljbUVp9hXf/rP3xqqNtbMslleXZQNc8e0/ez+7z6vTW+S1aPDGdWVlJQBz5vxRcPPN13dv0qRJ9dChe66ZP39ewQcfvNv27LPPW5iVlUVNTQ0ffPBu2+HD91mRm5uLMX03NmnSpLpVq1aVgW4fAKtWrcx57bVX2h955DGL/va3cxcB7LXXX9YsX74s74knHuvsDUisXbs29+ab7/x1++0HbACorq7m0Ucf6jpkyC4lN910+x+B9fbf/4DV3jKXl5dn/+1vf58/dOiepQDFxR0qzjjjxH5ffvm/Fnvvve+aBj1gjUBCAxLGmCKgOzAt8Jy19jdjzBpgByA4ILGDd13Xt+7z3u2+DvwFp9vGfOCBoNf83RhzPrAImATcYq2tIIycnCyKippFUavwcnKy47KdVJXJ9cvkukFm1y+T6waqn4iIiMTmrQWvt6mu8R8uobqmhikLXm9zZK9jfLvQx8vatWtz99pr18GBv9u2bVf+r39d8VvHjp0qDjvsyOUvvvhsp//975PCPfbYs/Szzz4pXL58ef6oUYeFLdMvv/zctLy8LHv//UdsNgbF3nvvu+r222/uuXz5stx27YorAVq3blMRCEYAzJ79a5OSklV5Bx54cNh95Obm1uy++9DSwN/GbLsRYMmSJfmxHQHxk+gMiUL3/9VBz5cALUOs77duf+8T1tqD3LEphgAHA94P1T+BX4A17vLJ7r7+Ga6gmmUjOplcv0yuG2R2/TK5bqD6JUpxcWHklURERNLAn+sWFAQyIoKVV5dlL1i3oKChy9C0abOqm2++/desrCyKi9tXdOrUuSIrKwuAnj17lfft27/09ddfbbvHHnuWvvHGK+223nqbddtu229juG0uX740D6C4uP1mN5vbtm1bAbBq1aqcQECiVatWm62zatWqXL/XBmvSpElVdvamQxcYCLO8vCwruppLOL4fygYUiCy1Cnq+CCdg4Ld+VOtaa6ustV/gBDDu8Tz/ubV2lWf55cDoOpVe6m3mqh+4+KvzmLnqh6RuQ0Qk3owx2caY/xljaowxXZNdHhERib90vQ7t0rxrWX52gW+XjPzsguquzbuWNXQZcnKyawYO3HH9DjsMWt+5c5faYETAgQcevPzLLz9vvXDhn3lffvlF0f77H7Ai0jbbtXOCCcuXL8vzPr9ixYo8gNatW1cFngveX+vWrSsBli1butlrJbESGpCw1pYA84AdA8+5A1e2BGb4vGS6d13XIPf5UHKB3mGWVwOKZiXJ47Me5evlX/L4rEeTug0RkQZwHpD81A4REYkrbxAiXa9DD+h60MrsLP8mUHZWFiO6HrTSd2ECjRgxclVubk7Nv/998VY1NdVZI0eO2qxMubm5NeXlFZu1X7fdtu+G/PyC6nfemdLa+/zUqe+37tixU1kgO8LPNtv02di6dZuKt956o218ayKxSMaglg8CFxtjPsSZZeNG4G131oxgjwMXGmOOBZ4HjgQGA2MAjDG7As2B/wHlwB7Aue4+AmNWDAWm4szIMRC4EnimAeolURjT+8TN/k/WNiR6gZPvmN4n0r/19skujkhKMsb0Ac4EjgC+S3JxREQkjgJBCEjf69AWeYXVV+14/azgWTays7K4asfrZyViQMtImjRpUrPnnnuvnDLljeI99hi2sqioqMq7vEuXbhu///7bllOnvt+yqKh1ZffuPcratGlbdfDBo5Y+99xTnXJycmr69eu/furU94u+//7bVhdddOnv4faXnZ3NSSedtuCWW67vdfHF5/fab7+/roQspk37qvCvfz1w5cCBO+omQwIkIyBxA9Aa+BooAN7F7UJhjDkeeMBa2wJqB7w8HLgVZ3rQ34HDPMGLfOAmoA9QA/wJ3OnuAyAPuAxn3IhsnEEtJwPXN2gNJaT+rbfnxp3/m/RtSPS8J2Edd5EtGWOycc5R/8AZ5ygq8Rg8OdMHAFX90lcm1w0yu36ZXDeIvn7Tl03nwR8f4NTtTuPMQWfy4I85nLrdaexQvAN79NolASWNvyHFu6x9dp9Xp09Z8HqbBesWFHRt3rVsRNeDVqZCMCJgzz33XjVlyhvFI0eO2mKgyZNPPn3h9ddfnX/ttVdutWHDhpxzz/3HnKOOOmbFOedc8GdOTk7NW2+91v7ppyfldujQseyCCy7545BDDlvltw+vQw89YmVBQUH15MkTO11zzZVbFxQUVPfu3Wdt27ZtQ2ZWSHxl1YQYbbWxq6ioqtGglpFlcv0yuW4Qff3SMUNC7116S5X6FRcXTgN2irSeMeY8YA9r7ZHGmJ7AH0A3a+2CcK+Lx3kmVY5VQ1H90lcm1w0yu36ZXDcIXz/vNU/ghsyQdrs0yA2ZaM8xAN999/2crl23btAZMFLFzTdf1/Wzzz5u/eKLb/7gHUhS0tuCBb+1GzRoYE+/ZcnIkBCRNKKMFJHQjDHbABcQ5UWliIikrkzompGuZs36tWD27FlN3377zeJjjhm9UMGIxkMBCfGVjnfFRUSSYChQDPxojIFNg0XPMMZcZq29N2klExGRqASue4d1HA5Qe/2rGzKJc9NN1/ScPXtW85122rlkzJgTlya7PJI4CkiIL40bICISlWeB9zx/dwU+B/YHfklKiUREJCK/7hmg695keeihx22yyyDJoYCE+FKamohIZNba9Xim+jTGBM6ri621a5NTKhERiUTdM0RSgwIS4ktpaiIisXNngfKf6F1ERJJq5qofePK7iRzXc+xmQQhd94okj0YLEYnBzFU/cPFX5zFz1Q/JLoqIiIiIROC9dnt81qN8vuh/PD7r0doghMZKE0kuBSQkadKxcR9I73t81qPJLkrM0vF4B3jLnin1EBERkYbnvXYb0/tEduu0u7pmiKQQddmQpEnHAYS86X3pNhNJOh7vAG/ZgYyoR7qVHTT7joiIpAfv+Sq4a8Y9ve6lpGR9hC2ISKIoICFJk44DCHn7GF781Xlp1bhMx+Md4Ff2dKqH33Ri6SjdAyoiIpLZAufbtRWl/Lz6J8A5X+mcJZK6FJCQpEmXAYRC3RVOtwa+93h7B3VKhzvdwZ+VdPjceGVKQz7dPvMiIpL5/Kbv7NuqH0Pa7aLzVQq5887bOj/77JOdAn8XFRVV9Omz7bqzzz5/Qa9eW5VFu52nnnqiXevWbSpHjBhZ0iAF9XHnnbd1fvPNV4unTJk6PVH7TIahQ3cafOqpZ84bM+bEZYncrwISIhGEakymS0DFT6BOlRVVaVuHdJIpDfnAZz4wFoa6boiISLKFmr5T56fU07Rps6obbrhlFsD8+fMLJk58pPN5553ZZ/LkF2Y2b968OpptvPnma8Xdu/fYkMiAhDQsDWopCRFpML9UHuxvTO8Tw0bZU7nsoaTDoE7RHNd0OfaZNpJ3Og/uKiIi6c97/vdep2Xa+TbT5ORk1wwevPO6wYN3XnfooUesvOSSf89Zvnx5/ocfvtcqGeWpqqqivLw8oVN1n3LKGHPnnbd1TuQ+U50yJCQhIqWsB0e3U2ngvEiZEKlc9lDdTfwGdUq1AQuj6eaQKV0hUpnf5yJTMj5ERCR9+HXNAI0Rkc4GDBi4DmDRooX577//bqsrr/zXNpMmPfdDjx49ywPrzJ07J3/06KO2v+yyq357/vmnO/zxx+/N/vjj92ZDh+7UFuDcc/8x56ijjllRVVXFPffc0fm9995uu2bN6rwOHTqWHXvsCYsOPfSIlYFtXXrphT3nzZvb9Pjjxy567LGHuixevKjgxhv/++uuu+6+9q233ih66qnHO82fP69pfn5B9Tbb9F57ySWXzevWrUdtWX74YXrTW265ocf8+XObdurUuezss8+ft+uuu69NxLEKV75Zs2yTBx+8r7O1P7VYu3ZtTnFx+/IRI0YuGzv2pKXZ2ZvyD1auXJFz5523df366y9brVu3Lrddu3blI0cesnT8+FOWBtapqqrOuu22G7u8++6UdpDF7rsPXXXRRZfOLygoqAmss2DBvPw77rit64wZ37WsqKjIMqbv2vPPv3he7959ou5646WAhEQUj4ZqpAaMd7lfIzPVGsteocqeCsGJWBrsqda4j6bRm84NY+9nGkj6ZyUUv89F8HgkqVp2ERHJHKG6ZkhsqktLs8vefLVN1YIFBTldu5YVHHjIyuzCwqi6S8Tb/PlzCwDatm1bsdde+6wuKmpd8corL7Y755zzFwbWeeWVF9oVFras/Mtf9i/p2bPXxssuu3jrDh06lo0ff/IigB49epUB3HnnrV1efvmFDkcffdyi/v23W/fhh++3vuWW63tlZWUxatThtUGJZcuW5j/00H1dR48eu7Bt2+KKbt26l7344rNtbrvtpl677z505QknjF9YU1PDN9983XLFihW5gYBEeXl59nXXXdXr8MOPWtK2bbuKiRMf7XzVVZdu/cILb/zQrFmzBj1+kcq3ePHivG7dum3cf/8RK5o3b15t7S9Nn3zy8c5lZWXZp59+1mKADRs2ZJ155slmzZrVecceO2Zhr15bbZw/f27BggXzm3j39dJLz3XYfvsBpRdffNkfs2b92vSJJx7r2qFDx7JTTz1zCcCqVStzzjzzFFNYWFh11lnnzW3atGn1k08+0fGCC84yzzzzyg9Nmzat8atDOApISETxaGRHyjLwLvebWjN4tGQ/yWoYhSp7KjTwozlhp8IMEKEa55GOWyaM4xGQ7M9KKJE+Q6kWhBMRkczid52Szuf/ZCr/8vMWay67uDc1NVBWlk1BQfW6hx/o1vKaG2fl77JbQu70V1ZWAjBnzh8FN998ffcmTZpU7777sNKcnBz22We/5R988G7bs88+b2FWVhY1NTV88MG7bYcP32dFbm4uxvTd2KRJk+pWrVpVDh6887rANletWpnz2muvtD/yyGMW/e1v5y4C2Guvv6xZvnxZ3hNPPNbZG5BYu3Zt7s033/nr9tsP2ABQXV3No48+1HXIkF1Kbrrp9j8C6+2//wGrveUuLy/P/tvf/j5/6NA9SwGKiztUnHHGif2+/PJ/Lfbee981oepbVVVFTc2mNnpNDdTUVNceB4Ds7Gy8mQxe0ZRv2LDhpcOGDS91tl/DzjvvVrpx48bst99+szgQkHjppefa/vnngqb33vvIT4G6A6XB+ysubl9+7bU3zwkcw5kzf2jx2WeftA4EJCZOfLRDWVlZzsSJT/3UunWbKoDBg3dee/TRh2z//PNPtzvhhPExD4ipgIREFEsjOx5BAb+pNUONlhwqfS9Sw8ivATys43A+WfxR7XN1mYUiVHAi3H7DHatIxzPS8mhO2IkMnIQqbyIa5/HMSIjHttJlKtNIn6FUC8KJiEj6C9c9Q+qmurQ0e81lF/dm48ZNLd+ysmyANZdd3LvNS29Oz27RokHv9K9duzZ3r712HRz4u23bduX/+tcVv3Xs2KkC4LDDjlz+4ovPdvrf/z4p3GOPPUs/++yTwuXLl+ePGnXY8nDb/eWXn5uWl5dl77//iFXe5/fee99Vt99+c8/ly5fltmtXXAnQunWbCk+DnNmzf21SUrIq78ADDw67j9zc3Jrddx9a24A3ZtuNAEuWLMkP97ojjhi5/fLlyzdb55dffmrx3HNP1844cvTRxy3yZoV4RVO+jRs3Zj344D2dpk79oM2KFcvzq6qqasfFqKysJDc3l+++m9ayR4+e671197PjjjttFlzp3r3Hxt9+m9088Pf3309rOWDAwDWFhS2rAkGVwsLCql69tl5v7c/NAQUkGoOGygQIN95AqOyF4EZ7vE8akUZLDpW+F3h+bUUpLfIKt2g4+jWA7epfWFOxerPn6jMLhV9DLlTD2xtA8StnNPWo693pRKY9hipvPBvn3s9lYJ+h3vPgckQ6bn4ZO95ted/vWINFwZ+VUK9PtSlbIwXhGpK6i4iIZCZ1z4i/sjdfbYPnTv1mamooe+PVNk3/77iwjfL6atq0WdXNN9/+a1ZWFsXF7Ss6depckZW1aUzJnj17lfft27/09ddfbbvHHnuWvvHGK+223nqbddtu229juO0uX740D6C4uH2F9/m2bdtWAKxatSonEJBo1arVZuusWrUq1++1wZo0aVLlzWLIz8+vASgvLws7KOZ1190y2ztw5i23XN9j6617rz/ssCNrG+4dOnQMue9oynfbbTd2fe+9d9odc8zxC7fdtt/6li1bVk2d+kHR888/3Wnjxo3ZLVq0qF6zZk1u69ZtwtYRoLCwsNL7d25uXk1Fxabyl5aW5s6ePau5N7AUkJW1/RYZF9FQQCINNVSkOJrt+mUvlKwvqW0s+3W3iFe2hJ/ggEVww2htRWnIRqj3f2CLDIncvJzaRm28hGp4h2ssR1uPun4uYkl7rO97Gq684RrnsZQtECyorKgCwr/n0QR9/DI5/DJ2gi+U6vp+ROqmFI8pWxuqIZ/osSXUXUREJHN4zxuhru+k7qoWLCgIZERsoawsu+rPBQUNXYacnOyagQN3XB9unQMPPHj5nXfe1mPhwj///PLLL4pOOunUBZG2266d01hfvnxZXps2basCz69YsSIPoHXr1rXPeQMg7rJKgGXLnKBGvPXrt91mGQlNmzatbtu2XUWk4xBL+f73v09aH3jgwUsD3SoAPvnko81mLmnZsmXlokUL6/0et2jRorJr1yEbxo8/ZVHwsubNW1T5vSYSBSTSUKhIcX3TyGONQI/pfSK5eTmUrC/xbVgGAhaB5xtCqJNU4PngYxIod6i70wd1P7T2ueBZKOrDWw6//YZqLMdSj8CyYR2Hc/FX5zVIw6y+wbCGvJvuDRbs1mn3zYJJ4d7zSEEf72tCZez4NcLrWr9wQY/A9vyCZbEEABLR9SqWQE8kocoTKStKgQkRkdSmmTMSJ6dr1zIKCqp9gxIFBdU5XbrWaYaEeBsxYuSqe++9o/u//33xVjU11VkjR45a6V2em5tbU15esVkdtt2274b8/ILqd96Z0rpPn21rG8pTp77fumPHTmWB7Ag/22zTZ2Pr1m0q3nrrjbb77Tdidaj1kiWa8pWXl2fn5+fVpr9UVVXx8ccftvGus+OOO6259947e8yc+WPT/v23C9ttI5wddhhU+umnH7c2pu+Gugxg6UcBiTQUqhFe3374sUagA1NHfvbHl1s0liE1UuwipcUnSqQGYKRyRlOPwDrxCARF0wCsr3jf8fCWbY9eu9QGk6IdGDNU0CeWMsfjYipSNyXvlK2R+thGeh+9watA+ePVXzeWQI9XpK5gwZkQ4QJLupgVEUlt6pqROAUHHrJy3cMPdPNdmJVFwchDVvouS7AmTZrU7Lnn3iunTHmjeI89hq0sKira7K57ly7dNn7//bctp059v2VRUevK7t17lLVp07bq4INHLX3uuac65eTk1PTr13/91KnvF33//betLrro0t/D7S87O5uTTjptwS23XN/r4ovP77Xffn9dCVlMm/ZV4V//euDKaDMZGko05RswYOCaN998rbhr124bW7YsqnrppeeKKysrNwvaHHbYUSteffXl9hdeeG6f448fs7Bnz14b//xzQf68efOa/OMfl/wZbXnGjj1pydSpH7Q544wTzaGHHrm0Q4cO5cuXL8/7/vtvCwcMGLjWO4BotBSQSBPR3LGMZz/8WETKUpDEnmTjsa9QDdJUfk/rW7ZQQZ9YsgXicez96hHNYKB+QYZIDXlv8ArCd2+paz1CBXpCZXQFyhyqK1ikz6bf/kREJHWoa0ZyZBcWVre85sZZwbNskJVFy2tunNXQA1rGYs899141ZcobxSNHjtpiTIuTTz594fXXX51/7bVXbrVhw4acc8/9x5yjjjpmxTnnXPBnTk5OzVtvvdb+6acn5Xbo0LHsggsu+eOQQw5b5bcPr0MPPWJlQUFB9eTJEztdc82VWxcUFFT37t1nbdu2bUNmViRSpPJddNGl86677qoe9957Z4/8/Pzqvffed8XQocNL7rnn9h6BbTRp0qTmnnsetLfffkvXSZMmdt6wYUNOcXFx2ciRh8Q0CGXbtu0qH3jgsV/uuef2Lg8+eE+39evX5xQVFVVsu23/tcZsW6fgTVZNqMFNGrmKiqqaeKTrFxU1i0vaf6DhMKTdLjENnOfVEH2641W/VJTJdYPw9avrZyXcQIyJ7N8fz/cu1HcvkYLLEKif33H1rusNQgQa8t56xHPmkfrUCdiszE/OmUjJ+hJ+Xv1TvX7z6qu4uHAasFNDbT8e55nG/DuVCTK5fplcN8js+jVU3YLHSErWeTVV3rtYzjHffff9nK5dt47LgJPVa9dml73xapuqPxcU5HTpWlYw8pCVqRSMALj55uu6fvbZx61ffPHNH0JNhynpZcGC39oNGjSwp98yZUikiVB3LGPpC64B4CRake5SRLq7Dfg2hiH90uhTIYU0VBn83qdQd5v8tpHMLk3hxk0J1xVMd9BERNJTpDGSJDGyW7SobujZNOpq1qxfC2bPntX07bffLD7mmNELFYxoHBSQSBOhLsIjNZYiTYvp/VvBCYlWpFlB/D5j3v/TSSo0gGMpQ7p0oYp13BQREUk/4bpnpKuKH2ew/rGHaTb+ZPK2G5Ds4mSUm266pufs2bOa77TTziVjxpy4NNnlkcRQQCLN1XdazHS/ey3JEe7utt9nTI1LERGRxiETZ87wBiHWP/YwFV99wXqg1a13JrtoGeWhhx63yS6DJJ4CEhkumrul6Xz3WpIjllk/REREpPHIlAzJUEGIZuNPrv1fROpPAQlRw1FERERE6iwTZ84IFYTI226AMiNE4ijhAQljTA5wAzAOaAK8A5xmrfUdXMUYMwK4FdgK+A0431r7jrusDfAysK27rWXAY8C11toad51mwN3A4e4mXwDOstZuaIDqhRRpZPhQgwR6H6dzfzsRERERySzBM2dA5nTNSLEgRHVNTU1WVlaWpkeUtFNTU5MFhJzJJRkZEpcAo4BdgBXAo8ATwAHBKxpjtgJeBE4FngWOAl4yxvS31s4B1gFnAL9aayuMMb2AN4GlwIPuZu7ACVgYoAYngHGb+7qE8RtEcljH4Xyy+KMt+tgBvo/T9cddRERERDKD3xgR6T5zRiAQUb22lKqfZtaOD5EqmRBZWVmLy8s3tiooaJrQG6oi8VBevrFJVlbW4lDLkxGQOBW42lr7O4Ax5iJgtjGmh7V2btC6Y4Fp1tpJ7t+TjTGnu89fZa0tA2YGvaYaJ/iAMaYpMBo4yFq7xH3u38BrxpjzrLUbG6B+vvwGkbSrf2FNxeotlge/JvixiIiIiEgyhBojIt0yef3GiMjp25+8nXdNufEhqqoqr1qxYsndbdt2ID+/yUZlSkg6qKmpySov39hkxYol+VVVlVeFWi+hAQljTBHQHZgWeM5a+5sxZg2wAxAckNjBu67rW/d573ZfB/6C021jPvBAYJH73LSg1zcF+gAz6l6b2PgNIunNkAg3SKAyI0REREQkWTJljIiKH2fw56THyB89PuwYEalm8ODBb0+bNu2s5csXXVFTU9MRyE52mUSiUJ2VlbW4qqryqsGDB78daqVEZ0gUuv+vDnq+BGgZYn2/dft7n7DWHuSOTTEEOBgIjEfht7/AY7/91crJyaKoqFm4VaKSk5O9xXb2KNqFPXrtAsDoAcfVex/J5Fe/TJHJdYPMrl8m1w1UPxERaXiZOH1nIAhRWVGVamNEROQ26EI26kTSVaIDEqXu/62Cni8C1oRYP6p1rbVVwBfGmD2Be4Bjg/ZXErRvv/3VqqqqoaRkfbhVolJU1Cwu20lVmVy/TK4bZHb96lI3b+omUPs4Fe+UZPJ7B6lTv+LiwsgriYhkqEycvrPZ+JMpz8shf/T4tAhCiDQGCQ1IWGtLjDHzgB2B76F24MqW+HefmA7sHfTcIOD9MLvJBXoHdglsdPf3gef1G4BfY6+BiGQqb+omUPtYFysiItJYzFz1A09+N5Hjeo5N+64ZweNDBM7pxfc/kBJBbxFxJGNQyweBi40xH+LMsnEj8LY7a0awx4ELjTHHAs8DRwKDgTEAxphdgebA/4ByYA/gXHcfWGs3GGMmAVcbY350t3k18HgiB7QUkdTnTd0ENnssIiKSyYKn76ysqErLrhl+s2UEn99FJLUkY0CUG4DXgK+BP4EcnJkwMMYcb4xZG1jRWvsbcDhwGU4Xi8uAwzzBi3zgJpxpPlfhDGZ5J3ClZ39/x8mGCPyzwHkNUTERSV+B1M287QZs9lhERCTTebtn7NZp97TqmlHx4wxWX3BObTCi4qsvoIba2TJ0ThdJbQnPkHDHeviH+y942WRgctBzU4ApIbb1MU7GRLj9rQNOdP+JiIiIiDR6oWbO2KPXLinfpSFUl4xUny1DRLaUjC4bIiIiIiKSYJkyc0a4IITGfhJJLwpIiIiIiIg0Auk8c0bwbBkKQohkBgUkREREREQyVKiuGekyc4bfQJWtbr1TQQiRDKGAhIiISD0ZY64FjgPa4kw3/TFwvrV2XlILJiKNUrp3zfAbIyKnb//agSpFJHMoINGAKn6cwZ+THiN/9HgNrCMZwXuBoM+0yGaeAG6y1q42xjQDrgGeBnZPbrFEpDFKx64ZGqhSpHFSQKIBBX5MKyuqlFYmGcF7gaDPtMgm1tpfPH9mAdWASVJxRKSRCmRGDOs4HEivrhkaqFKkcVJAogE1G38y5Xk55I8en+yiJJ3urKevUINIicjmjDHHAfcBLYFK4PzklkhEGoNw3TNSnQaqFBEFJBrQr12yePL/cjiuSxb9I6yb6Q32TL6z3tjeu0x7/xqLTP+cBuqXP3xvyj/6MCn1tNY+CTxpjOkInAT8EG79nJwsioqa1WufOTnZ9d5GKlP90lcm1w1Sq35PfjeRr5d/SW5eDmcOOpMHf8zh1O1Oq3P5GrpuG77/npX330eb089g3aTHqPjqC8rzcuhy/wMwdNcG229AKr13IqKARIMKRKkrK6oiRqkzucEOZPSddb136S3TG+oBW6TCZlida7vI2Z+pWb06qd9Ha+1iY8xDwO/GmO7W2pV+61VV1VBSsr5e+yoqalbvbaQy1S99ZXLdIPn182ZFHNdzLJUVVRzXcyw98npz7aBbAOpcvoaqW/BsGUsrqmg2/mQqK6rIHz0+Yccz2e9dQHFxYbKLIJISFJBoQGN6n0huXg7H9Rwbcd1MbPQFN/QysbEOm793mdi4zcT3LtTAWZlWTy/v5zRT6uyX6uvNkEiyXKA50BnwDUiIiMQiHWfOiDRbRiZeY4hIbBSQaED9W2/PPb3uDRmFzfQGezwaPenQwPe+d6svOCcjGnqZLtTAWZkm1G9MptQ5VHeipoccltByGGOygTOBZ621S40xXYG7gDnAL+FeKyISSSAQsbailJ9X/wSkz8wZmi1DRCLJTnYBGrPaH+nHHk52URpEs/EnbzFfdMWPM5xG+48zotpGKh8jv7r41TkTxfo+Jkuocnrfp0BDPRMvjkJ9f2Kpcyq/1yn2fTsQ+NEYsw74ElgP7GutrUxusUQk3XmzIYa022WzmTP6t94+yaXbkve80VjOtyJSd8qQSKJE3KVMZoaBX9ZHrFkTqXwn168umZjp4iddUv7DjZsQbbn9vkPpkLkD8fn+xPO9rutxm7FwDQ99PpdTdusBUPt4QIp836y11TgBCRGRuPB2z/BmQ6RiAALCd4VMhd9pEUldCkgkUUM2XoMHDkqVhmOs4y001DGKR4MyUmOvrvtIh8ZuKgeKvOIxboJfUCPW71Ui39O6dgULVcZ4fs7r+h489PlcvpizqvbvwONTduuxKTjRuWXU2xMRSUXpPEaE97yYLtcIIpIaFJBIQfFovPgNHJQKGnK8hUQ0jLwiNfbqOqtBOsyG4K2797gDKVXeeIyb4BfUiPV7lYiMkroEIaMZ3DOWz3mk/UXzHlT8OIM/Jz1G9u571g5OecpuPQFqMyQCj72BiruOSM27hiIi0fIGIVJ5jIjGPlClN2tPwXCR+lNAIgX5NUi9I8dH09DzGzgoEXdpY9lHvGeniHfDqL7qenc+nrMhJOI995YRSNmuHHW9QAoV1IjleNYlyyDW964uwZJQg4011Pc41Hvgd3FbNeMHckrXsKSskgF337tZwCHwOBCg8AYqdKEoIukkXNeMVM2KaIwDVXrPLQqGi8SXAhIpyK9BWml/pmb16rANvUip2vG+Sxu4k5k/enztSSiWfcSSLRFNAymWIEMiovex3J2Px2wIfscoEdkWwWWsb6CnvkEUv89lvMQjqOEnUrcQ73sH1NYv8Npm40+u00Vh8GsifR/93ptQr/MLpv7cpmftBV3erz+x+uEHaHXyaRQ+/zhNpn/DkrJKSo8cw5qla/m2+w70+uUbppv9uDhE+Qd0bll7MRi4WCzdWMnMxaWALhRFJDWlc9cMv/NNqt2AaAjeIIRfMFxE6k4BiSSI5S5i4Effe1EfSqRgQKjGbaTyhFpeGyypqIprWnxd6gb1DzIEdz2IZ6M2ULbAyNOhjmWs6fJeftuIJtsiUO9Ys3BCldGvK0ekz1Wg/N5yri0tJbuwMGx5/LYRaMh7P5cNKVQ9I2U9BMobfHHnl+ngl4VSWVFV+7iuA4eF+nyF+j5Gem8iBVMf2v2U2gu64196gG3mzmT2ww/w6i6HsMOiUqab/ViwojlfDBxH/46F/LTjPpyyW4+ougUFLhb7dyxk156tdaEoIikrnbtmNKaBKr1ZEd4ghDcYLiL1p4BEEtQ1i6DpIYcBdR98LlS/f79GRqCc4RqyzcafTHleDtm777lZI7u+d5D96lfXdPJoGjJ+fe+BLYIt8RDuWNZl4EC/Oxb5w/f2fT8iNTK9Dcd4ZFP41TXUxQ2wRfpn9dpS3+yOwLZDbSOnb3+a7rFHbQZBQwuVheJX/3DdW8J1Cwl+78rzcjZlSBB7ADCSSIEK73sTKoDmF0w9pc2mC7q8tqcx282QOKBPPx7qvE3tBV9ebjbjhnSr7XKx+tbI3YKCLxZFRFJNIDNiWMfhQGp2zfBmGYbqmpHJwnXNUBBCpGEoIJEgoVLd6iJcGn5d7qb7NTJgywaiXzCg+P4HmHvSyXHtCuLXkIuUFh5LkCG4nKH63gcaffEctDHcsazLAJl+dyxCpdsHB30CFxx+Dcd4dO/xq2u4UbiD0z9jCV4Eb6N46K6UlKwPLlKDCJWF4vc9D1VeL7/PQvBzxfc/UFu/wPOJGDvB772JtC5sCqYOwNONovOusNeutet7L/QeHTtks/cvmuOmO1YikorCdc9IJcHn6cqKqkbVNcOv25+6ZogkRlZNTU2yy5CSKiqqauLRoCkqakZJyfraRmLezrvW+wfdr6EW63ZjSSf3NryD61FU1Ixln34R17EJYkn1D1X/QDlz+vb3zfqIlFoP/u8dELf3MZbPRKg6+wVkoskgibTveA+G6fd+1HUqVIgcFAq8d4mWqOk9/ep39gs/8MWcVezas3XaN8yT9f4FKy4unAbs1FDbj8d5JlWOVUNR/dJXJtcNoq/fxV+dx9fLv2RIu11qgxKBzIhU4j1P57cpapBxmFJF4L3zy4bo37GQwia5Ccm2a+hzjEi6UEAihHgHJBqqoZKoBlCo/SX7giOW/vux8nvvIH7TWta1jPGoW8WPMyhvoIEfQ+0vkZ/TZH8uG5pf/QIXVnv3bseHs5anddeFVHn/FJBIPtUvfWVy3SB8/bxZEUDKBiFCXd8kMsswGQLvnTeQHwhKJPLcqYCEiEMBiRDiHZDIVJlcv0yuG2R2/TK5bhC+fvHIlIhH94/6BEhS5f1TQCL5VL/0lcl1gy3r59c1Y0i7XVK2a0a4LNNMfu9mLFzDhK/nM25IN4CkThOtgISIQ2NIiEjG8jasIbkXHokSjz6voeZY9wsyBNYPfhzYxs+LS1m9sXKLbYmIZJJUnjkj1JhMjXmgyorKag1UKZIiFJAQkYzlbVgDvo1sP4kYIDIe/MoZj8EdvUENvws5b5AB8D3GgW0EBy9ERDJJqs6cEU0QIpMHqgw1W8Ypu/WonclJRFKDAhIiklFmLFzDhFdmMm5IN99sgWgaxqEyBBpKXQMgkcoZKUMk3PLA9gJdQCB8kCH4sXcbhw/oFHWdRERS3cxVP/DkdxM5rufYlJ05ozEGISDybBkDOrfcYiYnEUkuBSREJKOES8cMF1zwNs4TPdVXrIGFcAGXUNuFzbMXgi/YvMu9ZQi+kPMLMkR7jEVE0pXfGBGVFVUp2z0jf/jeQOMKQgTPlhEYrFLTQouktoQHJIwxOcANwDigCfAOcJq1dnmI9UcAtwJbAb8B51tr33GX9QGuA3YDWgLzgP9aax/2vH6qu7zCs9ljrLWvx7ViIpIS6pqOGRwUqO/FSyxZD35dJLxZCH6BhWj6v4bKEPG7YAt+TYAu5EREthwjIjcvh+N6jk3Z7hlARgchvIK7ZAT+T+UulyKySTIyJC4BRgG7ACuAR4EngAOCVzTGbAW8CJwKPAscBbxkjOlvrZ0DtAY+BM4BFgF7AK8bY1Zaa1/0bOo/1tprGqxGIpIy6pqOGU1WRF0GdQxsM9zr/LpIeMdpCC5btAGX4GBC4HGoCzYFHkRENvFmRXgzIfq33p57et2bMtOeN/aBKkNl8olIekhGQOJU4Gpr7e8AxpiLgNnGmB7W2rlB644FpllrJ7l/TzbGnO4+f5W19kvgS8/6nxpjpgB74QQyRESiEuoipr6DOkbzOr8uEsHTZXrXqW//V12wiYj48+uaAc74EKmYCdGYxogINVClZssQSW8JDUgYY4qA7sC0wHPW2t+MMWuAHYDggMQO3nVd37rP+22/GbAr8J+gRX83xpyPk0UxCbjFWlsR/HoRaRximQ7ULxU01kEdo30doMEgRUSSKBWn7wwEIqrXllL108xGFYSAyANVikh6S3SGRKH7/+qg50twxoDwW99v3f7BK7pjUzwBzAce9yz6J/ALsAYYAkx29/XPcAXNycmiqKhZuFWikpOTHZftpKpMrl8m1w0yu36R6jbhlZl8MWcVebnZALWPHx07ZIt1z9+vD3d9OJuz996GQd1bs2e/jgCcuOfWtesEngt+XPtcUbOIr4tFJr93kPn1E5HUk6rTd8KmGTNy+vYnb+ddG1UQQgNVimS+RAckAsO5twp6vggnYOC3fsR1jTF5OIGGTsAB3uwHa+3nnlW/MMZcjjOoZtiARFVVTVz6BhYVNcvoqYUyuX6ZXDfI7PpFqtu4Id2oqKyuHYch8NjvNb1aFnDbKCcGmirHK5PfO0id+hUXF0ZeSUTSVrjuGcnm7Z4RnA2RqUJ1ydBAlSKZLaEBCWttiTFmHrAj8D3UDlzZEpjh85LpwN5Bzw0C3g/8YYxpAjwPtAD2t9aujVCMaiCrLuUXkcwQarBHERFpPFKte0aoMSJa3XpnRmdDBIQLQug8LZK5kjGo5YPAxcaYD3Fm2bgReNudNSPY48CFxphjcYIORwKDgTEAxpgWwGs4U3oeYK3d4H2xO2bFUGAqsA4YCFwJPBPfKomIiIhIqgs3c0YyMiM0W4ZmyxBp7JIRkLgBZ7rOr4EC4F1gNIAx5njgAWttC6gd8PJw4Fac6UF/Bw7zBC+OwJlRYwOwzBgT2Mcka+3pQB5wGU53jmycQS0nA9c3aA1FREREJCWk2swZmi1Ds2WIyCYJD0hYa6uAf7j/gpdNxgkYeJ+bAkwJsa2JwMQw+1qGM+uGiGSgULNl7KkBEUVExJVqXTMaYxACNFuGiPhLRoaEiKSpwMVE8PSV4abNrOs+Qm0v1J0VoPZxXWevEBGRzJFqM2cEMiPyhzvDozWmIIRmyxCRUBSQEJGoBS4mfl5cyuqNlbXPeweh8stYCDwOFcjwPg7so3RjJYVNckMuD+zP+3/wYxERaVxSbeYMv+4ZQKMLQoBmyxARfwpIiEhYfgNOBQcWgLAZC4HHoQIZ3seBbZZurAy73O/Oiu6yiIg0bqnQPaMxDlQZbRBC52kRCaaAhIiEFWrAqcMHdKpdJ/BcpIyFUIEM7+PABUvw+BDBy0VERCD1Zs5ojGNEKAghInWVVVNTk+wypKSKiqqakpL19d5OUVEz4rGdVJXJ9cvkukH09Ys0pkMq0nuX3lKlfsXFhdOAnRpq+/E4z6TKsWooql/6aui6+XXNGNJul4QFIILr582KAGof5203ICHliadY3ju/saVS/VohVb53DX2OEUkXypAQkbB0d0NERFJNKnTNgE2BiOq1pVT9NJP1OONDZGomBISftlNEJFYKSIiIiIhIykuVrhkVP87gz0mPkT96fG33jJy+/cnbedeMHB8CohsjQkSkLhSQEBEREZGUFQhErK0o5efVPwHOrBnJmjkjEISorKjaYoyITKKBKkUkERSQEBEREZGU4jdGRN9W/RjSbpekds1oNv5kmo0/mfK8HPJHj8+4gSpnLFzDhFdmMm5INwUhRCQhFJAQERERkZQSaoyI/q0T1xAONX1nq1vvpPj+B1JiYMR4CwQhKiqrFYQQkYRQQEJEREREki4VxogIFYTwds3IRN7ZMvJysxk3pJuCECKSEApIiIiIiEhS+HXNgMSPEeE3W0bw+BCZ1DUDQo8R8cRJu2Rk9oeIpCYFJEREROrBGHMjcBDQDVgLvAFcbK1dmdSCiaSBZE7f6ZcN4Z0tozEFITRbhogkiwISIiIi9VMFjAZ+BIqAx4EJwCHJK5JIagtkRgzrOBxIzvSdobpkaLYMEZHEUUBCRESkHqy1//L8ucwYcwfwbLLKI5KqwnXPSJTg2TIytUuGghAiki4UkBAREYmvvwDTk10IkVSTrO4Z4WbLyKQgBGwKRJRurGTm4lJAQQgRSW0KSEgtbzR9QOeWyS6OiEjaMcYcAZwODI+0bk5OFkVFzeq1v5yc7HpvI5WpfukrULfpy6bz4I8PcOp2p3HmoDN58MccTt3uNHYo3oE9eu3SoGXY8P33rLz/PqrXrKHihx8oz8uh/dlnsfL+HNqcfgZN63HsU/W9m/DKTL6Ys4odurRk2DZtOXvvbRjUvTV79usY9TZStW7xkun1E0k3CkhILW9Kn6LnIiKxMcYcBTwAHGKt/TbS+lVVNfUeyb6oqFlGj4av+qWnmat+4Mk5Ezmu59jarIjKiipu3Pm/XDvoFoAGq3e4gSrzR4+nrGcfmt/wX8qAsnqUIZXeO+8NpXFDulFRWb3ZzaVYy5lKdWsIqVK/4uLCZBdBJCUoICG1NMKyiEjdGGPGA7cCB1trP0t2eUSSyRuESPTMGY19oMq7jtheN5VEJK0oICG11K9QRCR2xphzgCuAv1prv052eUSSwTtg5ZjeJ5Kbl8NxPccmZOYMDVSpG0oikr4UkBAREamfO4BK4ENjTO2T1toWSSuRSIIEAhFrK0r5efVPgDNrxj297m3QtHgNVKmBKkUkMyggISIiUg/W2qxkl0EkWQLdM/q26seQdrs0aNeMUEEIb1ZEpvDLhujfsZBde7ZWEEJEMooCEiIiIiISteDuGeCMEdG/dcM0kAOBiOq1pVT9NNN3fIhMyIqIpkuGZkETkUyjgISIiIiIhOUNQgSyIsDpntEQY0SEmy0jk4IQXuGCEMqGEJFMpYCEiIiIiITlDUIkYuaMxjhbhoIQItIYKSAhkmG8FzdK7RQRkboK1zWjobMiMrFLRoCm7BQR2UQBCZEME5zyqeCEiIhEKxW6ZjTW2TJERBojBSREMoz34ib4zouIiEg4ieqaEWmgykyh2TJERMJLeEDCGJMD3ACMA5oA7wCnWWuXh1h/BHArsBXwG3C+tfYdd1kf4DpgN6AlMA/4r7X2Yc/rmwF3A4e7T70AnGWt3RD3yomkAO/FjTc4oa4cIiISSiAzYljH4UDDds0AMnqgSs2WISISvWRkSFwCjAJ2AVYAjwJPAAcEr2iM2Qp4ETgVeBY4CnjJGNPfWjsHaA18CJwDLAL2AF43xqy01r7obuYOYFvAADXAy8BtwBkNUz2R1OENTpz9wg/KlhARkVrhumc0hHBjRKS7aIMQOv+KiGwuGQGJU4GrrbW/AxhjLgJmG2N6WGvnBq07FphmrZ3k/j3ZGHO6+/xV1tovgS89639qjJkC7AW8aIxpCowGDrLWLnH392/gNWPMedbajQ1UR5GEi5QBoX6qIiLilYjuGZk+RkSkcSEUhBARCS+hAQljTBHQHZgWeM5a+5sxZg2wAxAckNjBu67rW/d5v+03A3YF/hN4CqdbiHcb3wJNgT7AjFBlzcnJoqioWfgKRSEnJzsu20lVDV2/7+at4q4PZ3P23tswqHvrBtuPn3R77ya8MpMv5qwiLzebR8cO2WL5nkXN2LNfR8A5rne/+hNn7bU1AHd9OJu/9uvA2z8t4ey9t6l9LhnHPR7S7b2LleonInWViJkzKn6cwZ+THiN/9PiQ03dmCo0LISJSP4nOkCh0/18d9HwJzhgQfuv7rds/eEV3bIongPnA42H2F3gctvNeVVUNJSXrw60SlaKiZnHZTqpq6Prd9u6vfDFnFSvXllPYJDeh/S7T7b0bN6QbFZXVjBvSLWK5A8e1vKIKgC/mrGLGgtWs3lhJRWV17XMVldVpeVGVbu9drFS/xCguLoy8kkgaSMTMGX6ZEJUVVRk5feeMhWuY8MpMxg3ppnEhRETqKdEBiVL3/1ZBzxcBa0KsH3FdY0weMBnoBBxgra3w2V9J0L799icpJnCiL91YmRHjH3i7VQARB5kMrL9373Z8OGv5Fq8L3ka0x+aU3XqQl5vNuCHdap8L3kdgPRERSU+BQMTailJ+Xv0TEP+uGaFmyyjPyyF/9PiMCkIEjxERCNqn83WJiEiyJTQgYa0tMcbMA3YEvofagStb4t99Yjqwd9Bzg4D3A38YY5oAzwMtgP2ttWu9uwQ2uvv7wPP6DcCv9ayOJECgkR3ckE8loYIMfo+9fUyBzQa98ntd4KLn58WlrN5YucXrvI9juSAa0Lklj44dUnsXOvDawwd0ql1HF1giIuktkA3Rt1U/hrTbpUFmzgg1W0bx/Q+kRKZTfYQbqDI4qC8iInWTjEEtHwQuNsZ8iDPLxo3A2+6sGcEeBy40xhyLE3Q4EhgMjAEwxrQAXgMqcDIjNpvK01q7wRgzCbjaGPOj+/TVwOMa0DK9eO/+J3P6Sr/gQ6ggg99jbx/TgOALHe/rAutFyl5IxUCNiIgkXrgxIuJFs2VsHtQXEZG6S0ZA4gac6Tq/BgqAd3FmwsAYczzwgLW2BdQOeHk4cCvO9KC/A4d5ghdH4MyosQFYZowJ7GOStfZ09/HfgbvYlBHxAnBew1RN4iFSwCH4AqEuwYlI+/D2Dw3sM1TgIFSQIdRj7/4CQRa/GTCCu2GEyl5QJoOISOOWrDEiNFuGiIjUV8IDEtbaKuAf7r/gZZNxxoLwPjcFmBJiWxOBiRH2tw440f0nacDb6Pc7+XsvEEIFJwLbCTX2gt/rvOt6+4fClhkL0QQZwj0OFnyho4seERGJVkNN3xkqCJEps2X4ZUNotgwRkcRKRoaENGLRjLfg1+j38l4ghApOAGHHXvB7nXddv/6hfhcnulAREZFkaKjpO6MJQqTzQJXRdskQEZHEUEBCfEUzG0SgW8PQXm0izgAReBzNeAuxjFgdKjgREGrsBb/XedcNNeijiIhIsiSia0ZjDkLoXC8ikngKSIivcIMsBp/UZyxYHXEGiMDjWMZbiFWo7IVIM0eEGqdBREQklTRU1wzYlBmRP9yZ3CzdgxBeCkKIiKQuBSQSJJkzQ9RFqLES/Ka9Cs6Q8Hud93E04y2IiIiII5AZMazjcCA+XTPAv3sGkBFBCNh07bV373aAghAiIqlIAYkEiTRQY6oJlW0QatqraGaASId6i4iIpIJw3TPqozEOVAm6BhERSVUKSCRIpIEa04XuLIiIiDS8eHbP0ECV6X3tJSKSyRSQSBA15EVERCSceM+cEQhEVK8tpeqnmY0uCKFrLxGR1KeAhIiIiEiSNOTMGYFsiJy+/cnbeVcFIUTqKHfxNJp9dRvrdz4foPZxZcfBSS6ZSPpTQCIJEjnAZah9RTOtp4iIiDSseM+c4e2eEZwNka4C1yzeqcMVhJCGECrw0Oyr2yiY/1HteoHHaw6ZnJRyimQSBSSSIBDVL91YSWGT3LgFAvyCDMEnb787C4AGfRIREUmgmat+4MnvJsZl5oxQY0S0uvXOjMqG8E4driCE1Jdf8CG7fA15S76rXScQeAisE/g/+LGI1J0CEkkQCBiUbqz0DQTEkkERKn0R2OLkHWmgJw36JCIi0nD8umdUVlTFNQiRzrNlRNslQyQWwYGHnLfuIHfQub5ZD+XtB1LWbfgWgYfKjoM3y4ZQZoRI/Cgg0YBmLFzDhFdmMm5It81OoIGovvfEG+4kHJhD+8NZy7foYhFNkCGw73DpjbrLICIi0rCCu2fk5uVwXM+xUb8+E2fL0LgQEk+B4EPZ1gdS8Nubvt0tsud/RLOKqpBZD95xIRR4EGl4Ckg0oMCJtaKy2vdE6j3Bnv3CD74n4cA2fl5cyuqNlbWvjeaEHbxPndBFREQSK9zMGff0upeSkvVRbytTghCgcSGkfiKN9ZC7dAY5Zc61cnDgIS8vh/WDzlXWg0iKUECiAZ2yWw/ycrMZN6RbVOsG/veehAPPB2dI+K0rIiIiyRfvmTMCmRH5w/cG0j8IoXEhJBbRZD0Ej/XgXTc48FB17PNUxhAIFJGGpYBEAxrQuSWPjh0S1d2PUCdh7/OHD+hU+7xO2CIiIqkpHjNn+HXPADIiCAEaF0K2VJ+sh8Bjb/ChrP/xCa6BiNSFAhIiIiIi9RSua0a0WRGZMlCldwwtjQshwWKdWjOarAd1txBJXwpIiIiIiNRRIBCxtqKUn1f/BMTWNSNTBqr0y4SoqKxWEKKRi8fUmsp6EMlsCkiIiIiI1FGge0bfVv0Y0m6XmLtmpHMQAkIPThkYQ0tBiMYhlqwHTa0pIl4KSIiIiIjEIFz3jGhV/DiDPyc9lpYDVUYzOGW0Y2hJ+olX1kOAAg8ijZsCEiIiIiIRxGPmDL/uGXkVVWkbhAANTplpchdPI+etO8gddC6Ash5EpMEpICEiIlIPxphjgL8BOwDNrLU6t2agus6cEW6MiPK8HPJHj2/IYtdLtEEIdclIT6EyHbKXfEeziiqAsINMKutBROJBF00iIiL1swq4F2gKPJjkskgc1XXmjGgHqiy+/4GU69agIETmiXV8h+qt9mG9myEB4QeZBAUfRKR+FJAQERGpB2vt2wDGmL2SXBSJk/rOnJGOA1WGGpwy8L+CEOkhEHzwTpEZaTrN4IBDi22HUekGyhR4EJGGpoCEiIiIiEddZs7wZkWkchDCmwEBRBycUkGI1BQp6yF36Qxyypzslmim0wQFHEQkORSQEBERSYKcnCyKiprVcxvZ9d5GKktk/aYvm86DPz7AqdudxpmDzuTBH3M4dbvT2KF4h7Cv2/D996y8/z6q16yh4ocfKM/Locv9D8DQXSPuM1H1+27eKu76cDZn770NE76ezxdzVpGXmw1Q+/j8/frUrjOoe+t671OfzfjJWvAV2Z/cRLU5iGz7OtXDLiL7uzvInv8ReXk5ALWPq/f5J9Wf5FBjDqLavk7OsIto0XVn2HYYLQIb9D72ofdORBJJAQkREZEkqKqqqff4AUVFzVJuDIJ4auj6+c2cUVlRxY07/5drB90C4Lt/vzEicvr2J2/nXckfPT7qMjd0/YK7YVRUVnPKbj2oqKxm3JBuTl3cx71aFnDbqP6Af51jpc9m7MJlPeTO/4iaP78ju2wVFRVVlO58Ps0qqmrHegg8rmyxHRzwuLPBrY52/o+xnHrvEqO4uDDZRRBJCQpIiIiISKMUy8wZ0Q5UmWx+g1KG64ahLhmJF8sgk7Cpq4V3XAh1txCRTJHwgIQxJge4ARgHNAHeAU6z1i4Psf4I4FZgK+A34Hxr7Tue5Q8DuwEGmGCtPTno9ROA44Eyz9MXWWvvjVOVRESkEXPPa3lAvvt3E3dRmbW2JmkFE1+xzJwRbRAi2WNERDszhiReqKk185Z8V7tONNNpBgIOZf2PT1TRRUQSIhkZEpcAo4BdgBXAo8ATwAHBKxpjtgJeBE4FngWOAl4yxvS31s5xV5sBPAecFmafE4MDFSIiInFyAvCY5+8N7v+9gDkJL41swa9rBkSeOSMTghDKgEiMWKfWLOs2XINMioiQnIDEqcDV1trfAYwxFwGzjTE9rLVzg9YdC0yz1k5y/55sjDndff4qAGvtne52jk1I6UVERDystROACUkuhoQRS9cM2JQZkT98b0BBCNlc7uJp5Lx1B7mB8RvqmPUQoMCDiDRmCQ1IGGOKgO7AtMBz1trfjDFrgB2A4IDEDt51Xd+6z8fiCGPM4cBy4BXgKmvt2hi3ISIiImkkkBkxrONwIHTXDPDvngEkPQgBWw5OCQpCJEK4rIfs+R/RrKIKUNaDiEh9JDpDIjCc7Oqg50sAv86NhSHW7R/DPu8CLgaWAX1x0mofAsJmVMRjOrasBV+RM+VmWg+9kJquO9drW6kqk6dOimfdaqfsGnZRynwW9N6lL9VPJLRw3TOCRTNGRLLEOjil1E8g+OAdODLcIJN5eTm1M1wEnlPWg4hI7BIdkCh1/28V9HwRsCbE+tGu68ta682wmGmMOQ+YaowZZ60tC/W6eEzH1vKD68md/xFV5ZUZe2JKlamTGkI86xb4LFRUVKXMZ0HvXfpS/RJDU7Klp0jdM1JtoEpv4AHQ4JQNLNJYD7lLZ5BT5hz3cN0tqo59nkr3dypVzusiIukooQEJa22JMWYesCPwPdQOXNkSZ3DKYNOBvYOeGwS8X49iVLv/Z9VjG1Hxi6BL4+R3USMiIvERy8wZqRCEACcQMeGVmaxcW17bDQPQuBBxFGvWA2hqTRGRREvGoJYPAhcbYz7EmWXjRuBtz6wZXo8DF7oDVj4PHAkMBsYEVjDG5APZQA5Q4063Vm2tLXeXHwNMcYMhvXGmEH3VWruxoSoYEBxBl8Yr+KJGRETqJ5aZM7xZEckOQoTrhhGgIERs4pX1oKk1RUQSLxkBiRuA1sDXQAHwLjAawBhzPPCAtbYF1A54eThOEOFR4HfgsKDgxTvAcM/f44CPgL3cv08H7jXGFABLgZeAK+NfLREREUmUaGbOCAQiqteWUvXTTNbjDFKZ7CAEOEGHvNxsxg3ptlk3DAUhQotlak1Q1oOISDpIeEDCWlsF/MP9F7xsMjA56LkpwJQw29srwv7CLhcREZH0EWnmDL8xInL69idv510TNkhltNNzPjp2SEqMl5IqQgUcAo/rMrWmsh5ERFJbMjIkRERERKIWaeaMaAeqbEjRBiGUAeGIZXyHwGNNrSkiknkUkBAREZGUM3PVDzz53USO6zk2YveMZA5UGQhElG6srB2cUkGITeIxvoP3sabWFBHJLApIiIiISMoJBCEqK6p8Z86o+HEGq685J2EDVUaantM7OGVjDEIEBx5y3rqD3EHnxm18BwUfREQykwISIiIikhKCp+/MzcvhuJ5jfceISMRAlaG6YUDo6TkbA7+sh+DxHbLnf0SziiqN7yAiImEpICEiIiJJE258iHt63UtJyfqED1QZqRtGQKZnQ8Qyq0Xw+A55eTmsH3SuxncQEZGwFJAQERGRpAk1PkTFjzP4c9Jj5I8en5CBKv2yIcJ1w8i0IEQsg0yGy3oIqDr2eSo1g4iIiESggISIiIgkXKTpO1dfcw4VX31BZUVVg40REe3MGJkkHoNMKutBRETiRQEJERERSYhYpu9sNv5kyvNyyB89PilBiEzIgKhL1kO0g0yKiIjEgwISIiIikhB+3TNOqtqT1Recs9n4EIGBKovvf4CSOKT9Z3oQIt5ZDxpkUkREEkUBCREREWkwwTNngBOM6PNnDf96porqta9S4c6W4e2aEQ+RBqdMtyBELINMgrIeREQk9SkgISIiInEVqmvGNc3G869nqmg2vsZ3toy6ds3wZkAAMQ1OmaqimVozmkEmlfUgIiKpTAEJERERiatQM2esv+ahuM2WEaobBpBWg1PWZ2pN0CCTIiKS3hSQEBERkXqL1DWj2fgaiMNsGZG6YQSkSjZEqIADQM5bd9Bi3aqYsx4CFHgQEZF0p4CEiIiI1FkgELG2opSfV/8E+HfNCAxUWd8uGdF0w0hGECLW8R0Asud/RKWyHkREpBFTQEJERETqLNA9Y7+SHoz9oAVFJ+25WRCirgNVzli4hgmvzGTckG5hZ8ZIhniM7wCQl5fDukHnKutBREQaLQUkREREJCbe7hknVe3JES/OpGtNNfm/lpD3/IdbjA8RbVaEXyZERWV10mbGaOjxHaqOfZ7KOExrKiIikq4UkJCU4L3o894pEhGR1OANQrz37u3s+/oPvHfQGsZ92Zw2toScvl3IjmG2jEDwYe/e7fhw1vItBqc8Zbce5OVmM25It4QEIeI1q0WAMh1EREQiU0BCUoL3bpMu4kREUkOo6TvP+bSagj+g36fVNDs1+tky/DIgfl5cyuqNlcCW3TEeHTuEkjhnEGhWCxERkdShgIQkjfei0O9uk0hAuFHqlVkj0nC8QYhA14yik/ak/albs/6xh2kVRTZEqOk5A8EHb4ZEvDMhAr8dZVsfSMFvb4YdZFJZDyIiIomngIQklLdhGZwVoQs98Qr1WQF8H+vzI6DuX/ESyIw4oHTr2iBEh+c/pI11xojIu/WwegUhgoMPhw/oVK/yRsp6yF06g5wypwzhAg/KehAREUksBSQkobwNS2VFSDiRPiuhHkvjpu5fdec3RkSbqul0nrd2i4Eq/cQahKirumQ9eNdV4EFERCR1KCAhCeVtWAZfFAboDqdA+M+KGhMSzNtIBQWp6sI7UOWR7hgR5X2Kydt5u7ADVQYCEaUbK5m5uBSITxAid/E0ct66g9xB5wL1z3oo6398zGUQERGRhqWAhCRUqCCEl+5wCkT3WREJ0O9G3XizIo70DFTZ/tTzNhsjAjbPgAC2yIbo37GQXXu2jjkIEa67Rfb8j2hWUQUo60FERCQTKSAhCRFL1oO6cohIrPS7Eb1Q03eeGRSEaHXrnU4Q4oUftuiGAYTskhFOrFNr5uXlsN7NkAg8p6wHERGRzKGAhCRELHcvdWe8cVOXHakL/W5Ez69rRr9Pq8k7elOXjEjdMAJCZUPEa2rNqmOfp9Kd9lPvr4iISOZRQEISQncvJVpKvU8vyQwgKXgVvV8/f4mSR+6j6KQzQnbN8BuUMlw3jMBjTa0pIiIidaWAhCREfe9ehrrbFqoRooZK4kRzrCOt411e1+CVt1GUM+9tcgedu9m+Yv0MxZNfgy1TPpeJDiCFmzpYthQIROStL2Or+Rv4/ZH7qBp9NatXPkCrw09jRZuePLT7KZzSJvzMGKCpNUVERCT+FJBIkHRrIIcqb/AFaWAE9MA68W70BbYXro9xpLTgwAVvqr0H8WjIx7Mc3sYyEPX7GDw9Z13ej+DldWmkeBtF2WWraFZRtdl2wt2xrU/9vWJtsIXbR6htAb4zDwQeR1MPv3Wj+Xz5fVa8DU+/MsdSHm/9Crr/1fd1mjo4Mu8YEeseuY+tbAlzujThh14tqDliPE+saM4Xg8az64rm4AlCXNBnFXkrb6WizwVsk13OxLzbKFt1IAXfaGpNERERaRgJD0gYY3KAG4BxQBPgHeA0a+3yEOuPAG4FtgJ+A8631r7jWf4wsBtggAnW2pODXh/T/hpKKt/Ji5Ru6204BV+QZs//iOZrV1JT0CrsBWtd6xzYXqg+xtFcILd89fiwdQrsJ7jhFBxs8R6rWBtcfo3MWBryWWWra49xqH3EUh5v/fway95j6X3sF0zwNgrr8354/68L7z5azHub9YPOjZh5ESpYEKr+kYIXsTTYIn1XQi0HfGceCDyOph5+64b6DPrVz/s6bwCp5avH16s83vo1//M739d530eNG+HPO0bE9keM54enHuKdHQ/lvaqB7Lq+9WaBB6D28YA/HqCgfBplfzwAf/h/Rrz/Bx5rkEkRERGpq2RkSFwCjAJ2AVYAjwJPAAcEr2iM2Qp4ETgVeBY4CnjJGNPfWjvHXW0G8BxwWn3315BC3UX0a6jW9S5sqMeRthcp3TZcwzEvL4esdavIj9A/uK6CGx8BgYvfSBfI3gZSpIZzcMMp0OgLF5CJtSEf6lhGashml6+pPcah9hFLeYLrB2zRyPY7rn4ZK94GaV3fj3g0LL3baLrHKVSWrN9sf8GZF8Fljqb+kYIXsTTYQq3rDRD6LQd8Zx4IiKYefuuGC4CEC6x4+dUplvJ467cuKEMisDwVgxCpEPj2jhFx4IcVtP4Den5YwVt75vCXnZowoMU6zqryCTxA7eNI75+yHkRERCTesmpqahK6Q2PMXOBqa+0j7t9bA7OBntbauUHrXgXsY60d5nnuE+A9a+1VQetOACp9MiSi3p9XRUVVTYk7snd9FBU1I3g7gUZSefuBW2QWBLIAwt319q4LhH3s3UekbgGh0rfDBUuKipqx9pdPUqorhFe0XU/87nq3+u4OVnsyCKJ5bwLPRZMhEcv4BrEEoaLNkAjUL5b3zO+zG8vrE9VtJvC9i/f+InVvicc+Ase4rNvwkA0+v9+V+ormM5ao73dD1K8uiosLpwE7RVrPGHMpMBYYwabAdzNrbdjAd33PM79+/hKrH72fVieezsoH7mSb39Yxe+vm/L7DKIZ/9hwf7XEUo7t+Ttuln1GeV0R+RUnI37FU/P2G1PksNJRMrl8m1w0yu36ZXDdInfpFe44RyXQJDUgYY4qAVcAga+33nudXAydYa18NWv9lYI619u+e5+4AullrDw9adwJBAYlY9+dVXV1dU1VV/2OTk5NNVVX1Zs9lLfiK7E9ugo2ryV44jeqt9qF62EVkf3JT7f/Zv39A9Vb7AJD9+wfUNG1D1oaVW6wLhH0cah/edWu67hzX+mWKQN0C71d9j1Wqqct7ly7HIp0/l9Ec43SuXzRSpX55eTnRBiSSEvj+YtzetUGIrH655MxYRdWA1uzWqw1tl37GivZ7kD3sojqNF5IqUqXh0FAyuX6ZXDfI7Pplct0gdeqngISII9FdNgrd/1cHPV8CtAyxvt+6/Rtof7Wqqmri8mPl+6PXYjs44PFNdyQHnUul+xzg9OuvqKpNyW5WUbXpYjJoXSDsY+8+mn1wPbnzP6LC7XseeFyftNtU+VFvCLV18x7vDKprnd67NDkWaf25jOIYp3X9opAq9SsuLoy4jhv47g5MCzxnrf3NGLMG2AEIGZDIycmiqKhZncuX3S+XOZXVZPfLpdcRV1PR5gby9r6EVh0Kqf7kJloFglrbDqMpwB6n0KLOe0uOnJzseh2jVJfJ9cvkukFm1y+T6waZXz+RdJPogESp+3+roOeLgDUh1o923XjsL6FC9YUO1U+3LoOFebcV7/EdREQkeYHv9gf8m/w2t1K+ywUUb70bbP0K4KQFpkPgMBqpEpxqKJlcv0yuG2R2/TK5bpA69Ysm6C3SGCQ0IGGtLTHGzAN2BL6H2oErW+IMThlsOrB30HODgPcbaH8ZTQOSiYjEXdIC3z2335OiYSNS4sJaREREpC6SMcvGg8DFxpgPcQb/uhF42zNrhtfjwIXGmGOB54EjgcHAmMAKxph8IBvIAWqMMU2AamtteR32JyIiEjUFvkVERETqLjsJ+7wBeA34GvgTJ5AwGsAYc7wxZm1gRWvtb8DhwGU4d5ouAw4LCia8A2xwtzHOffxONPsTERGJg0Dgu5cxpiUKfIuIiIhEJWKGhDFmR2AkzuBcRTj9YqcDb1lrv4l1h9baKuAf7r/gZZOByUHPTQGmhNneXnXdn4iISBzcALTGCXwXAO+iwLeIiIhIRCEDEsaYvwLX4gzY9RHwGU5f2UKgLzDZGFMKXOYGDURERBodBb5FRERE6iZchsQpwBnW2q9DrWCMGQJcTJgMBhERERERERGRYCEDEtbaIyO92A1WRFxPRERERERERMQrq6amJuJKxphiYIO1dq0xJgdnlotq4AlrbXUDlzFZlgFzk10IERFJmh5AcQNuX+cZEZHGq6HPMSJpIdppP18HTge+wxlX4mCgAhgInNcgJUs+/UCIiEhD0nlGREREGrVoAxJ9cOdXxxk5fHdgLTCTzA1IiIiIiIiIiEgDyY5yvSog3xizPbDaWjsPZ/rPFg1VMBERERERERHJXNFmSLwFPAu0BZ52n+sH/NkQhRIRERERERGRzBZtQOJkYCzOuBGPu8+1A65sgDKJiIiIiIiISIaLapYNEREREREREZF4CjmGhDHmNmNMx3AvNsZ0NMbcFv9iiYiIiIiIiEgmC9dlwwJfGWN+Bj5y/y4FCnFm3dgLMMA1DVzGtGSMyQFuAMYBTYB3gNOstcuTWa5YGWNuBA4CuuHMrPIGcLG1dqVnnTHAFUAn4AfgTGvttCQUt16MMdnAp8BuQDdr7QL3+bSunzFmX5zv6XbARuBZa+2Z7rJ0r1tH4A5gH5zfs++A86y1093laVM/Y8wxwN+AHYBm1trcoOUjgFuBrYDfgPOtte94lm8D3I/z+V0F/Ndae2uCih9RuPoZYw4E/gEMAHKAH4F/WWs/8ayT0vVLtEw5x0DjOc9k6jkGMvc8o3OMzjGJq4FI4xUyQ8Ja+wCwNfCQ+//FwN3ARTg/VvcD21hrH05AOdPRJcAoYBegq/vcE8krTp1V4Uz12hbnR74rMCGw0BgzFLgPOANoDbwAvGmMaZnwktbfecB67xPpXj9jzF7A88AtOO9hV+Bhd1la1811L9AGJ0jaAfgGeN0Yk5WG9VuFU5+/By8wxmwFvAhcD7Ry/3/JGNPTXZ4DvAb8DBQDhwAXG2P+LxEFj1LI+uG8P3cB2+CU/0ngLWNMN0ib+iVappxjoPGcZzLuHAMZf57ROYa0+Q3WOUYkTWkMiQZijJkLXG2tfcT9e2tgNtDTWjs3qYWrBzeC/qy1tqX790Qg21p7gvt3FjAX+Le1dmLyShobY0wfnNlkjsC5A9LNWrsg3etnjPkc+Mhae4nPsrSuG4AxZgZwt7X2QfdvA/yCc0FxK2lYP/fi/r2guztXAftYa4d5nvvEXe8qY8zeOHeV21tr17rL/wMMtdbundAKROBXvxDrLca52/hiOtUvUTL1HAOZeZ7J1HMMZPZ5RucYnWNSrX4imShkhoTUnTGmCOgO1KbtWWt/A9bg3P1JZ38Bpnv+3oHN61mDc7GVNvV002gfxUnnKwlanLb1M8Y0B3YGco0x3xpjlhtjphpjdnJXSdu6edwMHGGMKTbGNAFOBT5109YzoX4Bm9XF9S2b6rID8P/t3XmYHVW19/Fv0ukEAkk6mEBAQgICSwgyiCEEZXKWiyIg+jJIAAkgMqOgXq8DwhVU9CKDTIYwOoEIDsgYBpUhApIQYMkURoME0kmHQNLd6fePXdWpnFSdofvM/fs8T54+OadO1d51TndVrVp77X/FJ1IprzcUM3sfYSanudFTTdW//mryYww02XGmWY8xMCCOMzrGrHq9af4G6xgjUl8UkKiMEdHPxTnPtwP1mspXkJntDxwDnJh4egSN388TgQXufmPKa43cv9GE3/EDCePMNyKMM/9zdEHTyH2L/Y0wHvQ/hLHn+wHTo9eaoX+xQn1pmr6a2fqE1Ocfu/vT0dNN078yacpjDDTtcaZZjzHQ/McZHWOKe71h6BgjUn8UkKiMjujnqJzn2wh3sBqOmR1AqCfyGXd/JPFSBw3cz6iI0anAcRmLNHL/4u/hFe4+x91XEMaFtgK70Nh9i+863gH8i9CP4cBZwH1mtgEN3r8chfrSFH01s42AWYQLmm8kXmqK/pVR0x1joDmPM01+jIEmPs7oGKNjDA3WP5FGpYBEBbh7O/Ai8P74uahg0EhgTo2a1WdmdjhwCfBpd5+V8/JjrN7PQcD2rJ5uW88+RBgL+riZLSSk6AHMMbNjaeD+uftiYD6QWyimJ/rXsH2LrAdsCpzv7kvcfUVUZHcwoUp2o/cvabW+RHZgVV8eA7aM0qfTXq97UfG0+4Bb3P24KP051vD9K6dmO8ZAUx9nmvYYA01/nNExRseYhumfSCPLW/AlZmY3AlcCf3L3zso2qWlcSqjQOwt4AzgHuNXd59e0VSUysxMIU1p9wt1npyxyGfCXqHDVfcAJhCno0lJT69FvCHdAYhsD9wMfJxSumkNj9+8i4EQz+yXhLs8pwHLg74Q7Ag3bN3dfaGb/Ao41s68T+nUoIfVyDrCQBupfVOW7FRga/X+t6KXlwFXA18zsQEI1+88BOxL6C3AvoZja/0b7woCjWT3tvaYK9M8Iv4cz3f1bKW+v+/7VQFMcY6DpjzPNfoyBJj3O6BijYwx11D+RZlZUQILwh/bbwC/M7DfA1e7+98o1qymcTRhbORsYBtxOmNas0ZwHdAGzQnHpwN3XjX7+NbrLcxmr5uHey90bIs3N3ZeRmIbNzOLfiQVRcaOG7h9hGrYRwF2EE6VHgU9Fd7UavW8AnyUUHXuBcCLyDHCAuz8HPNdg/fsicEXi/29HPzd192fNbD9CVfcZwHPAvvHFp7t3m9mnCXeY3yCMff2Ru/+qSm0vRmb/CNNKvxs4ycxOSixztLtf2yD9q7ZmOcZAEx9nBsAxBpr7OPNZdIzRMUZEKqqkaT/NbBLhhOcgYAVhzvNro+reIiIiIiIiIiJFKSkgETOzXYELgG0IVYdnA6e6u8ZaiYiIiIiIiEhBxQ7ZwEIeZW52xN7A68CxwO8JaVEiIiIiIiIiInkVlSFhZv8AJgK/Bq5y9wdTlnne3RWQEBEREREREZGCig1IfA64OZpfWkRERERERESkXwYXudwSQoZELws+VvYWiYiIiIiIiEjTKzYgcSFhLumkjuh5EREREREREZGSFBuQWN/d/53z3L+BcWVuj4iIiIiIiIgMAMUGJJ4zsw/nPLcH8Hx5myMiIiIiIiIiA0Gx035+F/idmf0CeBZ4D3B49E9EREREREREpCRFzbIBYGY7AUcA44GXgF+4++wKtk1EREREREREmlTRAQkRERERERERkXIpasiGmQ0FDgO2B9ZNvubuh5a9VSIiIiIiIiLS1IqtIXElsB3wB+C1yjVHRERERERERAaCYgMSnwQ2dff2CrZFRERERERERAaIYqf9fBEYVsmGiIiIFMvMtjazf5jZoCpuc6aZnVmt7SW2+10zu6ba220EZjbfzD6a8dq2Zvb3ardJREREildshsRVwE1mdh45Qzbc/a6yt0pEpI6Z2UTgeaDV3bsqvK2tgcvdfRczOwNY6O4/i17bGfg+sCPQDdwNnODu/y5y3Z8HTiLUB3rI3fdIvLYl8CNgF6AFmB2t26PXB0XbPpxQW+hR4CvuPi/P9jaKtrNxzvPrA+cBuwPrAI8Dp7j7g3ma/33gx+7eNJWZzewS4GF3v7TWbWkG7j7HzNrN7NPu/odat0dERETWVGyGxHHABsD/Ar9I/Lu8Qu0SEZFgR+AficePJF4bDVwKTAQmAB3AFSWs+03g/4CzU15rA24GjPD3/yHgpsTrBxCmgt4VWA+4H7i6wPb2Av6S8vy6hIDHjtG6rgT+ZGbrpiyLmW0I7An8vsD2Gs2ngD/XuhH1xMyKvXGS5Vrg6HK0RURERMqvqAO9u29a6YaIiNSCmZ0OnACMBF4FjnX3O81sMHAaMJ1wcX4ncIy7vwncG7293cwAPgZ8Atjc3Q+J1juRRBaFmd1NuGj/CPBeYBZweLS+fD4APBw93gH4Z/yCu9+S05cLgHuK7bu73xG978iU1x4iBCHidf8U+JaZvcvd3wA2Bf7q7s9Fr18DnFxgk3sBaww9iNbxk8RTl5rZjwnBkIdzlyfs70fc/Z1E+/ryOWJmXwTOJARFfhItd2S8b/Ixs72j904EnojWOyd6bT5wAXAoIVj0F2Bass0569oWaHf3lzM2t5aZ/ZqwD58mfHcei967EXA+sBuwFPhpIotmJ0L2yVbA28ANhOyTFdHrPcBXCJ/dOEKAaiYhuLRN1O5D4uVz2rw54ebE9kAncKe7fyF67b1Rm3YEXgf+x91/E732X9F+ew+wGPiFu383em0i4ffmSOA7wHxgNzObDpwCbAy8FLUpDs5tb2Y/ydjPdwOXm9kwd1+esW9FRESkRorNkMDMWs1sVzOLTzbWMbN1Ktc0EZHKshBNOA6Y7O4jCEGF+dHLxwOfJQwj2AhYBFwYvbZb9LPN3dd19/uL3OShhKyCDYEu4Gd52na7mbUTLhbPN7MlhEyFl83sloy37Qb0Dpkws4PMbE6RbStkN2BBFIwA+BXwHjPb0sxagWmkZz/EbWmN1nF7oQ2Z2fbAUOCZjEXeB3hi+T59jtFwmJ8DX4xeexfhgrcgM9sBmEG4+/4u4BLgZjNL1lv6PFFRaGBbwvTZWfYC/pTn9X2A3xIySK4Dfh8dlwcTZsB6DHg3IeB1kpl9InpfNyHYMAaYGr1+bM66P0EIHOxMCN5cChwCjCcEJQ7MaNP3gdsImTobEwIQROcGt0ftXB/4f8BF0f4GeIvwu9AG/BfwZTP7bM66dycEUT5hZgcA343eMxL4DPBGYtnM/ezurxCCJZbRBxEREamhojIkzOx9hNTd5YSTjl8TThamAV+oWOtERCqrm1Cwd2sze93d5ydeOwY4Lr5jbWbfBV6M7qj31dXu/ni0vv8B/mlm09y9O3dBd/9YVMfhOnf/gJl9E+h09x+lrTi6w/5twoVrvI7rCBeF/WJmGxMu4k9JPP1v4K+EwEA34a71h/OsZjfgMXfvKLCtkYS7899z98UZi7Wx+gVpXz/HzwF/dPd7o9f+hxDYKMZRwCWJOhdXRp/RzqzKUvmZu78arfsPhEyCLP8FfDPP6w+7+/XRun4CnBptawUw1t3PiJZ7zswuIwQBbnX3ZIbJ/KhOxe6ETIjYD919CTDPzB4HbktkvtxCyMy5MqVNnYSshI2i/fvX6Pm9gfnuHg8fetTMbiAM8/meu9+dWMccM/tl1KbfJ57/rru/FbXhyKiNs6PXcgNVhfZzB+E7IyIiInWm2LGZPwe+7e5Xm9mi6Ll7gMsq0ywRkcpz92fM7CTC3ddJZnYrIZ39VcKF1o1mtjLxlm5ClkJfvZR4/ALQSrhzvVqxYDM7jpDSPiz6fzswAlhqZv8NbOnu/0ksvzlwC3Ciu9/Xj/atwczGEu6CX+Tuv0y89G1gMuEu+gLCHfW7zGySuy9LWdVeFKiPYGZrE+72P+DuP8iz6CLC/gD69TluROIzcfe3zCwZ6MhnAjDNzI5PPDc0WmdsQeLxspzXeplZG2EYT74ZIZLtXGlmL0fr6wE2ir4jsRbgvmjdWxKGonwAGE447ucOg0l+/95O+f+4jDadRsiSeCg6NzjX3WcQ9s2UnDYNIaoxYmZTCHVLtiHss2GE7I/U/hK+Y89mtAEK7+cRQDsiIiJSd4oNSExi1bjfHug9cVu7Iq0SEamSOIsgujN/CXAOIYX/JeAId/9b7nvMbELKqt4iXPDF0i7ixiceb0K4w7wwpU0XABeY2V+A7xHqE8x1900y2nIH8H13L1RUsiRmNpoQjLjZ3c/KeXl74NeJmgczzez/gK1ZVYQzaS9gvzzbGka4Q/4yhYsQziFk6PXq4+f4b8KwgPj/wwnDL4rxEnBWyn7pi08Ad6VlyiT0fneiYRobE2pldAHPu/sWGe/7OWEGlAPdvSMK3HyuDG3G3RcQam5gZh8C7jCzewn75h53/1jGW68j1Nf4lLu/E31vxuQsk5w95SVCvYmSmdm7CUEPL7SsiIiIVF+xAYn5rF7pPS6UlTW+V0Sk7kW1B94N/A14h3A3uCV6+WLgrGhIxQtRpsAu7n4ToUjfSmAz4F/R8v8ETjezTQiF+r6RsslDzOwqwt/UM4DrC1yEbk+oDTCF1WfXiNv/buAu4AJ3v7jIbiff30LI0hgCDDaztYBud++MLuxvBf7m7l9Pefts4AAz+xVhfxwcrWuN44KZbQoMc/cnM9rRClxP2P/T3H1l2nIJtwPnmdla0QVtXz/H64EHo4vphwifSbG1lS4jZF7cEb13OLAHcG+hYSkpCtWPANjRzPYjDJ88gTCE8gHC97DDQlHPnxGGcGwFrB0NcRgBLCFk17wX+DLh8+q3qLbD/VFQahEhiLAS+CNwdjQs5lfR4tsDS6PvwAjgzeiz2wk4iBD4ynI58BMz+yvh9+A9hOFLLxTRzN0JwR4VtBQREalDxZ54/Q9hCrbvAUPN7BuE9MpvVaxlIiKVN4yQOr6QkPa9PqsCCecRLv5uM7MOwsXfFIBoSMJZwN/MrN3Mdnb32wn1deYQUuL/mLK9qwkzGCwA1iJcWKaKAhtvRNt6P+mzTRxJCIp818yWxv8S6zjYzOalvC/2RcLF+88J03e+zaqhePsShmQcnlx31C4IGQiPEQIx7YTCifu7e3vKdv6L/MM1diHUHfg4YeaSeFu7pi3s7q8RAjFxvYy+fo7zCEVDryPUxFhEyNAoyN3/QcgOuCB63zPkL1qZyswGETIkMguCRm4i1GxaRPjc9nP3ziigtTfhgv95wj64HBgVve+rhAv+DsJn++tS25jHZEJAZylhH5/o7s9FAZmPE+pYvEr4TM4hGoJEKKp5RvR5fBv4Tb6NuPtvCb9v10X9+D2huGcxDiYEpURERKQODerp6Sm8FL0VxacTxoa+BFyWUyxLREQyWJj28xp3v7zWbak2M/szIYsjbw2JEte5NaHQ4k7uXtyBrLj1zqfIaT/LtL2dCPtmp2psbyCJCr1e4u5Ta90WERERSVfsLBsHRHcojs15/nNx1W8REZEMdwOzyrlCd3+CcIe+GXyn1g1oRu4+hzDVqYiIiNSpYmtI/II1K2BDmKtcAQkREcnk7j+sdRvqlbs/VOs2iIiIiNRK3iEbZrZZ9HAO8D5gUOLlzYCr3D11GjMRERERERERkSyFMiSeIVTNHsSac4AvIMz5LiIiIiIiIiJSkqKKWprZPe6+exXaIyIiIiIiIiIDQNGzbIiIiIiIiIiIlEuxs2wMIcywsTswhkQtCXffrTJNExEREREREZFmNbjI5X4KHA3cC+wI3ACsD9xVoXaJiIiIiIiISBMrNiCxH/Apdz8P6Ip+fhbYs1INE8liZjPN7B8lvmd9M/uumU2sULMqysymm9nzZtZlZnfXuj39YWYTzazHzPbuw3uPMrPP9nG7JX9vRKQx6LhQmeOCmZ1mZnukPN9jZsdVYpvR+vcxsyfNbIWZzS/hfd81s4WJ/+8RtXWbijRURET6rdiAxHDgpejx22Y23N2fAnaoTLNEym594DvAxBq3o2RmNg74OXATYdjUsbVtUU0dRQiGioj0l44LhZ0G7FGhdacysxbgKuAx4MPAvtXcvoiIVFdRNSSAJ4HJwEPAP4DvmtkS4JVKNUxEem0OtAAz3H1Of1ZkZmu7+9vlaZaIiNRIMx8XNgRGAte5+19r3RgREamsYgMSJwLd0eNTCFH5EYS7lSI1ZWYbAmcR7uJsSMjm+Q1whruviNJx50aLzzIzANx9UPT+9YCzgX2AUcAjwMnu/mBiGz3AScAGwHSgB/gtcIq7L08sNyFa18cImUXPAGe7+3Vm9hDwhLsfltP+mcB27r5GxpGZfZdwBw/gsajth7v7TDMbA5wL7A2sTQgYftXd/5F4/3xCzZd2Qh2YDYDWPPvySOBkwsnuAuBCd/9h4vWpwDcIAcqRwNPAj9z92pz1ZO6HxGLDzewS4P8BHcAvgO+5+8qMtt1NqGGzo5lNi56O90UL8D/AEVEfnwHOytle7vqGAr8CPgB82N2fMbNNgB8CHwfWAu4DTnB3j94zEXge+ALwkWLbLiLVpeNC/48L0XLvAr5jZvH29nT3u6PHLWb2vwX6nvdvaso2DwOuiP57U9S37wEzCX97P+3uf8zZT9u4+wfS1lcMM2sFfgB8nrAv3gAeBL7g7iuK7YeZjQcuIQxnfg04E/gkMMbd98hqb+K40ts3MxtMyE45EhgPvEA4pl2ZeN/dwELgd8AZhIyfvwHT3f3lxHJrE/bhF4BxwKvAr9z9G4ll8h77RUQqqaghG+4+290fiR4/7e4fdfcp7n5fZZsnUpQxwJuEYNkngR8BhwPnR6//Gzg4evwVYGr0DzMbBtwBfBT4GmE4wOvAHVFKbNKpwEbAIdE2jiYE64jWtT5wP+Fi/avApwkXquOjRX4BfM7M1k28Z13gc8CMjL5dHrWZqA9TgT9F//898IloW18g/D7PMrPNc9ZxEKtSer+QsR3M7GuEYOPvCSezPwe+nzNOeALhhOdLUf9uAK4wswNL2A+xHwJLo/5fA3w7epzlWOAp4M+s+gzjfXEG8N/ApcBnojZem2xXTl/XAm4EtgN2jYIR6wF/BQw4hnByug7hu7B2P9suItWl40L/jwv7AoujNsb755ES+l7K39TYnwh1y4j6MDXqbyV9g7Af/4cQNDqJ0O8WKK4fZjaIMHxmG8Lx8RTCvpjaxzadD3yLcEz7L8LxakZK7aUpwHGEz+Io4P3Re8hp15eBC4G9CMGsMYllijn2i4hUTGaGhJl9uJgVuLtm2pCacve5hBMXAMzsb8BbhIP38e6+3MzilNYn3P2BxNsPIZxATHL3p6P33wE44QD/tcSy8xN3sW41sw8STpziuwgnE+6k7eju/46euzPx/l8CPwEOYNUdoM8T7kyl3sl395fN7Inov3Pc/fGojZ8EPgjs4e73RM/dBcyP2nx0zqr2dvd30rYRvXck4STlTHf/XvT07WY2HPiWmf3c3bvd/VeJ9wwizLyzMeEO2S+L3A+xe9391MS2PknYn7/J2BdPmNlbwOvJzzA6WTwpavuZ0dO3mtnGwHcT7YqXHw7cHLV7N3ePh56dTDjJ3N7d34yW/Rthnx5BOJnrU9tFpLp0XOj/ccHdHzWzLuDlnP1TSt+L/Zsab/N1M3t01X/Ddq2yhUd3IgwPuTLxXPJveTH9+BShrtrOcRaNmT0MPEvIJCxaFDz6MiHrJW7THVHWz3eAPyYWHwn8l7svit47DvhpYhjOxwlBln3c/ebE+66Kli/q2F9K+0VESpVvyMYvinh/D7BZmdoi0ifRhfGJhLsDmxLSKWObENJjs3wUeBh43sySvw/3EFL5k27L+f8TOct8GPhL4qRzNe6+xMyuBw5j1YnnYcDN7v5Gnjam2Qn4T3zSGa3/LTP7I/ChnGXvzHfSGZlKOOH6bc5+uItw12hj4AUzG01I/dwHeDfRHSRWryeTdz8kpO3PTQq8J802hDTo3+Y8/2tgppmNdffXo+fWAf4CtAG7u/trieU/CtwOLEnsgw7C96OY70Jf2i4iFaDjQu/6+3NcKKRQ30v5m1pL/wS+bGavEY4Pc929J/F6Mf3YCXgtOaTH3V+IghKl+giwErgx5/t3J3CgmbUkggSz42BEJA5UvZvwHf8w8GZOMCKpqGN/H/ogIlK0zICEu29azYaI9MNJhHTRcwgnjIsI6bEXsvpJaJoxwM5AZ8prz+b8vz3n/yty1v8uYHaB7f0CuNvMNgMGAbsSUihLtSHwn5TnXwPWS3mukDh9c17G6/EY1pmE/fV9wonPEsKdnH0SyxazH6Dw/izWhtHP3H7G/1+PkG4NIb14C8JY3Nzl4+9CWvpyboZHe87/+9p2EamMk9BxIdbX40Ih7Tn/z+17KX9Ta+lMQgDgWML35RUz+5GHKe6huH6MI33f/4dQc60UYwjB/sUZr28IxDUi2nNeWxH9jD+HdxGGJ+XbFhQ+9ouIVEyxRS1F6tkBwPXu/t/xE2a2dZHvfZMwc8yXU15bnvJcPm+w6uI4lbvfa2ZPE+6ADSIUl8q9y1SMfxMKWOXagNCnpJ6U5XLF79mb9BNVj+ou7A18xd0vjl+Iim8lFdwPZRafbK0fbTu2QfQzuT+eBs4jZE4scPefJ157kzCU4/sp2+goU1tFpDp0XFilr8eF/irn39Q4m2NozvOjS21UrihT5NvAt81sC0KdiP8zM3f3v1BcPxaQvu/XB5IzmLxD4T68CXQRht+kFUpOC3xkKfT9K3jsL2FbIiJ9ooCENIO1WfMk8eCc/+feNYjdSRhj+aK7l3KQT3MncIKZbZBy9z1pBqvmjL+qj+MzHwS+Z2a7ufu90FsbIS5+Var7CSdNG7n7n9IWMLNRhAJpyQrqIwhFJJMnt8Xuh75Iy0R4HFhGuAA5I/H854F/JYZrAODuV0dF4y4wsw53vybR7s8D87y+psATkdLpuEC/jwvQv+yvcv5N/Q8hY2Wr+Ino7/gulPEOvrs/bWZfJRQN3ZowhKOYfswmzEYyJVFDYhNCkcm/JZZ7GZhoZmslhsx8PGdddxEyJEa5++397NKdwGlmtndydpKEgsd+EZFKU0BCmsHthBO+BwnptAcTpq5KepFw0J1mZouBTg/ToF1FuBtyt5n9GHiOkOK4E7DA3X9aQjt+ChwK3GdmZxGmmdsKWCdn+qwrCSmiQ1g1Zrgk7n6rmf0d+LWZfZ1wF+SrhJPwH/Vhfe0WppI7z8IUdfcSgg9bEqZ529fdF5vZbMJdpCWEOzdfJ6SVjkysrtj90BdPAZ8ws08Q+vy8u79hZv9HKMDVRbizuR8h5Tl1lg13/3l0MnuFmS11998TCssdAtxlZucT6mJsQKhE/1d3/2XaukSkLum40M/jQuQp4L/M7C+EmYXc3YvNbijb31R3X2lmNwEnm9kLhKEKp7J69kGfmNmNhHoQj0br+xzhc7i3hH78GXiMUIvhdEIw7Husmc3we0Lg/HILU4DuQCiMmeyrm9nFwK/M7IeEY9pawCRgS3c/soTu3Q7cClxnZmcQZknZkFDQ+ehijv0lbEtEpE+KmvZTpM6dQahUfmb0cwVwQnKB6E7EdGBHwnji2Ynn9yQctL9HSJM9j1Bn4KFSGhHdif8g4aTm/wiVsI8inPQml1tAuJP1N3f/VynbyPHZqN3/RyjoOAj4sLvnK9aWKTo5PopQLfwmwr48mDDfeuwgwsn5VYT9dEP0OLmeovZDH50JPEmogD6bMIUehHTbHxBSrP8I7AYckpwVJJe7/yh6z6/M7GPuvpAwTvgpwkXEbYRq8aOAOVnrEZG6pONCGY4LhNk53iJMxzmbsK+KUoG/qccRsg0uItQC+SUhm6C//k7Yb9cRjn07AvtHwami+hEVwfwMobbSjGi5CwgZCL2iGVGOIBSTvJkQ1Dg8pU1fIQwROZQQ7JhJyHS5N2XZTFG79iVMBXoScAvhd2JhYplijv0iIhUzqKenGsMIRSQWTVP5CnCcuxczm42IiDQxHReaUzSDyhh336PWbRERqVcasiFSJVG9ha0JU9F1EO5CiIjIAKXjgoiIDHQKSIhUz47ALEIBrkPdfVmN2yMiIrWl44KIiAxoGrIhIiIiIiIiIlWnopYiIiIiIiIiUnUKSIiIiIiIiIhI1Q3YGhIrV67s6e7u/3CVlpZBlGM99Ur9a3zN3kf1r7HVU/9aW1sWAmMrtf5yHHfqaX9VSrP3Uf1rbOpf46uXPlb6mCPSKAZsQKK7u4f29v7XjmprG16W9dQr9a/xNXsf1b/GVk/9Gzt2xAuVXH85jjv1tL8qpdn7qP41NvWv8dVLHyt9zBFpFBqyISIiIiIiIiJVp4CEiIiIiIiIiFSdAhIiIiIiIiIiUnUKSIiIiIiIiIhI1SkgISIiIiIiIiJVp4CEiIiIiIiIiFSdAhIi0lTmvLqE42+Yy5xXl9S6KQOG9rmIiAwEOt6JlJ8CEiLSVC67/wUemL+Iy+4fWNN71/IkaaDucxERGVh0vBMpvyG1boCISDlNnzphtZ8DRXySBHD+/u+r+PbmvLqEy+5/gelTJwzYfS4iIgNDfMzbc4sxgI53IuWkgISINJVtNxpZlQvyepAVFEg+v+1GI8u2nT23GMOspxcyfeqENQIg8T5PbhsoWzuy1lvObYiIiKSpdtBfZCBRQEJEpEFlBQWOv2FuWU+c4u08uaCDxe90AdmZKMk2Af1uRxyI6Hini3kLOtZYbzm2ISIikkuZgCLVoYCEiEiDyjpBKnTiVEwWQ9qJWDJDIisTJW3bycdZ2RtZbYoDHJPGjWDniaMz16uTRBERKae0oP+8RXM5/aEZHLrFEUwarSC4SDkoICEi0qCyggLJ59Mu9LOyDeIAQL4hGfttu2FJbcptR3Lb06dOYOZN8zhs8vjMzIpkgCMZwEjbhoiISH9kZUXMWzSXq56ewdLODp5c/AQA5+z001o2VaRpKCAhItJgSqkRkXahn5VtkFy23OmpaZkO8XOdXSszMysGUk0QERGpvuQxNSsYf/pDM5i98EG2GrU1k8dM4dAtjqhlk0WaigISIiI1VkyAId8JUz75LvRj8TpysxHKGQhIy3SYPnUCrUMGc9jk8ZmZFSIiIpWUFYyPsyIO3eKI3gCEhmqIlJ8CEiIiNZZ7MpQWnOhr9kIpF/qVzEZIW/e2G41kxrTJtLcvq8g2RURE0mQNzWhZ+wWGj59By9pHcNXTISsCwvAMDdEQqQwFJEREaiDrZCg38BDXWKhk9oKIiMhAUmhoBrBaVoSIVI4CEiIiVZRW3DF5MpQWnOjsWrnaMiIiIlK6Oa8uYeZN89hzizFA4aEZyooQqTwFJEREqijfNJaw+tCGZI0FqT9mNhj4KzAVGO/uL9e4SSIikkd8DF688mnGjL9HQzNE6oACEiIiVZQ1jWUa1VioeycD+nBEROpYcojkR7d9ixeHXc3KdbuYvdABDc0QqTUFJEREqkj1H5qDmW0JHAvsDzxa4+aIiEiGZL2I4eN/TcfgeWzcumr6Tg3NEKktBSRERERKEA3VmAF8FWivbWtERCRXblbE/KFX8dH3HsnmY45gSGsLB02cpuk7ReqEAhIiIiKlORFY4O43mtnEYt/U0jKItrbh/dpwS8vgfq+j3jV7H9W/xqb+NYYLb76ZJ7tv4MJ/7M+Y8ffyVssTPLT0eqZNvojdNp9Kd/fKWjdRRCIKSIiIiBTJzDYHTgU+UOp7u7t7+l0PpK1teNPXFGn2Pqp/jU39q1/JrIiW0bczpONpWkbczkETj6Krs5uDJk6jvX1Z3fRx7NgRtW6CSF0YXOsGiIg0sjmvLuH4G+Yy59UltW6KVMeHgLHA42a2EHgken6OmR1bu2aJiAxs5z14F491/5jzHryLr2xzFJPHTOEr2xzVWyNCQzRE6pMyJERE+iC+E9PxThfzFnQAqFjlwPAb4I7E/zcG7gc+DjxVkxaJiAxQNz39AJc/dTlHvvdIho25kyEdTzNsxJ1MGv1ZFaoUaRAKSIiI9EFctXvSuBHsPHE006dOWC1dtNCUntKY3H0Ziak+zSw+ji5w96W1aZWIyMAyb9Fcrnp6Bo+/9h/ebnmey5+6nLM/dCJXPT1D03eKNBgFJERE+mD61Am9P+Pgw/E3zO2dWkzZEgODu88HBtW6HSIiA8mFj1/KUx0Ps8FaWzD4na058r1HavpOkQalgISINKw5ry5h5k3zOGzy+KpnJGy70cg1gg7JIIWyJURERMonzoo4dIsjWL7wI3R1LmF46778ct/P1rppItIPCkiISMOKh010dq2si4yEZJAimS0xfeoEBSdERERKlAxCxFkRHcu7OHHKWVx2/3uYPmVCrZsoIv2kgISINKzpUyfQOmQwh00e3++MhOT7gYKPC20jmS0RB05AQzlERESKlQxCxFkRy5d/hG13XTNLUUQaU9UDEmbWApwNHAasBdwGHO3uCzOW/yRwLrAZ8CxwirvflrLctsA/gHvd/aOVab2I1JNtNxrJjGmTaW9fVlL9hrTgQ3K2DKB3XVmPC20jmS2RDE6IiIhItrShGcuXf4QTp3xYWREiTagWGRJfB/YBpgBvADOAq4FP5S5oZpsBvwOOIky1dgBwo5lNigqJxcsNidZzX6UbLyL1qdBFfzIIkcxYANaYLSN3nfkeFyOt3oSIiIgExQzN0LFUpDnVIiBxFHCGuz8HYGanAc+Y2QR3fyFn2WnAw+5+TfT/a83smOj57yWW+wYwG3gN+FBFWy8iNZU1NCPtRCUrCJEWvMhdX3JdWY9FRESk/656egazFz4IoKEZIgNMVQMSZtYGbAI8HD/n7s+a2RJgOyA3ILFdctnII9Hz8TrfRxj+sQNwSrFtaWkZRFvb8BJan7WewWVZT71S/xpfM/Tx0RcXcf6sZzh+z82ZOfslHpi/iNYhg5kxbXLe/s28aV7vsqd8bMvedeywyWh223pc73LJx/WmGT6/fJq9fyIiki3OjNh0rSk80d3BLqO/wKYbb62hGSIDSLUzJEZEPxfnPN8OpFWIG5Gx7CToHapxBXCiuy8xs6Ib0t3dQ3v7sqKXz9LWNrws66lX6l/jK1cfqz2NZVp2Q2fXSqZPnUBn10oOmzye9vZleft32OTxvctuOnIYP9lnEkBDfebN/h2tp/6NHTui8EIiItIvyeEZcWbEE90dLPjXodyxYh3O319ZESIDSbUDEnHFuFE5z7cBSzKWz7fsacDT7v7HMrVPRDLkDnkoNjhRTCAjXmbPLcYw6+mFeYdYlDKGVONNRUREai8tCAGwy+gv8MRrHXxy3CE8tWK0ij+LDEBVDUi4e7uZvQi8H/gn9BauHAnMSXnLY8CeOc/tANwZPf448H4zi2foGA4Mif6/pbu/Wd4eiAwsyWBC1jSWyeAEUDCwkDaFZrzMkws6WPxOV++y8U8FFkRERBpXMghx6BZH9P68+C5YMP9QnloxWsd5kQGqFkUtLwVON7NZhFk2zgFuTc6akXAV8DUzOxC4HvgcsCNwaPT6AcCwxPKnAJOBAwlDO0SkH5LBhPP3f1/qNJZpM1ZkBRbSlk0ukwxkKAghIiLSuJJZEckgRPfbE1j20hF0bzyB6VPDssqMEBm4ahGQOBsYTZgVYxhwO3AIgJkdDFzi7utCb8HL/YBzCdN6PgfsGwcv3P315Iqj4pjL3f3l6nRFpDklh1DAmicKyWBB2owVWYGFfLNbxMvst+2GFeqViIiIVFLW0Ixzdvop5+z0UwCOv2tu6s0OERmYBvX09NS6DTXR2dndo6KWhal/ja/YPqYVkdx5Yv2nUDb7Z6j+Vc/YsSMeBj5QqfWX47hTT/urUpq9j+pfY1P/8jv9oZOZvfBBJo+Z0huUiLMi0oZsVqNIdq7+9LHz8Tksu+Jyhh9+JK3bbNuvdlT6mCPSKGqRISEidSiriKSIiIhIlqyhGZNGv69psiLiQMTKpR10PzGPZcCoc39W62aJNAUFJEQEUBFJERERKV4ciFja2cGTi58AVh+akVUYu1EksyGWXXE5nQ89QMtWk2jdaWeGH35krZsn0jQUkBARQFNkioiISH5pNSK2GrV17xCNpKzC2I0iDkIsgxCUiH72d6iGiKxOAQkRERERESkoa/rOSaNDsKGZsiJygxAaoiFSGQpIiIiIiIhIqkI1Iua8uoTj75q7xvTejZIVkTY0I64RoSCESOUpICEiIiIiIr2Kmb4z1ohFsbOCEMmsCBGpDgUkRERERESkV9bQjKR4eMaeW4wBGqModufjc3jlmitYsai9d7YMDc0QqS0FJEREREREBrh5i+Zy3aNXctDEaZnTdyblDs+oV4Vmy1AQQqS2FJAQERERERmgcqfv7OrsTh2aAY1ZtDJ3SMaK1haGHnK4ZssQqRMKSIiIiIiIDFDJ6TunbrgLB02clrlsoxStzDdbxtiLL6G9fVmtmygiEQUkREREREQGkKyZMz646ZQ1LtYbJStCs2WINCYFJEREREREmlwpM2ck1XNWhGbLEGl8CkiIiIiIiDShrCBE1swZsXrPiogDESuXdmi2DJEGp4CEiIiIiEgTygpCZM2cEavHrAjNliHSnBSQEBHpg+Rdp0mjiz9R6+v7REREipFVH6JQEGLOq0uYedM8Dps8vm6yIooZkqHZMkQamwISIiJ9kDv+ttLvExERySd3+k4oXB8iKc6K6OxaWTdZEfmCEMqGEGkOCkiIiPRBofG35X6fiIhIPsnpOyePmVL0cSauF7HnFmNoHTKYwyaPr3BL88s3ZaeCECLNRwEJEZE+KJT6Wu73iYiI5Mo3PKNYyXoRV39pzWk/q0FTdooMXApIiIiIiIg0iL5O35lUL7NoFJotQ0SanwISItIUVCxSREQGglKm70xKBiFqOYuGZssQkSQFJERkDY14cV+NYpFp+yX5XNyORtpvUjozOws4CHgX8A5wL3CKu79Y04aJSNPq68wZSckgRLWzIjRbhohkUUBC6l4jXhw3onwpoI2gGsUi0/ZL8jmg4fZbKfS72Otq4IfuvtjMhgNnAr8Cdqlts0SkmVRyaMa2G42salaEZssQkSwKSAwwjXhB0YgXx42+nxtlJoh5i+Zy3aNXctDEab13ieYtmsvpD51ckX2ftl+yniuUOdHo35FG+V2sBHd/KvHfQcBKwGrUHBFpUuU4LtfL0AwFIUQkiwISA4DufFdfo+/nRpkJIt7PXZ3dqRkL5ehDbuAgd525z8WPT3/o5LyZE43+HRnozOwg4OfASKALOKW2LRKRZhEfd3YdtztQ+nG5lgUrNVuGiJRKAYkBoBHvfCc1ysVxUnI/N8qd8LT9XO9tP3SLIxjS2sJBE6et9lz8sxzt72vgIF82Rdbr9Sq5Hxvtd7FS3P064DozGwd8CZhb6D0tLYNoaxver+22tAzu9zrqXbP3Uf1rbJXq32OvP8alj1/CUdsczXXzr2T2wgcZ0trCJR+/pOR1zbxpHg/MX0TrkMHMmDaZ3bYeV/R7+9K/t//5T968+Oesd8yXeeuaK+h86AFWtLaw/vHH8ebFLax3zJdZu46+E83+HRVpNIN6enpq3Yaa6Ozs7inHPMttbcNrMl9zKfpzUdYI/euPavQvvlM+ecyUmlzM9aePtW57MfL1L9n+OEOomN+DeipUWQ+/g2nfg3IFq+qhf7GxY0c8DHyg1PeZ2frAc8Am7v5m1nLlOO7U0/6qlGbvo/rX2CrVv74er5LizIg9txjDrKcX9taKKEUp/cudsjOeJSPOkKjXIpX18h3t6zFHpNkoQ2IAyMowSKYE3rfgnrq6C17vd+ZLUcqd8HrrdyNmeiQl25+V6ZDWr74WD+uret+3ad/hRhxyUkFDgHWAjYDMgISISFI5Zs5Iyq0XUQmaslNEym1wrRsglREX9pu3KDuLOL6guNwvYfbCB7nq6RkV3XYxbcptWzFtKmW9lZTVjuSJRbGfSbk+i/6K2z5p9Puq0rZyf5bJ9h+6xRG9d56S20nrV3LZasjat/MWzeUrs46t+Xc7uR9j1d5H9cLMBpvZcVFWBGa2MXAhMB94Kt97RUSyjj9pf2eLMefVJRx/w1zmvLqE6VMnsPPE0WWvF9H5+BwWn3pCbzCi86EHVmVB7LQz655wMqPO/VndZkSISH1ThkSTKubuZXwhkcyQSMqdwaAv206mHZZyRzUrq6CYu9m1UqgdpXwm9XiRV41siUp+lrmBoXx1VapdtyRr36YV7SyHYj6/Qssk91HWsqV8T+o9SyTHXsC3zWwdoB24G/iou3fVslEiUv/KUdcrWbSyGrNoaMpOEakkBSSaSFbqX5bkBcXem3x2jXUkL4aSgQVgjcfJoEZWmnxam/KN1S/2or6YC+VCFzvluEArtM+LDbLku8ir5UVbvgv6fO2ENb8vpe7Dcvc7LTW2ktOFFpJv38ZFO0upa1Ho92BpZwdPLn4CyB6+UkpwqJggZNb3JA56FrNsf4Me5eDuKwkBCRGRolRyaEalZtHQlJ0iUi0KSDSBrIuMvhzkci8K4ouh5PPAGo998VMs6Vy8xrazDrxpbU6ut5isjuTFY6EL5bSLq2IuhuJ9klzH0s4O1m0dUXQQJZYVbMi68Et7vl6yQfIFnfJ9rsnHWfu50D7qa7GvpLTPqh737aTR7+PCTS+ivX1ZwWlEkwoFCLYatfVqw1ey9nPyZ7FtzlpHvu9zHPTMWkfud6qvmVciItWS7zjfl79VWVN5brvRyLJlRXQ+PodXrrmCoYccrik7RaRqFJBoIFl3SNMuMvoq62Io7eIk+Thr2EehTIe0NheT1ZG8OEuuv5gLo9xgSL6LIWCNdSzt7Cj6wjBLMRd+acGXrGyQeJ1pj6979EqmvutDZS1cmvxc0/Zdoc81335OC74UurAth1IuwCsp63cmrX3J7was+tyL+T2IvwdZw1dKuXOX9X1Iez73+xwHPUv5TpUj5VlEpJLK/XeqkkMzcmfL6OrsXi0rQkSkkjTtZz9Vc+qg5JRQQL+nhypGpfrX3zTr/gyxiPfjVqO2pm142xo1MgqlxpdjSshS+p819WbW9yHt8cjWUSzpXFzx70tfawZA/v2cL0W/XqbvqpRipzUFUr8n5RiuVE653+dCn181hy5Vego2TftZnGbvo/rX2Ir9m1WOGcySWRFA7+NSp/JMkzVbxtD12hh6yOFNXaCyXr6jmvZTJFBAop/S/qiV82S5r2Pxy6Ve/miXU3KffnDTKXXfv2IuzCFPhsT81TMk4rs2lQ5OVEszfkeT8vWvHMGxaqvngJICEvWh2fuo/jW2Qud9yWNsf7P4jr9hLg/MX8TOE0eXJSMiLQgRT9cZPz/2Qzs39ecH9fMdVUBCJFBAop/iP2rlPBhV6sDWF/XyR7tSmr1/sGYf6+n7VQ7N/hmqf9WjgER9aPY+qn+NrdB5XzkC/XFmxJ5bjGHW0wvLlhWx+NQTUoMQyWyIZv/8oH76qICESKAaEmVSzrGCGh8tlZQ1Vl9ERESKk68+T3+LVubWi+gPzZYhIvVOAYkyKeVgVCjNuhwHNpFi6PslIiJSnOTsXOU+VyvnVJ5pQzM0W4aI1CsFJMqklCBEvlkccqc+FBEREZHaSDt/6+rs7vP0nUnlnsozd7aMOBtCs2WISD1TQKKCsoIQWVNoVmo6Q5HkSU85xqGKiIgMBLnnb/FUxeVQjqk8s2bLiOtEaGiGiNQ7BSQqqNjxhRrPL/1VKOCQmwpaqWnEREREmkFy+k5Ydf524aYX9asgYlZWRCmyhmTk1ogQEWkECkhUUKnjCzWeX/oqX8Bh5k3z2HOLMau9Fi8LlK1wloiISCPLymwt59CMcmRF5AtCKBtCRBqNAhIVpACDZCn3EIrkXZa0gENn18rek560OzJ9LZwlIiLSLCo1y1k5ClZqtgwRaVYKSIjUQDmn9AJWK4CVe7LTOmQwh00en7psubYvIiLSiJJZEeWcOaMcBSs1W4aIDAQKSIjUQH+n9Mon92RnxrTJ/RrvKiIi0kzyDc0oV2Zrf4ZmaLYMERlIqh6QMLMW4GzgMGAt4DbgaHdfmLH8J4Fzgc2AZ4FT3P226LX1gN8D743W9TpwBXCWu/dUtCMiJcodphGfnGQN30h7PvkcqCCliIhIMUqZ+aw/4uN0snZTMTRbhogMVLXIkPg6sA8wBXgDmAFcDXwqd0Ez2wz4HXAU8BvgAOBGM5vk7vOBt4AvA/9y904z2xT4M/Af4NJKd2Teorlc9+iVHDRxGpNGK+29WSRPCoDex/2tWJ01TKPQ8x3vdDFirSEqSCkiItJHxc581l+lDMnUbBkiIrUJSBwFnOHuzwGY2WnAM2Y2wd1fyFl2GvCwu18T/f9aMzsmev577r4cmJfznpWAVa75q8QHt67ObhWvbCLJkwJgtTGbfVHobkly+EbamNOOd7ryFsNSQUoREZF0WdN3lvO8rZSpPIsNQigbQkQGiqoGJMysDdgEeDh+zt2fNbMlwHZAbkBiu+SykUei55Pr/SPwEcKwjZeASwq1paVlEG1tw0vsweqO3eFYLnu8henbHN3vddWrlpbBTds3SO/fC5+fxoL/LGXc56ex5QYjePPiFtY75susnbIfHn1xEefPeobj99ycHTYZnfr8zNkv8cD8RbQOGczVX5qyxjp2axvObluPA+CIK2f3Ljtj2mR223rcGtuIlwVWe1xKH5uJ+tfYmr1/IlJ9lZq+M0sp9SIUhBARWV21MyRGRD8X5zzfDqQNgh+Rseyk5BPuvndUm2Iy8GkgtR5FUnd3T78L/U1o3YIL9ryI9vZlTVs0sK1teNP2bc6rS5g5+6XeGSh65wh/eSgPbH8YO788lOnjx3HZ5COYPnQcPLGgN9Nh1tMLVxtC0dm1svf/ac93dq3ksMnjC+7LwyaPX2PZTUcO4yf7hK98Xz6LZv4MQf1rdPXUv7FjRxReSETqXiVrRMT6mhWhIISIyOqqHZDoiH6Oynm+DViSsXxRy7p7N/CAme0GXAgc2J+GFqPz8Tm8cs0VDD3kcI3xa0DJoAGQOiwirWbDkws6WPxOV95l+zrFVynLioiISFCp6TuT5ry6hJk3zeOwyeMLZkVoyk4RkeJUNSDh7u1m9iLwfuCf0Fu4ciQwJ+UtjwF75jy3A3Bnns0MAbbod2OLEB9gujq7dXCpkqwZKfpi+tQJtA4Z3JshET+XDAqk3fVIZkhkLavAgoiISGVVY/rOpNzsR1gzK0JTdoqIlKYWRS0vBU43s1mEWTbOAW6NZs3IdRXwNTM7ELge+BywI3AogJntDKwD/B1YAXwQOJEqzLAB4cCyorWFoYccXo3NCaVVry5k241GMmPa5N508bT15QYW4sf7bbthwWVFZE3Ju4bKLBORUlVr+s5Y7tCM+EZG8pivKTtFRPquFgGJs4HRwGxgGHA7cAiAmR0MXOLu60Jvwcv9gHMJ04M+B+ybCF4MBX4IbAn0AK8AP4u2UXGt22zL2IsvKXn8czOekFerT4XGaUphzfT9a/ZhU83Yv9zUZRGRUlRr+s5Y7o2Q+EaGpuwUESmPqgckoloPX43+5b52LXBtznN/Af6Ssa57CRkTdS/fWMJGlpaaWMk+xXck5ry6hONvmFuWoRsDQbN+/5LDpuK+NdNJYDMOC1Pqsoj0RTWm70wqNGW3ZssQESmPWmRIDEhZB65Gl5aaWO478Ml0ya3enM+yKy7nlol78sCKdwH9H7pRrEbOLCj3969e9kVy2FTcx6UdHQweMaJfbatl/3KrsTfLsLBkv+KT9WbMABGR8qn29J3J8420IaLJv1kKQoiIlIcCElWSdeCqlwu7vkpLTVx86gmrX/z2s3/Jk4Iz/x4uOg9e3sXLe36Z6VMnrHYCES+fmzmRtcxubcOLbkc9ZBb09ftS7hOnNQIcNfoOJ4dNxX1cubSj359TLT/r3G3H/Wv0vxVp+7QZM0BEpHyqUSMiKW22rGPf9RaLTz1htQzD+G+W/m6JiPSfAhJVknURWC8XdoUkL4aA1dqZ26/kxW85LuySdSOGW1j3qMOP5Pxtwh2L42+Yu8bUnPHyaXc6ksvstvW4otsR92vo7nv2npxU+3MqdX8m7+akLV+OAEc5PuNC7cj3/YvF38XcZfui2llMWXPUJ1U7SFLKdyPr80k+TutXM2WAiEh5VGP6zqTcopVAb0bmmX8PQ1I7E7Nl6G+WiEh5KSBRY+W+sKuUZNuAvO1MBinKcWEXnxQMt/QASFqhy9wgRNYypYi3ncwAKffnlHYRmHWxWsxFeqE70IUCYlkXpeX4jEupa9HX718x+yhNudNvC13cFzNHfdZnXyiAU0owIe27U8z3POvzST5O61cyw6XRM0BEpO+qPX1nUvJc4SfW03u+kTVbRl+KmYuISDYFJCqomBPsQhd2xayjvxcnWa9njZUEir4ALcfwlLQLo+S6toLVAhbxWM9kECJt+s7Ox+fwyjHf6b3TUWzbirkwTLsQHrr7nqy4Z1bebaQFCHILhsb7IBkYgfSL9EJ3cwoFxIrJ4Cnl4r2YquSF2gnFf/9KCWSU+4I4b19ztlNMUCe5n9OCYqUEeIpZNu17nvUdzvf59OWzSu6j+DUFKkSaV7WHZiSzIo5911scfOMVjNrxaJZdcZ1myxARqTIFJCqgrzNPJFPOc8cr5jtJL3TBXuhiKOv1fGMl+3L3uK9349Mu1oq50ExmVrDRmsGC+PPp6uzOXEeaQheGWe3r8ifpWbw472eZFiBI3p1JyroIzN2P+e7mFAqIlZrBk3bhmuxfoarkye9+8n25QY9iv3/FBDIK/b6WI5CWth9zi2+W8jtV6HeiUNCsmGBQ2vc86zuc7/Ppy2eV9vuT3F9xHxSwEGlctRyasXptqusY+8I8Wv9wXepxSUREKksBiTJJCwBkXUgWUuhCJvciPF4mWdugmHXE/x+6+56Q8Xo5x0oWuijLF7DIV6cC0i/GCwVaWraaxNof/OCqDAnWvCgrpU/56gDEn098kZ4voJIWIEi70Mq6COzrkJKsbJZShmb0BrESF67J/hU62Sslo6HUPkH+gF3W72uhoGBW8CWrr/Hz/Sm+mRbAydpeWpHZ5O98MVlMyb8xad/hcpy05wuO5e4vyB4WIiL1q16GZiSzIhSEEBGpLQUkyiTfnd9SFbqQyb0IT6ttUMw64jYDmRfB5RwrWeiirJS78cVcjOcNxEQ/x35o597+9eUkJF+2RFr71v7Mvqv1P9+d+76eGBUTOCgkbf8X0560C1dY87tabNv7248spfy+FgoKZgVfsmpBlLP4Zqm1J9J+5/OtL7fNkP0dLqe03+81hkFR+e+JiJRXtYdmwKrMiM+0LOTgR69i1I5Hs9EfVmVFtGq2DBGRmhrU09NT6zbURGdnd085LrTb2obXTUG2UttQzPJx/yqlmBoMpezPUtdXzv7Vw3cgTV/6WK99SVPN/hWqDRI/V879lq9/5f6dr8XnXum/MaUYO3bEw8AH8i1jZucAewPjgaXAn4DT3f3NQusvx3GnnvZXpTR7Hwdi/+LMiF3H7c59C+7pHZpRDeecfyPb3f07Nhi0gvGvPd+bCdfXv3UD8fNrNvXSx2KOOSIDgQIS/VQvf9QqRf1rfM3eR/WvsdVT/4oMSPwv8FvgcaANuArodPfPFFq/AhLFafY+DpT+pQ3PmDxmSsWHZgA8efcDLL78EkYdeTQjrr+KtR77B8s3fy/rrtfW74DrQPn8mlm99FEBCZFAQzZERESK5O7fTPz3dTM7D/hNrdojUk/mLZrLdY9eyUETp1V9eEYyCLH48kvY/IV5PHP5JWz+9ZNZdsXljGqAjD8RkYFIAQkREZG++wjwWK0bIVIP4iBEV2d3VWbOSEoGIUYdeXTvTxWqFBGpbwpIiIiI9IGZ7Q8cA+xezPItLYNoaxver222tAzu9zrqXbP3sdn699jrj3Hp45dw1DZHc+wOx3LZ4y1M3+Zothu7HR/cdEplt33rfSy44ELGHfcVNjz+OJ694EI2PO4rbPeJXeGzH67INpvt88vV7P2DgdFHkUaigISIiEiJzOwA4BLgM+7+SDHv6e7u6fe45XoZ+1xJzd7HZuhfWn2Irs5uztnpp1yw50W0ty+rWB+TxXf/ff4FISvi/AvY+ZormDBlBkBF928zfH75NHv/oH76OHbsiFo3QaQuKCAhIiJSAjM7HDgX+LS7/63W7RGpljgQsbSzgycXPwFUb/rOOBCx9M12hj3zFK8t71ptaIaIiDQmBSRERESKZGYnAN8BPuHus2vdHpFqirMhthq1NZPHTKl4fYhkNsRrF1/MWo/9g3+vP5GF6xuP2cc4fY+dYY+dK7JtERGpDgUkREREince0AXMMrPeJ9193Zq1SKSCksMzcgtVVkIyCLHsisvpfOgBlgHX2sfY7t8d3L/LPrw50Zg+dUJFti8iItWlgISIiEiR3H1QrdsgUmlpNSIAztnppxXJhsgKQrz66YNY/FoHoz59EJ/acmsu22hzpk+dwLYbjSx7G0REpDYUkBARERGRXskgRDVqRCSDEMMPP7L350U+iAd2OJyd31iH8zcayfn7VyYrQ0REakcBCREREZEBLt/QjEpnRSSDEE+uN5HLdpnO9PUmMH1qWFbDM0REmpcCEiIiIiIDUL0MzXjh1DN7gxCX3f8CD8xfBMD5+79PWREiIk1OAQkRERGRAahaQzPiQMTKpR10PzFvjaEZySBEnA2hrAgRkYFBAQmpG3NeXcJl97+gglUiIiIVFGdG7Dpud6AyQzPSsiFatppE60475x2asa1qRYiIDCgKSEhFJYMMwBqP99xiDLOeXsj0qRPWuEOi4ISIiEh55BueUS6dj8/hlWuuYOghh2cWqmzdZlsALrthroZmiIiIAhLSP3HAIRlYgFWBh2SQAVjj8ZMLOlj8Theweppm7hhSERERKU1WEKJSwzPiIERXZ/caQYhR5/4snDPcMJfpUydoaIaIiAAKSEiO3IyGmTfN47DJ44E1sxuSgYNkYAHIOxY0+TgZyEimaepERUREpH+yghDlHJ6RO1vGitYWhh5yeG8QAladW3S808W8BR2AsiJERCRQQGKASRtCkTVsAkJgobNrZe/j5POwKmCQmyERv5Y7FjTt8X7bbrhGOzWGVEREpHTVmL4za7aMUef+jLEXX0J7+7LVzjfic4tJ40aw88TRutkgIiK9FJAYYNICDlnDJgBahwzuzZBIPh8/TgYOkoEFBRNERESqo1rTdxaaLSMpa+YM1YUSEZEkBSQGmLShEFnDJgBmTJtMe/syID27QURERGqrkvUhCs2WkTs0Ix7qmRuE0HmDiIikUUCiQWXNXlHozkPWEIq0YRMiIiJSnyo5NCNrSEbabBlpQzM6u1aqRoSIiBRFAYkGlTV7hQ7+IiIizSsORCzt7ODJxU8A5R+akS8IkTtbRu7QjNyhniIiIvkoINGgsoZeHB+dIGiMpoiISPOJh2dsNWprJo+ZUpGhGWlBiKR89SGSQz1FREQKUUCiQaUNvTj+hrmrnSD0ZUiHiIiI1Jd8wzP6I99sGblBCFg1PGPPLcYAqg8hIiL9p4BEmSTHUFbqor/QNpJ3KTSkQ0REpHFVcuaMUmbLSKsRATqfEBGR8lBAoh+S1aT7epAupThloW0k71KkDenQvN8iIiL1KysIUY6ZM0qdLSMtCJF2biEiItIfCkj0Q7KadPIgnUxpjKfTjJfPfZyWydDxThcj1hqyxrKlnAhkzaYhIiIi9SkrCNHXmTNKmS0jKV+NCJ1PyEA0ZMHDDH/oJyx/z14Me/bPLNvpFLrG7VjrZok0BQUk+iFZTTp5kI5rOTy5oIPF73T1Lp82hCItyNDxTlfmcAudCIiIiDSPSk7fWWi2jKRkVoSCEDJQxYGHZTudAtD7ePhDP2HYS/cw5D9zaFkezsuXfObaWjZVpGkoINEPWdWk4wN5boZE8rX4cVomQ+4wjtz3iYiISGOr1PSdpcyWka8+hIIQ0swKBR5i8eN4uWSGhIiUhwISFZAMMuy37Ya9zxc7hELDLURERJpbOafv7OtsGR3vdDFvQQeg+hDSvHKDDy23nMe6by2i9bVHe5fJDTwkAw7x8Iw4I2L5pIOr1XSRAUEBCREREZEqmLdoLtc9eiUHTZzW7+k7i6kPkSXOhpg0bgQ7TxytoRnSFIrNehj80j10rb89y8fvnjfwABqWIVINCkiIiIiIVEjazBldnd19Hp5RaMrOtKEZkL9GhEijSSsyWWi4RfyztbWFt3Y4cbWilAo8iNSOAhIiIiIiZZRv+s4hrS0cNHFaSesrZcrOJNWIkEZXSpHJYoZbAHQfeD1dOfXfRKR2FJAQERERKaN803deuOlFaxTDTtPXKTuzghCqESH1rBxFJjXcQqQxVT0gYWYtwNnAYcBawG3A0e6+MGP5TwLnApsBzwKnuPtt0WtbAv8LTAVGAi8CP3X3yyvcDREREZFe5Z6+s69TdmYFIVQjQupFWvBh8IolKjIpMkDVIkPi68A+wBTgDWAGcDXwqdwFzWwz4HfAUcBvgAOAG81skrvPB0YDs4ATgH8DHwT+aGZvuvvvKt8VERERGcjKOX1nKVN2JikIIfWolKyHFSoyKTJg1SIgcRRwhrs/B2BmpwHPmNkEd38hZ9lpwMPufk30/2vN7Jjo+e+5+4PAg4nl/2pmfwH2IAQyRERERCqmv9N3ljplZyxfkUoFIaSa+jrcIi34EFPgQWTgqGpAwszagE2Ah+Pn3P1ZM1sCbAfkBiS2Sy4beSR6Pm39w4Gdge+XqckiIiIiq8k3PKNYhWbLyBIHIjre6WLegg5ARSqleso93AIUfBAZ6KqdITEi+rk45/l2Qg2ItOXTlp2Uu2BUm+Jq4CXgqkINaWkZRFvb8EKLFdTSMrgs66lX6l/ja/Y+qn+Nrdn7J80ja+aMUoZndD4+h1euuYKhhxze79kyJo0bwc4TR6tIpVSEhluISLVUOyDREf0clfN8G7AkY/mCy5pZK3AtsCHwKXfvLNSQ7u6eoqpcF9LWNrws66lX6l/ja/Y+qn+NrZ76N3bsiMILyYCSb/rO5M9ixUGIrs7ussyWse1GafdyREoTBx+Wv2cvWl68lSE7nKjhFiJSNVUNSLh7u5m9CLwf+Cf0Fq4cCcxJectjwJ45z+0A3Bn/x8zWAq4H1gU+7u5Ly99yERERGWjyTd9ZSlZEslDlitYWhh5yuApVStUVynoY8p85DF6+iOGd3RpuISJVU4uilpcCp5vZLMIsG+cAt0azZuS6CviamR1ICDp8DtgROBTAzNYF/gB0EjIj3q5880VERKRZlWP6znyFKsdefElmVpAKVUo59LXI5PL37MW6L97Ksh1OVOBBRKqmFgGJswnTdc4GhgG3A4cAmNnBwCXuvi70FrzcDziXMD3oc8C+ieDF/oQZNd4GXjezeBvXuPsx1eiMiIgMLGb2/4CvEAosD3f3WhxLpcz6O31nVhCiUKHKrKEZKlQpxSh3kcm1PzidrjoZRiciA0PVT6LcvRv4avQv97VrCbUgks/9BfhLxrquBK6sQDNFRESyLAIuAtYmZP1JE+jr9J2FZssoVKgyOVtGMitCJElFJkWkWemujoiISAnc/VYAM9ujxk2Rfurr9J1p2RDFzJaRlDZbhoZmCKxeZHLYs38uariFikyKSKNSQEJEREQGjL5O31nMkIy02TKS5ry6hJk3zeOwyeM1W4YUVWSyZXkYwqMikyLSrBSQEBERqYKWlkG0tQ3v5zoG93sd9a7Sfbzu0SuZvfBBhrS2cOwOx3Lp4y0ctc3RBbf5yjVX0PnQA6xobWH944/jzYtbWO+YL7P29tvDh3bOfN+jLy7i/FnPcPyemzNz9kvc98wbAMyYNpndth5Xzq7VhWb/jvalf4NefojB9/2QlbueBtD7ePCj5zH4pXtobW0Jz0ePV374G6y8r4Ue25uV/kdadj2NdTfeCd67K+vGK00+LqNm//xgYPRRpJEoICEiIlIF3d09mbMrFKutbXi/11HvKtHHZFbEQROn0dXZzUETpzGhdQvO2uHHAKnbTGZFDD3kcLo6uxl6yOEsn7gl65z9U5YDy1Pel1aosrNrZW9WxGGTxzft59js39FC/csabjHkpXvo7OwOy0SPO3Y6JUyxucOJAL2Pu9bdBj51VVjhZp8PP6u0T5v984P66ePYsSNq3QSRuqCAhIiIiDSdcg/NGHXuz/LWhciaLSN3aMaMaZPr4mJISjdkwcO03HIeQ+IAgoZbiIj0mwISIiIiJTCzFqAVGBr9f63opeXu3lOzhklmECJZsDJLodkyshSaLUOFKhtTVqbD4JfuYXiU6ZCvyGTyfQo8iIhkU0BCRESkNF8Erkj8/+3o56bA/Kq3RnplBSEmjX5falaEZsuQUgtLtra29A6xiJ9LPk4GH5ZPOriKPRERaUwKSIiIiJTA3WcCM2vcDEmIMyN2Hbc7UHoQoi+zZcTDMzRbRmMoFHiIFcp06D7werqiITfKehAR6T8FJERERKTh5KsRkU++IERfakScv//7lA1RZ9KCD4NXLKH1tUd7l8kNPCjTQUSkNhSQEBERkYZTSo2IZFZEOYIQyawIqZ1Ssh5WrL89y8fvrsKSIiJ1RgEJERERaQjJrIhCNSIqPVuGsiKqK6vIZL7hFmnBh5gCDyIi9UEBCREREalbpUzfWUx9iCyaLaM+lFpkMvkzfqysBxGRxqGAhIiIiNSVUqfvLDRlp2bLqD/lKjKpwIOISGNTQEJERETqSjHTd5Zjyk7NllEd5RpuoSKTIiLNRwEJERERqQvzFs3lukevLGr6znJM2anZMspryIKHabnlPIbscCKg4RYiIlKYAhIiIiJSM2nDM7o6u1ODEJotoz7kG24x+KV7GN7ZDWi4hYiIFKaAhIiIiNRM7vCMIa0tHDRxWu/rmi2jttKCD4NXLKH1tUd7l0kGHlpbW1gWZUjEz2m4hYiIZFFAQkRERKoq3/SdF256Ea//9QEWn3lCybNlKAjRd6UUmVyx/vYsH7976nCL7gOvp6t9GaCsBxERKUwBCREREam4Yqbv7Hx8Dq9ccwUrFrWXNFuGpuwsLC3g0N8ikzEFHkREpK8UkBAREZGKy5o5o6+zZaRlQ2jKztIyHVRkUkREak0BCREREamIfEMz4qyIxWeesNqQjBWtLQw95PDU2TKKHZIxEJQSeID0gIOKTIqISK0pICEiIiJlFQcilnZ28OTiJ4A1h2ZkzZYx9uJLaI9qEIDqQkDphSWTP+PHWQEHFZkUEZFaUkBCREREyioenrHVqK2ZPGZK5tCMrNkyBmoQolyFJZXpICIijUIBCREREem3tOEZX+rejQ1+PYvhh/cUNVvGnFeXMPOmeby5dEXTF6eMgw8qLCkiIgOZAhIiIiLSJ1kzZ5w5/HC++etuVi69mc4Cs2U0e3HK3KyHllvOY8gOJ/YGH1RYUkREBjIFJERERKRoWUGIL3Xvxv6/m0fbl3YrOFtGviEZrUMGc9jk8Q1XnLLY4RaDX7qH4Z3dvcupsKSIiAxkCkiIiIhI0bKCEBtcP4v1vJ3W62etkQ0BxdeFmDFt8mpFLetRf4pMtra2sGyHE1cLPqiwpIiIDFQKSIiIiEheWdN3bnDmZZlBiFHn/iwEIW6Y27DFKStRZLL7wOvpqvOAi4iISLUoICEiIiKp0qbvjOtDDD+8BwrUheh4p6thilOqyKSIiEj1KSAhIiIiqeLhGR9rn8C0u9ZdrT5E7pSdjVKcslDWg4pMioiIVI8CEiIiItIrOTwjrhGxcc9Khv5rzaEZxdaFqJasYEPycaGsBxWZFBERqR4FJERERAa4ZBDijtv/j4/+cS537L2Ewx5ch/W8nZat3s3gaLaMJ9ebyGW7TGf6erWtC1FKYcnk42KyHlRkUkREpDoUkBARERmAsoIQn/vrSoY9D1v/dSXDjwrZEK9++iAuemOdmgQhylFYMvlYWQ8iIiL1QwEJERGRASgrCLH+USez7IrLGZXIhuh4pYt5CyofhBiy4GFabjmPYZt8ouyFJRV4EBERqT8KSPRDfOI0JJpPXERkICpm3L7+RtaHZFZEoSBEMhui3MUp82U9DH7pHtZ55VEVlhQRERkAFJDoh/jEaXhnt06ERPoheXGiC9fGk3UHO/lYfyNrJ2toxrEFghDQ/+KUpQy3gBBoaG1t4a1EhoQCDyIiIs1LAYl+iE+clu1wYq2bMmDowrWxFbo4GbR8MT3DRunzbTBZd7CTj/W7W31xIKLtmQV89C/PcsfeS9hrViejn4eJszp58kPlLU5ZSpHJfFkP3Qdez/L2ZSosKSIiMgAoINEP8YlTV/uyWjel6RRzV013yRpPobHgg1csYag+34aT7w52/HjkzQfrd7fK4myI9TrXZsLLIQjxu633Zbv//I7Htt6Xl0sIQvR1Os2sIpPKehARERFQQELqVClFzKRxFBoLnnvRI/Ul66K0mIyH+D3L37MXI28+uPf/cR2e5PqyHsfb6U87mt2/7r+R9l/8nLYvfbk3G+L59dv4x/qb8NjW+/Kp/T/CZRtt3huAgDWDEJWYTjOmwIOIiIgkKSAhdamYC9f4okYXIY2j0F3R5OulpvjHyy9/z169Y88h/WK10LqLuRscP87aXta2C7Uhd9v5LtiL2XY52hy3KeuitJiLzPizTWZKAL11eJLrS3ucHM6TFbAcqBe7yRoRSy67iC2eXszTl13EvTscy3b/+R3377IPb0601MDDla0/YdngU2CBptMUERGR6lNAQmoq353OfCe2pQ7dqNT49XKst9zrAFIvaNPuLue7EK7EBW8p/Ut+xvFFUr7+xcsP+c+c3ur8QOo60tadbHMxRRrjx1nby9p23P7kxX1W2yD/BXsx2y5Hm+M2FbooLUZusDG3Dk/WupPDeQrVrKg0M2sBzgYOA9YCbgOOdveF1WpDMghx85/P5aO3PsHNn1jEih33oWP5Ddy/4z7su2/Ihjh1y0Vs+/zZRQUeQNNpioiISPUoINFE6uXiuJTt9PWOa/KEudSxzckL0JYXby06XTx+nHXhmu+iOd9FeqF1FBMUyHcBPfile1hn6Zupd5fzXQhX4oK3lAuX5GdcqH/DO7tXGxKQ3F9p60hbd7LNhS54k4+ztpe17bj9yYv7rLZB/gv2YrZdjjYn29Tf9PvcYGOyDk++OhS5f5tqfEH8dWAfYArwBjADuBr4VLUakAxC7HbLO9gLMPyWd3j36dvSOvR2ttx5WzYf/DRXtv6EwV56YUkFHERERKQaFJAok3LcXS40PrrQ46w7roXel+8Cu9jx3aX2tb93XJMnzLkp4IXu+CUvQAcvX1RUunjycdaFa6G76vnu3OdbR7F3s5M/k49bW1sY9Nai1LvL+S6EoXIXvMVIfsaF+rcsygCJl09W509bR9q6k20upkhj8nHa9rK2nWx//Duf1TYofMFeaNvlaHNum2qhHtqQcBRwhrs/B2BmpwHPmNkEd3+hUhu965ZfMuiXl9Nz4JF8/M+LmPAirPfnRYz9/P50X3cp4w/Yi22ev4RhKx5m+fOXwPMqLCkiIiL1TQGJMinH3eX4ArGY4mFpj7PuuBZ6X74L7GLHd/elr/HP/t5xLeZudtYF6Lov3lpUunjWxXaxF8257yvUtlKDAvkuLLoPvJ6lT92Xenc530VnpS54+6JQ/4qZ6SbrgjYrkFFOpdTOqBf12KZ6YGZtwCbAw/Fz7v6smS0BtgMqFpAYct3FbD3/bZ647mK2n9LGihXvsP0UGD3oVobtNp/lg24tGPwCBR5ERESkfgzq6emp6gZLHXtrZp8EzgU2A54FTnH32xKvXw5MBQyY6e5HFtOOzs7unvYyTNfZ1jac9vZlZcmQSGYNxOn1xbwv+bgvWRa5F9ixIQseZtSj57G4AhkS9VKIMv78mlmz91H9a2z11L+xY0c8DHwg3zJmNh54EdjM3Z9PPP8C8N/ufk3We1euXNnT3d33Y+7DZ+3JovtfY/TUDfjAtHMYfN8PWbnraQC9j3s23qnP668XLS2D6e5eWetmVIz619jUv8ZXL31sbW0peMwRGQhqEZD4b2Aa8ElWjb0d7u5rjL01s82Axwnpsb8BDgAuBSa5+/xomRMAB44G3qxVQKIcqlW/oRT1dLFQCc3eP2j+Pqp/ja2e+ldkQKINWATs4O7/TDy/GPiiu9+c9d7+HneSQeJ6OUZUQj19JypB/Wts6l/jq5c+FnPMERkIBtdgm0cB57j7c+6+GDgN+KSZTUhZdhrwsLtf4+4r3P1a4JHoeQDc/WfufiuwpBqNr6Q4RbqZTzRFRBqZu7cTMiTeHz8XBc9HAnMque2ucTuGIUo6RoiIiEiTqGpAImvsLSGYsF3KW7ZLLht5JGNZERGRargUON3MNjWzkcA5wK1x5p6IiIiIFKfaRS1HRD8X5zzfTri7lLZ82rKT+tuQlpZBtLUN7+9qaGkZXJb11Cv1r/E1ex/Vv8bWoP07GxgNzAaGAbcDh9S0RSIiIiINqNoBiY7o56ic59tIH3LRUcKyJenu7inL+LF6GYdWKepf42v2Pqp/ja2e+jd27IjCCwHu3g18NfonIiIiIn1U1SEbfRh7+1hy2cgO0fMiIiIiIiIi0qCqnSEBq8beziLMspFv7O1VwNfM7EDgeuBzwI7AofECZjaUEFhpAXrMbC1gpbuvqGgvRERERERERKTPajHLxtnAHwhjb18hBBIOATCzg81sabxgVPByP+BbhGEa3wL2zQle3Aa8Ha3jsOjxbZXuhIiIiIiIiIj03aCenp5at6FWXgdeqHUjRESkbkwAxlZw/TruiIhIrNLHHJGGMJADEiIiIiIiIiJSI7UYsiEiIiIiIiIiA5wCEiIiIiIiIiJSdQpIiIiIiIiIiEjVKSAhIiIiIiIiIlWngISIiIiIiIiIVJ0CEiIiIiIiIiJSdUNq3YBGZWYtwNnAYcBawG3A0e6+sJbt6gszOwfYGxgPLAX+BJzu7m8mljkU+A6wITAXONbdH65Bc/vFzAYDfwWmAuPd/eXo+Ybvn5l9FDgT2AZ4B/iNux8bvdbQ/TOzccB5wIcJf7ceBU5298ei1xuqf2b2/4CvANsBw919SM7rnwTOBTYDngVOcffbEq9vDlxM+B4vAn7q7udWqfkF5eufme0FfBXYFmgBHge+6e73JZap6/7Vgo459f07naWZjzmg4w4N0r9mP+aAjjsijUwZEn33dWAfYAqwcfTc1bVrTr90A4cA7yL8Id8YmBm/aGYfAn4OfBkYDdwA/NnMRla9pf13MrAs+UQz9M/M9gCuB35M+Bw3Bi6PXmv4/gEXAesBWwIbAP8A/mhmgxq0f4sIfTop9wUz2wz4HfADYFT080Yzmxi93gL8AXgSGAt8BjjdzL5QjYYXKbN/hM/ofGBzQvuvA24xs/HQMP2rBR1z6vt3OktTHnNAxx0aq3/NfswBHXdEGpYCEn13FHCOuz/n7ouB04BPmtmEGrerZO7+TXd/1N073f11wh2BPRKLTAd+5+63ufty4EfAcmDf6re278xsS+BYQpQ8qRn69wPgYne/3t2Xu/s77v5I9Foz9G9z4LfuvsjdVwC/IJz8vosG7J+73+ruvwSeS3l5GvCwu1/j7ivc/Vrgkeh5gN2ACcA33H1Z9DlfAhxTjbYXI1//3P1ad7/R3dvdvcvdf064Sz45WqTu+1cjOubU8e90miY/5oCOOw3Tv2Y/5oCOOyKNTAGJPjCzNmAToDc1z92fBZYQ7vY0uo8AjyX+vx2r97WHkLrYMH2N0mZnEE4M23Nebuj+mdk6wE7AEDN7xMwWmtndZvaBaJGG7l/kR8D+ZjbWzNYiXJz9NUpXb4b+Ja3Wn8gjrOrPdsC/3H1pxusNxczeB4whpDxDk/WvHHTMabzf6WY+5oCOOzRH/2ID6pgDOu6I1BsFJPpmRPRzcc7z7UC9pusVxcz2J0SET0w8PYLG7+uJwAJ3vzHltUbv32jC7/KBhPHlGxHGl/85upBp9P4B/I0w7vM/hLsa+xHuUEFz9C+pUH+apr9mtj4h1fnH7v509HTT9K+MdMxpvL428zEHdNxphv7FBswxB3TcEalHCkj0TUf0c1TO822EO1YNycwOAC4DPpNIu4TQ34bta1So6FTguIxFGrp/rPo+XuHuc6LU0h8ArcAuNHj/ojuNdwD/IvRjOHAWcJ+ZbUCD9y9Fof40RX/NbCNgFuEi5huJl5qif2WmY04D9XUAHHNAx52G7l+OAXHMAR13ROqVAhJ94O7twIvA++PnoqJAI4E5NWpWv5jZ4YTxcp9291k5Lz/G6n0dBGzP6im29exDhCJFj5vZQkIaHsAcMzuWBu9fNJ58PtCT81JP9K+h+0coKrYpcL67L4nGuF5O+Ps1lcbvX67V+hPZgVX9eQzYMkqZTnu97kXF0u4DbnH346J051jD96/cdMxpuN/ppj7mgI47NH7/kpr+mAM67ojUM0372XeXEirwzgLeAM4BbnX3+TVtVR+Y2QmEqas+4e6zUxa5DPiLmV1J+GN+AmHaubRU1Hr0G8KdjtjGwP3Ax4GnCCf0jdw/CJWlTzSzXxLu6JxCKLD1d0Lkv2H75+4LzexfwLFm9nVCvw4lpFjOARbSYP2LKnq3AkOj/68VvbQcuAr4mpkdSKhg/zlgR0KfAe4FXgD+N9ofBhzN6invNVWgf0b4fZzp7t9KeXvd969GdMyp49/pHAPhmAM67jRM/5r9mAM67og0MgUk+u5swhjK2cAw4HbCNGaN6DygC5hlZr1Puvu60c+/Rnd1LmPVfNt7uXtDpLK5+zIS066ZWfy9XxAVMGro/kV+TDhRuotwUvQo8KnoLlYz9O+zhAJjLxBOOJ4BDnD354DnGrB/XwSuSPz/7ejnpu7+rJntR5gTfgahYvi+8YWnu3eb2acJd5ffIIxz/ZG7/6pKbS9GZv+A04F3AyeZ2UmJZY6OKqE3Qv9qQcec+v6d7jVAjjmg404j9a/Zjzmg445IwxrU05ObbSciIiIiIiIiUlmqISEiIiIiIiIiVaeAhIiIiIiIiIhUnQISIiIiIiIiIlJ1CkiIiIiIiIiISNUpICEiIiIiIiIiVaeAhIiIiIiIiIhUnQISIiIiIiIiIlJ1CkiIiIiIiIiISNUpICEiImVnZjPN7MwKrXusmT1lZmtXYv15tjvfzD5axe09ZGaTqrU9ERERkWpTQEJERBrN14GZ7v527gtm9hsz+7iZDTOzBflWUu0AQx/8GDij1o0QERERqRQFJEREpGGY2TBgGnBNxiI7Av8AtgUer1a7KuRmYE8zG1frhoiIiIhUwpBaN0BERKrLzE4HTgBGAq8Cx7r7nWY2GDgNmA60AXcCx7j7m9H7vgicCawL/CRa7kh3v6OIbe4dvXci8ES03jnRa/OBC4BDgQnAX4Bp7v5OyqqmAO3u/nLKNkYDg9z9TTP7AvBInvZcDWwC/MHMuoEz3P2HZvYZ4AfAu4F/Al929ydT3r8V8Gfgm+7+y772z8zGADOBDwErgXnA7u6+Mnr9YeATwJVZfRERERFpVMqQEBEZQMzMgOOAye4+gnCxOz96+Xjgs8DuwEbAIuDC6H1bAz8Hvhi99i5g4yK3uQMwAzg6et8lwM1RtkPs88AngU0J2Q2HZazufYDnrP8jZtYOvARsHD0+D/iKmbWb2e65K3H3LwIvAp9293WjYMSWwC+Bk4CxhIDDH8xsaM723g/cChwfBSP6079TgZej7W0AfBPoSbzvSWC7jH0hIiIi0tCUISEiMrB0A8OArc3sdXefn3jtGOC4OPvAzL4LvBhlRnwO+KO73xu99j+EwEYxjgIucfcHo/9faWbfBHYG7ome+5m7vxqt+w/A9hnragM6kk+4+51Am5ldA/wWuAN4FNgurc5EHl8A/uTut0ft+DFwIrALcHe0zK7Al4BD3D1+rj/96wQ2BCa4+zPAfTlt6oheFxEREWk6CkiIiAwg7v6MmZ0EfBeYZGa3AqdEF8sTgBvNbGXiLd2EO/cbETIQ4vW8ZWZvFLnZCcA0Mzs+8dzQaJ2xZAHKZTmvJS0CRiSfMLOXCcNIRgB7A62E49u/zWyGu59SZDs3Al6I/+PuK83sJcLwjdgxwD2JYAT0r38/InwWt4XkFS5197MTy44A2otsv4iIiEhDUUBCRGSAcffrgOvMbCRheME5hKEYLwFHuPvfct9jZv8Gtkr8fzhheEIxXgLOcvez+tt2YA5wcvIJd9/YzHYGvufunzCznwLz3P3yAuvqyfn/q4QhIQCY2SBgPPBKYpljgNPN7KfuHrejz/1z9w7CsI1TzWwb4C4zmx1lfUDY51kFPEVEREQamgISIiIDSFRD4t3A34B3gLeBlujli4GzzGyau79gZmOBXdz9JuB64EEz+xDwEGE6ymLrEF1GyLy4I3rvcGAP4N7ogrwUDxGGZ7zb3ZOBgh1ZVcTy/RRXBPI1YLPE/38DfN3MPgLcSxiusRz4e2KZDkItiDvN7Gx3/3p/+hcVw3wKeBZYTMhIWRm9tlbUr2lF9EVERESk4aiopYjIwDIMOBtYSBhGsD7wjei18whTTd5mZh3AA4RZLXD3ecBXgOuAfxOGTqwx00Uad/8HYUaOC6L3PUN20cpC61pBmJXikJyXdgQeibIa3kuYraKQHwDfigpfftXdPVrv+YT982lC0csVOW1oBz4GfMrMvt/P/m1BqHmxFLgfuMjdZ0WvfRq4O649ISIiItJsBvX05GasioiIFBZNZ1nUtJ9l3u5YQvHHHUosWtlQzOxB4Evu/nit2yIiIiJSCRqyISIiDcXdXydkQTQ1d59S6zaIiIiIVJKGbIiIiIiIiIhI1WnIhoiIiIiIiIhUnTIkRERERERERKTqFJAQERERERERkapTQEJEREREREREqk4BCRERERERERGpOgUkRERERERERKTqFJAQERERERERkar7/5nDuPSXW8E6AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 864x576 with 4 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "sns.set_style(\"darkgrid\")  # darkgrid, whitegrid, dark, white and ticks\n",
    "plt.rc(\"axes\", titlesize=15)  # fontsize of the axes title\n",
    "plt.rc(\"axes\", labelsize=14)  # fontsize of the x and y labels\n",
    "plt.rc(\"xtick\", labelsize=13)  # fontsize of the tick labels\n",
    "plt.rc(\"ytick\", labelsize=13)  # fontsize of the tick labels\n",
    "plt.rc(\"legend\", fontsize=15)  # legend fontsize\n",
    "plt.rc(\"font\", size=13)  # controls default text sizes\n",
    "\n",
    "colors = sns.color_palette(\"deep\")\n",
    "fig = plt.figure(constrained_layout=True, figsize=(12, 8))\n",
    "subfigs = fig.subfigures(nrows=2, ncols=1)\n",
    "\n",
    "fig.supxlabel(\"seq len (# tokens)\")\n",
    "fig.supylabel(\"latency (s)\")\n",
    "fig.suptitle(f\"Small seq len and greedy search on {model_name} don't tell the whole (inference) story...\")\n",
    "for row, (plot_name, timings) in enumerate(all_timings.items()):\n",
    "    subfigs[row].suptitle(f\"setup #{1+row}: {plot_name} (seq len / beam search)\")\n",
    "    axs = subfigs[row].subplots(nrows=1, ncols=2)\n",
    "    for col, accumulated in enumerate([False, True]):\n",
    "        plot_axis = axs[col]\n",
    "        for index, (k, v) in enumerate(timings.items()):\n",
    "            axis = range(len(v))\n",
    "            color = colors[index]\n",
    "            v = np.array(v)\n",
    "            # remove extreme values\n",
    "            p99 = np.percentile(v, 99)\n",
    "            v[v > p99] = p99\n",
    "            v = np.cumsum(v) if accumulated else v\n",
    "            plot_axis.scatter(axis, v, label=k, s=2)\n",
    "\n",
    "        title = f\"latency for the full sequence\" if accumulated else f\"latency for each token\"\n",
    "        plot_axis.title.set_text(title)\n",
    "\n",
    "# legend deduplication\n",
    "handles, labels = plt.gca().get_legend_handles_labels()\n",
    "by_label = dict(zip(labels, handles))\n",
    "fig.legend(by_label.values(), by_label.keys(), bbox_to_anchor=(1, 1), loc=\"upper left\", markerscale=5)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## Profiling model at the kernel level\n",
    "\n",
    "Below we reload the decoder model with `ONNX Runtime` kernel profiling enabled.\n",
    "It will help us to understand on which part of the computation graph the GPU spends its time.  \n",
    "\n",
    "The number of events that `ONNX Runtime` can save is limited to [1 million](https://github.com/microsoft/onnxruntime/blob/a4b5fa334aa939fb159bdc571ed3d56ca8d31fc7/onnxruntime/core/common/profiler.cc#L10).\n",
    "It is not an issue as we have seen that timings per token are mostly stable, so having only n first token information don't change anything.\n",
    "\n",
    "The main information it gives us is that 30% of the time is spent on matrix multiplication when caching is used.  \n",
    "The rest of the time is spent on mostly memory bound operations:\n",
    "* element-wise operations which require little computation (`add`, `mul`, `div`, etc.)\n",
    "* copy pasting tensors `GPU` <-> `GPU` with little transformation in between (`transpose`, `concat`, `cast`, etc.)\n",
    "\n",
    "It matches the information provided by both `nvidia-smi` and `Nvidia Nsight` (the GPU profiler from Nvidia): the GPU is under utilized.  \n",
    "That's why we think that a tool like `TensorRT` which will perform aggressive kernel fusion, reducing time spent on memory bounded operations, should be a good fit for autoregressive models.\n",
    "\n",
    "> there is a nice opportunity to increase the speedup by reducing the number of casting operations. We keep this work for the future."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2022-06-25T23:32:08.273218Z",
     "iopub.status.busy": "2022-06-25T23:32:08.272993Z",
     "iopub.status.idle": "2022-06-25T23:32:24.271872Z",
     "shell.execute_reply": "2022-06-25T23:32:24.271352Z"
    },
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAExCAYAAAC5/jJ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/R0lEQVR4nO3debyd09n/8U9OCCI4Womhhhi/fuhTfWhVi6K02qipFB1Qs1bVUEPVPFRCS7WouaFmfcxqLFFDFdFKTZcaTiiJBIkknIY45/fHWrtu2xn2mfaQfN+v13ntve9h3de+d9jXvta67zWovb0dMzMzs3rTVOsAzMzMzDriJMXMzMzqkpMUMzMzq0tOUszMzKwuOUkxMzOzuuQkxczMzOrSfLUOwMwMQFIl90PYBBgL/DEifjqwETUOSd8GhkbE2FrH0hFJI4GXgG9GxC01DqdLksYBb0TE9rWOxZykmFn9WL/wfCHgHuAk4NbC8qeBbYE3qxhXI/g2sAQpgTObazhJMbO6EBEPl55LGpafvlBcnv29elFZT0haKCJaq3i8wcDgiHivWse06nKSYmYNRVILhe4eSWOBtYBjgdOAkcC9wPeBTwAXAJ8HngF2j4gJhbaagMOAPYHlgInAyRFxSTcx7AEcAqwIvAM8BfwwIp4qdG18F/g6sA3QCpwdEceXtbMWMAbYKC+6HfhxREzO6zfO72UT4Ee5vSnALyPinML7/1Z+XuoyOz4ijusk9vYc+wr5HDUBfwAOKX7ZS1oeOBX4KrAgcD9wQEREXl96n98DvgZsBTwGbNbVuSu0vwlwE/DbiDgyL9sTOAhYBZicz9mphX3Gkj7rk4CTgdWATfPnsRbwM+BXwMqkZHafiHiqsH+vPm+rHQ+cNbO5wfLACcBRwN7AF4Hzgavy3/akH2VXSRpU2O+3eZ/zgVHA9cDFkrbs7ECSNgLOJX2xfx3YHXgIWKxs09OAd/OxLwCOlfSjQjurAA+SEoDvAbsBawI3l8VI3v8JUlfXOOBsSZ/P604kJTJ/J3WZrQ9c2Fn82SHAsqRE6iTSOTu5ENsngAcAAfuSupMWBu6WtFBZW78EZgI7AL/o5ril9r9G6sY7tZCgHAr8DrgB2DI/P1HS/mW7jyQlT6eQzv9LefnypHN+MrAzMAK4uq+ft9WWKylmNjf4BLB+RLwAIOl/gEOBXSPi0rxsEOmLcXXgmZwk7Af8oPBL+m5JS5OqMp0N8Pw8MCEiTiksu6mD7Z6KiH3y8zskjQCOlPS7iGjLx5gMfL1UwZA0AXgW+AYfHYtzZUSclLcZB3wT2A54JCJekPQW0NRB11hnZgI75Dhuk7QA8HNJp0TEW6RqxsLA2vk1kh4EWkhJ2dmFth6OiB9RIUlbAdcAR0XEL/OyRfP5OKlQbbpL0lDgqHzOPsjLPwlsFhH/KLQJ6d/AlyLiX3lZEykJEfBsHz5vqyFXUsxsbtBSSlCy5/PjPR0s+1R+/ArQBlwvab7SH/BnYO083qEj/wA+K+kMSRtJGtLJdteXvb4OWIZUwYDULXI90FY49kukRGDdsn3vLD2JiPeBfxXa6Y0bc4JSjG0hUpdJKba7gBmF2GYC4zuI7VYq9y3gWlLX0i8Ly9cnJUXXln0W9wBL8tH3+moxQSloKSUo2dP5sbRvbz9vqyEnKWY2N5he9vq9DpaXli2YH5cABgNvA+8X/saSqsxLd3SgiLgb+AFpHMk44A1JZ0tauGzTKZ28LrW7BHB42bHfB1YijZfo7v0tSO9VEtuOHcS2SQexvd6D424FvMXHE7gl8uNTZce7Ny8vHrOz400ve90vn7fVlrt7zGxe9RYwB/gS6Rd2ufIv8v/K3QWXSBpO6nY5g1RpOKKw2Yiy3UqvJxWOfz0djx95o7vg+6iS2G4ijXcpN7PsdSX3tyn5MXAwcKekL0dE6VLyt/LjlnSchEQvj1fU68/basdJipnNq+4h/bJeLCLu6k0DETEVOE/SdsAaZau3JQ3+LNmOlAT8O7/+M2mg7PiI6O0Xb0lPKytbS/pZoctnO9IVSE8WYvs2aVxNf15SPIN0JdB9pHE6m0bEDOCv+fjLRERPuo96os+ft1WfkxQzmydFREg6l3TFz6mky2cXJCUOq0XEnh3tJ+l40iDNcaSKx2eBL/PRKgrAmpLOA/6P1DW0B/CTQmJwHPAIcKuki3NbnwI2B8ZGxLgevJ1nSYnHNqQk6LWIeK2L7Rchjf+4IL/fo0mX+5YqGqeTrji6R9JvgVdJY0O+DDwQEVf2ILaPiIg3JW1OuqT5FklbRMR0SccBZ0paAfgLaTjCasAmEbFtb49XOG6vPm+rLY9JMbN52Y9IXRq7AH8ijU8YRfqS7MyjpKrJucAdpCtGjgPOLNvuMGBRUpKyTz7OWaWVEfEc8AXSZcrnA7cBxwOz+XCQb6XOIQ2uvTjHt3c32/+KVNW5EjgGuAg4shDbGzm2Z0ldWXeSLvtdDJhQ3lhPRcQk0kDWkcB1kobk+6HsTbqs+MYc23dJyUx/6c3nbTU0qL29r1VGMzMrqfd5avLN3H4cEWd1u7FZjbmSYmZmZnXJSYqZmZnVJXf3mJmZWV1yJcXMzMzqkpMUMzMzq0u+T4qZzTPyJIN/B84oTTIn6TDSRH3jqhjHENJsvV8gzYWzYESUz3xc2nZr0kzFqwIvAsdHxNXdtD8WWCsiyufZqSuSNibd+v7TEfFkN5sj6VOku8/+T0S8OMDhWR1wJcXM5iXfJt2I7YrCssOAjascx1BgT9I9Uh7qbCNJG5Dus3Iv6f4htwJXSvpqNYKsNxHxKnA16d4uNg9wkmJm85IDgD/kmYRrJiKmA5+IiK/x8cn2io4G/hIRB0TEvRFxKHA7NfqSlrRQLY5b5vfAzpI+WetAbOC5u8fM5gmSVgG+COxfWNYCfBI4VtKxefEmETFO0lBgNKn60gz8E/h5RNxZ2H8c6Xb2d5Lu2LokaY6YvfOv/k51N1+PpAVIsw4fULbqKuD3khaLiLe7aqPQ1pC837rAphHxvKTlSXeR/Srp9vD3AwdEROR9RpJuSvc90nw7WwGPSdozL9+RdNfYnUiTDl5E6opqKxx3LWAMaVoASAnWjyNichex7gEcAqwIvEOaGfmHEfFU3uRB0mSBOwFnV/L+rXG5kmJm84qvkL70nigs2xZ4m/QFu37+ezyvuwD4AWnsyLbAK6R5djYoa3d9Ppzddw/gf4Ab+iHelYH5SbemL3qGD+e16ZakBUnVms8AG+YE5RPAA4CAfUmJ2MLA3R1US35JSkJ2AH5RWH4qMAvYHriMVN3ZvnDcVUgJxYKkRGc30jw5N+exQR3FuhFpuoE/kLq3did1hy1W2iYndw8Dm1Xy/q2xuZJiZvOKdYBnir/0I+LvkuYA/46Ih0vLJf0/YGfgB4UBtneQ5q05mlRZKBkBrB8RL+ftJgIP5Inzbu9DvIvnx+lly6eVre9UrgbdBCwLbFSo7hxESkrWLk0qKOlBoIWUGBQrFA9HxI8KbY7MT/8SEYfk53dJ2oI0m/I1edmxwGTg6xHxXt53Ainp+gZpfE25zwMTIuKUwrKbOtjuCWCvLt+8zRVcSTGzecVSpK6ZSnwOGARcW1qQk5trgfJKyuOlBCVv9yAwhfSFW0sLk7pXRgBfLut+2gy4C5ghaT5J85GqJeNJXUJFHSUTkLq4ip4mJUPFY1wPtBWO8RIpEersqqN/AJ+VdIakjXI3VUfeAEZ0VpGxuYeTFDObVyxImmG4EksDsyLi3bLlrwND83iRkikd7D8lt9EXpYrJYmXLFy9b35llSGNwro+I18vWLUEaU/J+2d8mwHJl25bvWzK97PV7pHNcPMbhHRxjpQ6OAUBE3E3qYtsIGAe8IelsSQuXbTqb1BPg3oC5nD9gM5tXvEWqplRiEjBM0tCyRGVJ4N2IKCY7IzrYf0Ruoy9eIH2prw7cV1i+OtAGPNfN/v8CzgTGSpocEb8rrHuL1I1yYgf7zSx73du5U94iVVIu7GBdpxWt3L12iaThpO6jM3JMRxQ2ayYlkTW9SssGnpMUM5tXBGmQa7nyCgDAo6Qv5+2BS+G/N4LbnjTgtOh/JS1fGJPyJVKS8kifgo2YLele0oDV8wqrdgT+WsmVPRHxB0nDgLMkzYyIy/KqP5MGyz4VEa19ibMLfyYNlB3f3ZVMHYmIqcB5krYD1ihbPZLukzSbCzhJMbN5xYPAMZKG5y/AkmeBUZJuJ12tEhHxjKQrSV/ui5CqGnuRqhj7lbU7lXTVz7GkZGcMaZxKl4NmJX2dPHg1vy5dGfNoREzMz08Exkn6NemKoW/kvy0qfdMR8bucqPxe0qyIuAE4nXTFzT2Sfgu8SqoSfRl4ICKurLT9LhxHStRulXQxqXryKWBzYGxHd/iVdDzpZnvj8vafzTEdUbbpuqTP0+ZyHpNiZvOKcaQuiPIv+ENJlybfSqqgrJOX7wVcQrq09kZgBWDLiCivpDxEuhrm16RLmZ8Etqkgnt+RBuLukV9fm/82KW2Qj7U9aRDqHaR7lXyneK+WSkTEacApwFWSNo+IN0i35H+W1J1yJ+mS4sVIVzD1WUQ8l4/xLnA+cBtwPGk8yfOd7PYoqWpyLun97kdKds4sbZC7gdYh3YnX5nKD2tt7291oZtZYJJ0JrBIRo/qpvXHAGxGxfXfbWv+QtA/wU2C13nQjWWNxJcXM5iWnAZtIquhGaFZf8rignwAnO0GZNzhJMbN5RkT8m3Szsr5eHmy1sRRwOemOtDYPcHePmZmZ1SVXUszMzKwu+RJks15qb29vnzOnrfsN69DgwYP44IPGrKI69tpp5Pgde+0U459//sFvAMMr3ddJilkvtbfD9Onld01vDM3NQx17DTRy7NDY8Tv22inGP3z4IhO72fwj3N1jZmZmdclJipmZmdUlJylmZmZWl5ykmJmZWV1ykmJmZmZ1yUmKmZmZ1SUnKWZmZlaXnKSYmZlZXfLN3Mz6YPjwRfqtrdbZc5g1o7Xf2jMza3ROUsx6qalpECOPuLXf2msZPYpZ/daamVnjc3ePmZmZ1SUnKWZmZlaXnKTYXEHSWEkX1joOMzPrPx6TYlUnaR3gSGBDYCjwBjAeODsi7qlg/3HA3RFx0kDGaWZmteVKilWVpM2BB4EXgHWBRYBPA1cA29YwtI+QNH+tYzAzm9e5kmLV9jvgsog4rLBsJvB/+Q9JOwE/A1YE3gFuAg6OiHcknUWqwKwv6Qjg1YhQbmcBSRcAO+T9ToiI80oHkbQhcAqwBjANOAc4PSLaJW0M3A38ADgeGE5KoMzMrEacpFjVSFoNWBnYp5tN3wa+AzwDrERKUo4CfhYR+0tai467e7YHdsztbwNcLen2iJgoaQ3gT8D3gFuAVYHbgKnApXn/wcA3gM8C7/fhrfZac/PQqhxn8OCmqh2rvzn22mnk+B177fQlficpVk3D8+OrpQWStiIlCYOABSJiwYi4rbDP85LOAXapoP17IuKm/Pw6SdOBtYGJwA+BayPixrz+2VyV2YUPkxSAwyPi7Z69rf4zffq7VTlOc/PQqh2rvzn22mnk+B177RTj7+kNMJ2kWDW9kR+XBZ4FyElFs6QNgPvhv+NWjgFWBxYgVTimVND+pLLX7/Bhl82KwKaStiusbwJeKbxuK3ttZmY15CTFquk54EVgJ9L4j4+RNAS4ATgMuDgiWiXtD/y0sFlbL449Mbf3oy62aY+I9l60bWZmA8BJilVNHqD6I+BGSW8CZwH/BhYC1subDSFVT6blBGUNYP+ypiYDq/Tw8OcA90m6HbgdaAdWA4ZHxH29ekNmZjagfAmyVVVE3A5sQEoQHgdmAU8BXwI2jYhZwH7AqZJmAWeTLk8uOgNYV9J0SU9VeNwngS2BA0ndQlOAsXw4TsbMzOrMoPZ2V7fNeqm9vycYnDp1Zr+115VGHojn2GunkeN37LVTNnB2POkeWRVxJcXMzMzqksekmPVSW1s7LaNH9Vt7rbPn9FtbZmZzAycpZn1Qre4ZM7N5kbt7zMzMrC45STEzM7O65O4esz7o6S2eK9U6ew6zZrQOSNtmZo3CSYpZLzU1DaI/L0Euahk9ilkD0rKZWeNwd4+ZmZnVJScpZmZmVpfc3WN1Q9IRwEHAwsAmEfFojUMyM7MacpJi/UbSSsAYYENgGDANeAzYMSLe62bfZYFfAGtFxNN5WTuwYUQ8MKCBm5lZXXJ3j/WnP5Em7xOwCLA+cAcwqIJ9RwJtpQTFzMzMlRTrF5I+SUpOtouIt/PifwPnFrbZjzQL8VLAM8ChEXG/pB1JMxIPzjMfvw7/vbjlTkltwFURsaekFuBC4CvA54CXgO8CawInkmY1vhbYNyLm5OP+HtgMaAZeAU6KiCvyuj3yfmtHxBRJI4B/AEdHxEX9eIrMzKyHPAuy9RtJTwIzSInJY8AzEdGe1+0M/BYYBYwHdgV+A6wRERMlbQzcHRHzFdr7WHdPTlLeB7YCngd+T6rY/Jk0nuWT+dgHRcTleZ89gBuA6cAOwKWkpKTUrXQJsAzwDeA24NWI2LWCt9yvsyAXtYwexfvvfzAgbQMMHtzEBx+0DVj7A8mx104jx+/Ya6cY//zzD+7RLMiupFh/2hg4mFQtWQuYLum3wEnAD4DzIuJveduLJO0JfAc4pYfHOT8ingGQdAWpkvKFiHgHeEfSONJ/BJcDlFVErpL00xxrqWtpP+BR4BFgflICVHMDOTV7I0/97thrp5Hjd+y1U4y/pzfAdJJi/SYi3gCOBI6UNBT4NnAB8CqwHHBN2S4v5OU9Nanw/F3gg4iYWrZsEQBJTcBxwI6kbqZ20tVDwwtxvyvpQuB0YPeIaNz/G5iZzUU8cNYGRES8GxFjgQnA2qSxICPLNlspL+9Mf/RF7gzsCXwLWDwimoEnKAzmlbQ6KZE5BzhF0lL9cFwzM+sjV1KsX0haHDiM1MUSpARja1K3z2jgYeBMSTcBjwPfJyUvO3fR7GRgVaAvlyAvCswBpgJNknYDPgPckuMeShpo++uIOFbSAsCVkjaLiIEbFGJmZt1yJcX6y3vACOA64C1SUnAUcEBEXJuvpjkeuAx4kzQO5BsRMbGLNn8OnCBpmqTzehnXJcDfSINsXwXWAO4vrD8bmJJjA/gxafDtcb08npmZ9RNf3WPWewN6dc/UqTMHpG1o7IF4jr12Gjl+x147ZQNne3R1jyspZmZmVpecpJiZmVld8sBZs15qa2unZfSoAWm7dfacAWnXzKyROEkx64OBHDdiZjavc3ePmZmZ1SUnKWZmZlaX3N1j1gc9nYeir1pnz2HWjNaqHtPMrFacpJj1UlPTIAbqPimdaRk9illVPaKZWe24u8fMzMzqkpMUMzMzq0vu7rGGI2ld0rxAXwIWIE1E+CdgTERM6kO77cCGEdGXCQ3NzKyfuJJiDUXS5qRZkQNYOyIWBb5MmrTwy7WMzczM+pcrKdZozgGuiIjDSwty9eREAEk7AT8DVgTeAW4CDo6Id/L6A4CDgCWAGcAlEXGkpCdyc3dKagOuiog9q/SezMysA66kWMOQtBqwCnBFF5u9DXwHaAY2zH9HFfYfDWwZEYsAa5KSGCLiM3n/r0bEMCcoZma150qKNZLh+fHVzjaIiNsKL5+XdA6wS349BxgErClpYkRMBx4eiEAHUnPz0D63MXhwU7+0UwuOvXYaOX7HXjt9id9JijWSqfnxU8AzHW2Qx6wcA6xOGlQ7GJgCEBEvSvousB9woaQJwAkRcedAB96fpk9/t89tNDcP7Zd2asGx104jx+/Ya6cYf09vgOnuHmsYEfEc8Dywc0frJQ0BbgCuApbPg2oPJ1VPSm1cFxGbk8akXAPcKKmU4rcPXPRmZtZTrqRYo/khcLOk14GzIuI1SUsCuwOvkKon0yKiVdIawP6lHSWJNKD2L0ArafxKO9CWN5kMrEq6esjMzGrMlRRrKBFxF7ABsAbwT0kzSUnFCOBuUlfOqZJmAWfz0UG2Q0hdQZOA6cABwLci4j95/c+BEyRNk3ReFd6OmZl1wZUUazgR8RiwTSerL8h/RSfk/f4JfLGLdn8P/L4fQjQzs37gSoqZmZnVJScpZmZmVpfc3WPWS21t7bSMHlXVY7bOnlPV45mZ1ZKTFLM+mDp1Zq1DMDOba7m7x8zMzOqSkxQzMzOrS+7uMeuDnt7iub+1zp7DrBmtNY3BzGygOEkx66WmpkGMPOLWmsbQMnoUs2oagZnZwHF3j5mZmdWlPicpkr4r6Yn+CKaLY4yVdGHh9VOSdiy83kLS85JmSjpY0pGSbu7jMedI2rgvbVgiaZykowqvZ0laf4CONeD/Hs3MrDoq6u6RtBIwBtgQGAZMAx4DdoyIy4HLByzCDkTEmmWLfgOcHhHnDMTxJO0GHBURqwxE+z0laSTwEvAcsGZEzMnLNwDuj4hBXexecxExrD/akTQWmBMRexbarvq/RzMzGxiVVlL+RJqUTcAiwPrAHUC9fBmuBEyodRDVIGn+wstPAvsOUNtmZmY11W0lRdInScnJdhHxdl78b+DcvH43ClUGSeOAx4EVgc2AKcDepITm18DywJ+BXSJiZt6nHTgI2A1YmVSl2Ssinu8kphbgKOAeUjVhMHCnpDbgf4HvABtExGZ5+6GkSea+BSwGPALsX2pf0iLAWcA3gZmkmXIrImlZ4EJgHdIsuxOAAyNivKTFgdeAL0bE3wv7/AW4KyJOlDQfcFh+7yOAp4Cf5En0StWC+YH3ga2Aq0lVLfJ7OlbSpRExo4PY5gOOzG0vTvpcfhIRT3bWtqTXSRWzx4DdSYnsycD/kSbf+1w+59+LiGdyOzsBPyN95u8ANwEHR8Q7nZyzdmDDiHhA0njSv6+SBYBbI2IbSV8BfgGsBswh/bs5ICKmSDoM+G7h+JA+2+/z0X+PQ4FTgO2AhUgzJh8QES/n9eOA8cBI4Kukf68HR8SNHcVuZmbV020lJSLeJH1xXihpF0lrSOqugvJ9YDTQTPpS/QMpUdmI9GUg4ICyffYGtufDL+qbJA3uJrbXCl0HX42IYRHxXAebXgCsDnwBWAr4G3BLoXLwa2BVYA3gf4CtSYlPJZqAc4AVctuPA9dJmj8ipgHXAv/tjpC0GqkSdXFedHw+3hakysjFwO05wSnZAbgNGA4cUlh+HRCkRKQjhwK7AN/Isd0P3CVp0W7a3gj4V97ne8BpwEXAj4BPAM+QuthK3iYlhs2kBGdDUhLZrYhYJ39uw4D1gBnApXn1bGD/HNungWWAM/N+p5K6dS4p7R8RH3RwiDNIn/sXSJ/RG8DNZf+2dgV+RUpyzgIuycmNmZnVUKWXIG8MHAwcCKwFTJf0W+CkTra/JiL+BiDpMtKv7NMi4q287BZg3bJ9flWobBxGGveyHvBQpW+mI5KWIH2BrhARr+dlx+f3sp6kh0i/yEdFxOS8/nBg20raz7/IXy4c7yhSArYq8DRwPulL8ZCI+A+wB3B7RLyak70D8rFfzE1cJOlAYBRwWV72QERcnZ+/KxULD/wUuEdSR+NxfgCMiYhnc2wnkBKmUcCVXbT9XESUBirfJulN4I5C5eQKCuM+IuK2wjGfz7Hs0ulJ64CkZUjJ0gkRcV1u94HCJpMlncqHyV0lbTaREpBvRsSredmBwFvA54G/5k2vjoiH8vrzgdNJn19DDMBtbu55PjV4cFOv9qsHjr12Gjl+x147fYm/oiQlIt4g/Vo/Mv/C/DapOvEq0NbBLpMKz9/tZFn5XbBaCsd7V9JUYNlK4uvGivlxQtmX+/zAcqRf6QsUj08alFqRnASdTkrkmvnwfAyH9EUr6TVge0lXkb40987bLEEaiHxz7gIpxlZ878XYPiIiHs5XMp0MnFe2ernie4mIttxVtlw3bU8qe/0uXXx+kjYndZGtTjqXg0ndJhXJ3W1/Aq6NiDMLy9chdfd8BhhK6jLsyaDb0mdbPAezJE0hnYNSkjKpsP6d/O+ktndp64Hp09/tfqMyzc1De7VfPXDstdPI8Tv22inG39MbYPb4Zm4R8S4wVtKPgbVJ3Rv9YWTpSU6EhpPGvvTVxPy4akRMLV+Zy/7v5eO/UB5LBU4BlgbWi4hJ+Qt3Bh8dVHweqYIyC/gAKN0B7A3SGI7NIuLRLo7RUSJYdASpalPexit89Lw25dev9KDtLkkaAtxAGldzcUS0StqfVOGpZP/5SeNdnutgn6uAPwI7RMQMSVsCxUvLu4t9KqnLaCRQqtINI3UpvtL5bmZmVg8qGTi7OOkL6HLS+Id20hiKtUjjThbup1gOyoMYX83tvkgaO9IneZDlFcA5kg7M3SzNwCakwauz8vrjJT0JtObjlxskacGyZe8Di5IqC9PyF+CYj+2ZxuScAhwL/L40diIi2iWdCfxS0p4R8a/cxpeAf0bEaxW+x5dyF8vRZavGAoflgbotwOGkz7w/b5M6hFStmJYTlDVI40gqdQFpQOs3I6K9bN2ipPEuMyUtT0rGiiYDX5DUFBEfS1hy5ehS4ERJTwPTSWNPniUNnjYzszpWySXI75F+eV5H6sufShoUeUBEXNuPsVyYjzGVVN7fupOBkL2xFynBGidpJvBP0oDR0pfiT0hdAs/mdTeTKh5FK5ESmOLfoaRujhHAm6Qrex4q3zcPoP1jfl8XlbV7LHAjcKOkGaQBq/vS8xvtndTBPqeRxp7cCbwObEoaYPyxK4F6KyJmAfsBp0qaBZwNXNGDJnYljU96M9/kbZak0niZvUljaGaS/m2U/3u7kJQkvylpeicDrQ8iXan0KGns0NLAVv34b8vMzAbIoPb28h+v1Ve8JLXWsQwUSceRLkX+aq1jsX7TXg9z90ydOrPH+zVyH7djr51Gjt+x107ZmJTxfPzCmU55gsEqkLQkqZqzd3fbmpmZWeIJBgeYpNNJ42tujoja/uw2MzNrIHVRSan3uWb6IiIOJt1jxuYybW3ttIweVdMYWmfPqenxzcwGUl0kKWaNqjfjQczMrDLu7jEzM7O65CTFzMzM6pK7e8z6oKe3eK4nxdhbZ89h1ozWGkZjZvZxTlLMeqmpaRC1vk9Kf2kZPYpZtQ7CzKyMu3vMzMysLjlJMTMzs7rkJMWQ1CLpe5UuNzMzqwYnKWZmZlaXPHDWuiVpN9LM178BDiPNPHwN8MOI+EDSAsBvgW2ABUkzLh9ZmiVb0u7Az4HhpBmfBwFzImI3SSNJM1AvFxH/Lh4vIlbJr4cCJwDfAhYDHgH2j4jn8/r5cly7kWakfgr4SUQ8JmkEaVqCoqHAwRHx6+7aNjOz2nElxSq1ArAksDLwOWAHYKe8bte87P9FxKLApqREAUkbAmcD+wKfAO4CduzhsS8AVge+ACwF/A24RdL8ef3xwNbAFsAngYuB2yUtHhFTImJY6S/H8QZwS4Vtm5lZjbiSYpVqBY6JiA+A5yX9mTTd9uXAe8AwYA1Jf42IVwr77QL8MSLuyq8vlbRPpQeVtATwHWCFiHg9LzseOBBYT9KDwAHAqIgoVUwuknQgMAq4rNDWpsBZwBYR8Xx3bQMPVBrn3KC5eWitQ6jI4MFNDRNruUaOHRo7fsdeO32J30mKAbwPdFQ5mD+vmw+YkhOUkneA0t3ALiNVWc4AVs0JzGG5y2RZ4LGydl/qQWwr5scJkspjWw5YgpQg3SypvWz9sqUXkj4N/BHYLSIerrDtecr06e/WOoSKNDcPbZhYyzVy7NDY8Tv22inG39MbYDpJMYAWYJXiAknDSN0fLwJrdrVzRMwBxgBjJDWTqhUXAxsBrwIjy3YZCZTGfJRm6Fu4sH6ZwvOJ+XHViJhafmxJg0gJ02YR8WhH8UlaFvgTqRJ0Q6Vtm5lZbXlMigGMBfaWtKGkwZIWB84E/gn8vbudJW0qaZ08jqOVlDSUqi5/ALaX9BVJ8+VLmtcr7RsRb5KShd3zsT8N7FVYPwW4AjhH0qfy8ZolbStpWES051h/KWnVvH6YpK9JWkbSoqQE5cqIOKsYd3dt9+wUmplZf3OSYkTE5cCRpAGubwFPAgsB38xVku4sSUpGpgGTSINs985t3wf8GLgwt70FcHXZ/rsCWwJvA6cDF5Wt3wsIYJykmaTkaQeg1L1zLOmqoRslzQD+RRog2wT8L/Bp4IeSZhX+flhh22ZmViOD2tv9/2KrLkkXAvNFxG61jqWP2uemuXumTp3Z/YZ1oJH75xs5dmjs+B177ZSNSRlPuuiiIq6kmJmZWV1ykmJmZmZ1yVf3WNVFxJ61jqE/tLW10zJ6VK3D6BetsysZemRmVl1OUsz6oFHGcZRr9D5uM5s3uLvHzMzM6pKTFDMzM6tL7u4x64Oe3uK5nnQUe+vsOcya0VqDaMzMPs5JilkvNTUNYm65T0pJy+hRzKp1EGZmmbt7zMzMrC45SbG6JWlsvjutmZnNg9zdY30maRywPvA+aWLBl4CTI+LaWsZlZmaNzZUU6y8nRsQw4JOkWZWvkLRKbUMyM7NG5kqK9auImCPpAuAMYG3geUnbAEcDK5NmST4pz7yMpJHAecB6pJmHXwJ2jojITS6Q29sBeAc4ISLOy/suS5pdeR1gCDABODAixuf1xwEb5uW7AK3AWRExuhSvpLWAX5FmS24FLgeOiYj3+/nUmJlZD7mSYv1K0hBgv/zyOUmbAxcBBwKfAHYFzpK0Ud7mF8DLwJLAEsBuwLRCk9sDN+d9f5z3XSGvawLOAVYAlgIeB66TNH9h/42A14Glga2BgyV9J8c6ArgPuA74FKnLanPgZ308DWZm1g9cSbH+8nNJPwUWIY1N2TMiJki6BTgzIu7P2z0i6TJSZeMvwHukBGOliHiGVPUouicibsrPr5M0nVShmRgRL5MSHAAkHQUcAKwKPJ0XTwLGREQ7MF7S+aRE6IocwxOlygzwqqRTgDHACX09IY2quXlorUPo0uDBTXUfY2caOXZo7Pgde+30JX4nKdZfTo6IkyQtTqqcbJIfVwQ2kXRwYdvBQClpOZTUFXSzpIWBPwI/i4jS7TomlR3nHVIihKQlgNOBjYFmoC1vM7yw/cScoJS0ANvl5ysCX8qJT8mgHN88q97n9GnkeYcaOXZo7Pgde+0U4+/pDTCdpFi/iohpkvYEXpC0NTARGBsRp3Wy/VRS9eMASSsBNwKHAcdUcLhTSN0460XEJEmLADNIiUbJCpIGFRKVkcC/8/OJwN0RMXdMZWxmNpdxkmL9LiLeknQ6abzJQcBYSQ8DD5GqFJ8GBkXEY5J2BB4hVTjeJnX/fFDhoRYF3gWmSRpG6qYptzRwqKQzgLWAvYBSVedS4BBJu5O6f94jJTGrRcTtPXrTZmbW7zxw1gbKmaQEYRlSYnAa8Aap++YMYFje7rOkwauzgKdIg187rLp04BhgBPAmaSzLQ3w8wbk/xzEZuCXHdQVAREwmdUttQ0qSpgHXAytV/jbNzGygDGpvb+9+K7MGlC9B3iAiNhugQ7TPjXP3TJ06s9ZhdKmR++cbOXZo7Pgde+2UjUkZD6xb6b6upJiZmVldcpJiZmZmdckDZ22uFRHHDWT7bW3ttIyeuy4Map09p9YhmJn9l5MUsz6o9/EbnWn0Pm4zmze4u8fMzMzqkpMUMzMzq0vu7jHrg57e4rmeVDP21tlzmDWjtWrHM7O5g5MUs15qahrE3HaflIHSMnoUs7rfzMzsI9zdY2ZmZnXJSYqZmZnVJScpNk+RdJSkcV2s30CS54owM6sDTlJsriDp55LaJe1a61jMzKx/OEmxhiepiTTT8lvA3jUOx8zM+omv7rG5wdeATwHbALdIWisingSQNAo4DVgeGAc8X9xR0qrABcA6wIvA76sWtZmZdclJis0N9gZui4hbJU0A9gF+LGll4DpgD+AqYFPgeuBRAEnzAbcAdwNfB5YFbq5++POG5uah/dLO4MFN/dZWtTVy7NDY8Tv22ulL/E5SrKFJWgbYEtghL7oIOF7SYcBOwCMRcVled6ekG0hVF4D1gJHAoRHRCvxL0q+A86sU/jylv+YKauR5hxo5dmjs+B177RTj7+lNJD0mxRrdHqSxKLfk15cBCwE7kiojLWXbv1R4viwwJSLe7WS9mZnVkJMUa1h5wOweQDPwb0mTgaeBwaQun1dJlZKi4utXgRGShnay3szMasjdPdbItgCWAz5PSjhKPgPcThqrcoyknYFrgY1Jg2sfy9s9DEwExuTuoWWAg6sRuJmZdc9JijWyfYAbImJ82fLJkv6a128PjCFdwXMfcCGwNkBEzJG0FXAeMIV0dc/5wBlVid7MzLrkJMUaVkRs3cW6LxZe3tTFds8CXy5b/Ou+RWZmZv3BY1LMzMysLrmSYtZLbW3ttIweVeswGkLr7Dm1DsHMGpCTFLM+mDp1Zq1D6JVGv++Cmc0b3N1jZmZmdclJipmZmdUld/eY9UFPb/FcTxx7Gisza0Zrv7RlZv3PSYpZLzU1DWLkEbfWOgzrg5bRo5hV6yDMrFPu7jEzM7O65CTFzMzM6pKTFDMzM6tLHpNiVSdpXeAo4EvAAsBk4E/AmIiYVMO4dgOOiohVahWDmZl9yJUUqypJmwMPAAGsHRGLkubOeZOPz6FjZmbzMFdSrNrOAa6IiMNLC3L15EQASUOBU4DtgIVICc0BEfFyXj8OGA+MBL5Kmr344Ii4sdSepO2AI4FVgP8AF0XEzyUtS5oFeR1gCDABODAixktaHzgXGCKpdMHHlhExbgDOgZmZVcCVFKsaSauREocrutjsDOAL+W8F4A3gZkmDC9vsCvwKWAw4C7gkJzdI+jpwCXAcsASwGnBb3q+JlCStACwFPA5cJ2n+iPgrsC/wYkQMy3/j+vqezcys91xJsWoanh9f7WilpCZSAvLNiHg1LzsQeAv4PPDXvOnVEfFQXn8+cDqwKvAE8GPg3Ii4JW87g1SNIVdjXi4c7yjggLzv0/3yDq3hNDcPrdqxBg9uqurx+lsjx+/Ya6cv8TtJsWqamh8/BTzTwfrhpIG0L5UWRMQsSVOA5fgwSZlUWP+OJIDSLUhHAtd3dHBJS5ASmo2BZqCtcFybR1VzosVGn9ixkeN37LVTjL+nd4t2d49VTUQ8BzwP7NzJJlOB2aREAwBJw4ARwCsVHqaFVBnpyCnA0sB6ecDucnn5oPzY1uFeZmZWE66kWLX9kDTG5HXgrIh4TdKSwO6kCsqlwImSngamk8aePAs8UmH7ZwNXSboXuAsYCvxPRDwALAq8C0zLyc+Ysn0nAyMkLRoRM/ryJs3MrO9cSbGqioi7gA2ANYB/SppJGjMyAhgHHAQ8BjxKGj+yNLBVRHxQYfu3AnsAvyCNZQnga3n1Mfk4b5Ku7HkIKLZbSmxekjRdki+JNjOroUHt7e21jsGsUbV7gsHG1jJ6FFOnzqza8eamsQWNxrHXTtmYlPHAupXu60qKmZmZ1SUnKWZmZlaXPHDWrJfa2tppGT2q1mFYH7TOnlPrEMysC05SzPqgmuMZ+lMj93E3cuxm1jPu7jEzM7O65CTFzMzM6pK7e8z6oKe3eK4njr1zrbPnMGtG64Aew8y65yTFrJeamgbh+6TMnVpGj2JWrYMwM3f3mJmZWX1ykmJmZmZ1yd091iFJxWr3AvlxdmlBRAyrbkRmZjavcZJiHSomIZIuBOaLiN062lbS/BHxfrViMzOzeYOTFOsxSeOAfwAjgU2BX0i6DLgQWAcYQppl+MCIGJ/3OQ7YEPgbsGdu6ncRcWxevzhwfm5vPuDfwL4RcX9h3wnALkArcFZEjC7E9GXgVGB1YBJwRkSc113bef02wNHAynnfkyLi8v45W2Zm1lsek2K9tTvwG2Cx/NgEnAOsACwFPA5cJ2n+wj4bAS8DywBbAUdK+lJedygwNO/fDGxLSiaK+74OLA1sDRws6TsAklYEbgd+B3wS2A04RdIO3bUtaXPgIuBA4BPArsBZkjbq9ZkxM7N+4UqK9dYfI+Ke/PxdUvLxcmmlpKOAA4BVgafz4uci4tz8/GFJ/yBN2f0g8B4pwRDw94h4rux4k4AxEdEOjJd0PikZuQLYGXg8IsYW2j6PVLG5tpu2fwKcWaqqAI/kqtAuwF96elJs7tHcPLTf2xw8uGlA2q2WRo7fsddOX+J3kmK91VJ8IWkJ4HRgY1K1oi2vGl7YbFJZG+8ApbtynQbMD1wCLC3pFuCwiHg9r5+YE5Ti8bfLz5cDXipr+wVSxaW7tlcENpF0cGHfwcD92DxtIOYHavR5hxo5fsdeO8X4e3ojRicp1lttZa9PIXXFrBcRkyQtAswABlXSWES8A/wc+LmkpYDLSMnFLnmTFSQNKiQqI/mwO+gV4BtlTa6Ul3fX9kRgbEScVkmcZmZWPU5SrL8sSur2mSZpGDCmJztL+ibwPPAcMAv4D/BBYZOlgUMlnQGsBewFlKofVwJHS9qF1P3zv8A+wH4VtP1rYKykh4GHSFWUTwODIuKxnrwHMzPrXx44a/3lGGAE8CbpKpyH+GiS0Z2VgZtJ1ZcW0hU8hxfW309KVCYDtwBnkhISIuIlUiVl/3z8PwBHR8Q13bUdEXeSEp7TgDfIVwYBvg+MmVmNDWpvb+9+K7MaypcgbxARm9U6ljLtnrtn7tQyehRTp87s93bnprEFjcax107ZmJTxpAsmKuJKipmZmdUlJylmZmZWlzxw1upeRBxX6xg60tbWTsvoUbUOwwZA6+w5tQ7BzHCSYtYnAzFuoRoauY+7kWM3s55xd4+ZmZnVJScpZmZmVpd8CbJZL7W1tbc3NVV0Q10zs7lC6+w5zJrR2qN9+nIJssekmPVSU9MgfJ8UM5uXtIwexawqHs/dPWZmZlaXXEkxyySNJM2mvFxE/Lubzc3MbIC5kmIDTtI4Se2Svl22fL28vKUH7RxVtuy43MY5ZcsXlPRWXjeyr+/BzMyqz0mKVcszpIn8ivbKy/vqOWAnSUMLy7YnTUZoZmYNykmKVct1wGclrQQgaRHgW8DvSxtI2knSE5JmSJok6TxJC+d1ZwEbAkdLmiUpCm2/AjwMFCs1ewEXFAPIVZe7y5Z9rDpjZmb1wUmKVct/gMuBPfLrnYH7gEmFbd4GvgM0kxKSDYGjACJif+B+4MSIGBYRKmv/AnKlRpKA1YEbB+KNmJlZdXjgrFXTBcCdko4F9gaOBRYvrYyI2wrbPp/HmexSYds3A+dIWhP4AXAp8F6/RG1mZv/V3Dy0+40KBg9u6vE+JU5SrGoi4klJE4GjgRHA7aSKCgCSNgeOIVVBFgAGA1MqbHuOpLHAj0jjUTbo1+DNzAygx3Nnld3MrUf7urvHqu18UpJycUR8UFooaQhwA3AVsHxELAocDhRv6drWTdsXAPsAT0fEcx2snwksXLZsmR5Fb2ZmVeNKilXblaSBruPLlg8hVU+mRUSrpDWA/cu2mQys0lnDEfGipI346DiXovHALyStAzwB7Aus2PO3YGZm1eBKilVVRPwnIu6OiGlly2cB+wGnSpoFnA1cUbb7GcC6kqZLeqqT9h+MiBc7WTcOOJ3UzTQJWBJ4sC/vx8zMBo4nGDTrvXbP3WNm85KW0aOYOnVmj/bpywSDrqSYmZlZXXKSYmZmZnXJA2fNeqmtrZ2W0aNqHYaZWdW0zp5T1eM5STHrg572zdaLYh9xo3HstdPI8Tv2xuTuHjMzM6tLTlLMzMysLjlJMTMzs7rkJMXMzMzqkpMUMzMzq0tOUszMzKwuOUkxMzOzuuQkxczMzOqSJxg0672pwMRaB2Fm1kBWAIZXurGTFDMzM6tL7u4xMzOzuuQkxczMzOqSkxQzMzOrS05SzMzMrC45STEzM7O65CTFzMzM6tJ8tQ7ArJFIGgyMBnYDFgTuBPaJiDdqGVclJI0FvgvMLiw+LCLOqU1EnZO0E/Aj4DPA0IiYr2z9FsCvgJWAF4CDI+LOqgfaia7il7QxcC/wTmGXCRHxxaoG2QlJY4AtgeWAWcCtwOER8VZhm12AY4GlgX8CP4yI8TUI9yO6i13SbsDFwLuF3W6OiJ2rHGqHJJ0MfAf4JPAf4C+kf9sv5/V1ed6h69j7ct6dpJj1zBHA1sB6wJuk//D+AHy9lkH1wCURsWetg6jANOAcYCHg/OIKSSsB1wF7A9cAOwDXS1ozIlqqHGdnOo0/+yAihlU3pIp9AHwPeBJoBi4FxgJbAUjaAPgdsC1wH/AT4E+SVo2IGTWIt6jL2LMXI2KVqkdWmT8Ap0bE25KGAicBVwFfrPPzDl3Entf36rw7STHrmb2BEyLiRQBJhwHPS1ohInz32X4SEXfAf6sO5XYFxkfEZfn15ZL2zcuPr06EXesm/roWEUcWXk6VdCYpGSzZC7iuVLmSdBqwP+nL85KqBdqBCmKvaxHxbOHlIKANUH5dt+cduo2915ykmFVIUjOwPPDf8mpEvCBpBqms3whJyrckbQe8AdwIHB8Rs2ocU099hsJnkD2elzeKwZJeAeYnvZcjI+KJGsfUma8Axdg+Q6pOABAR7ZL+Tn2e//LYAZaTNBl4H3gQ+FlEvFT1yDoh6TukismiwBzg4Lyq7s97F7FDL8+7B86aVW6R/Ph22fLppP8o691vgdWBJUi/vr4MXFDTiHpnERr3MwB4FlgbWJH0eUwA7pG0TC2D6oikbwH7kroWShri/HcS+1+ATwPLAJ8jjZ24S9LC1Y+wYxFxRUQsRhp3chxp7Ak0wHnvIvZen3dXUswqNzM/Lla2vBmohz7hLpUNsHtK0kHAOEm7RcTszvarQzNp0M8AICImA5Pzy+nAzyRtTxrXdFGt4ionaQfgPGCriHi8sKqz8/9ClULrVmexl7pps8mS9iJ98X8B+HN1o+xaREyWdAHwoqTlaYDzXlIee1/OuyspZhWKiOnAy8D/lpblQZyLkn4NN5q2/DioplH03BMUPoPss3y8rN9I2qijz0HSD0hf8t+MiHvLVn/k/EsaRKoM1cX57yb2cu35r27OfZn5gIVJFYi6Pu8dKMZeruLz7kqKWc+cDxwu6V7S1T1jgDvq6KqSTuXLYm+PiOmSViVdwntTRPynxqF9TL7Ue35gSH69YF41m3TFxqGSdgb+CGwPrAPsUoNQO9RN/JuQkt0XgaHAT4ElgTuqH+nHSTqAdJnr1yLi0Q42uQC4XdIlwP3AAaTL8a+vXpQd6y52SaNIX+qvAosDp5DGZz1czTg7IqkJ+CFwTURMkbQsqYu2hdRFWM/nvcvY+3LeXUkx65nRwM3Ao6T/4AaTLnlsBPuSyq/vkO7v8jDwg9qG1KnvA62kL+7B+XkrsEJEvABsBxxF6uI5Cti2zhLFTuMnDXT8M6l8/yKp5L15RLxSm1A/5kxSdfBeSbNKf6WVEfEA6QvpAlLJ/tvAN+rkMtguYwc2Bh4h3UPlKdI9PTavo8Hj3wCezP+N/o10X5HNImJOnZ936CJ2+nDeB7W3tw9YxGZmZma95UqKmZmZ1SUnKWZmZlaXnKSYmZlZXXKSYmZmZnXJSYqZmZnVJScpZmZmVpecpJiZDQBJ4ySd1cX6jSW1S1qih+3uLellSW2SjutzoA1C0nGSnqx1HFZdTlLMrK5J+q6kVyRNk3R62bpPSWqRtGQF7bTnOXJ6evxe7VeBh0gTsb3Zg1gWB84GTgM+BfxyAOKqKUkj8zlft2zVL0mTYto8xLfFN7O6lasMFwK7ke7OequkeyLilrzJ2cCJEfF6jULstYh4jw8nGqzUCqT/b98SEZN6e2xJQ/LxG0a+O2m93BnWqsRJipnVs5WAtyPiaoA8Z9L/A26R9C3SrLAXd9eIpJb89FpJABMjYmRetw9wKLA8aU6dMRFxQVf7SVoZOB1YD1gECOCYQvLULUkbA/cCwyPiDUm7AWcBW5Nu774i6Vbiu0fES3n97/PuL+Z4VoyIFknfBI4D1gQmAVcAx5cSkfw+xub3uB1wF7CDpC+S5lH5HDANuAk4vHSrdUnjgKdJszXvTZoI8VLgsIhoy9sMycf+LrAUabqIX0fEb/L6NUiVn41IUwP8GTgozwbdkZfy46P5Pd4XERvnrq3tI2Kt3O5YYAnSPDYHAQsBvwOOBI4h3UK+DTgjIsYUzvtiOZ5t8j6PA4dExGOdxGM15O4eM6tn/wKGSvqspE+QvkwnFL5o9o6ISub2+Fx+3IvUxfI5AEnbkhKDXwNrkZKDc/KXfqf7AcOA24DNSXPx/B9wnaTVe/k+SxYAfgbsDqwPNAPn5nVXA1vk55/P8bwi6WvA5fl9rJn33R74RVnbB5MmqlsXOFLSp0lzON2U38N2pFl1y5O+7wJzgC8C+wMHAjsW1l9CmtzxYFICuQcpqUHS0sBfgCdzzJuRzt2NeVK6jnw+P26R3+N2nWwHKfFZkTQ3zL7AYcCfSOdxA1LyNFrSOjmeQcCtpK6yLUmzZ/8FuCfHanXGlRQzq1sRMU3SrqRf7wsBl0bEHZLOAy4Chku6kjQl/JkRcW4n7UzNv8qnl/2C/ynwh4goDXB9Ln+hHQ7c3Nl+EfEEaVbXkpNzYrM9cFIf3vJ8wI8iIgAk/RK4WNKgiGiVVBq/MrUUj6SfA6dFRKnK8oKkw4HLJB1aSOLui4hTSweSdClwdUT8qrBsP+DvkkZExJS8+OmIOKZwfvYCvgJcmWfT3gn4ekTcnrd5sfB+9gOeiIjDC8fYBXiLlCw90sE5mJof3+yi2lLydj5fH5Bm2z0EWDoiSsncc5KOIM08PT4/rk2qXrXmbY7On933gVOxuuIkxczqWkRcT2E6ekkbkGYOPoTUzbILqUtigqQHI+KfPWj+//HxysEDwFZd7SRpYeBY0q/xpYH5gQWBCT04dkdmlxKU7DVgCGl6+7c62Wcd4PM5MSlpIiV1S5G6fwDKuzPWAVaRVKyKDMqPKwOlJKX8Pb0GjMjPP0vqUrm3i9g2KpuJuGRlOk5SeuLpnKCUvE6u4pQtK8W7DjAUKCWfJQvmeKzOOEkxs4YhaQFS98eepPEqQyLiz3ndOFLZvydJSme660L6Jak74qekLql3SdWeIX087pxO4uiqa74JOB64toN1UwvP3+lgvwuBMzrY79XC8/c7iKnSoQJNpO6Vn3awrj8GO3cUW1fxNuXjbthBWzP6IR7rZ05SzKyRHAncExEPS1qbj/4/bAgwuIt93+9g/TPAl0hdRyUbkCozXe23Aanr6f8AJJV+iT9X2dvoV48Dq0fE873Yb81e7Ff0D9IX/ybA7R2sfxz4NmnAcXny0JnSVUddfZa99TiwJNAWES92t7HVnpMUM2sI+SqR75K6GCB19cyRtC/wFGmcxIldNNECfEXSfaRulWmkwbfXShpPGkS6RT7Gdt3s9xywraQbSUnMsaQug1o4gXS100TgGlI1Zi3g8xFxWBf7jQEelnQucB4wE1gd+GZE7FPJgSPiOUnXABdK+gkpCVgWGBkRfyBdIr4XcLWkMaTKzkqkxOWQiJjZQbNTSFcBfS1flfSfiHi7kngqcDfwIGng7mGkgcRLkT73uyPi/n46jvUTX91jZnUvX5VxPunS1ZkAeeDj90mXD18PnNzNZaSHkH7xvwL8PbdxA/Bj0iWsTwM/AX4YETd3tR/pSpYppMtfbwMezs+rLiLuAEblGB/Jf0eQLqfuar8JpKtjRgL3kQYCn0LPu2F2IV3y/BvSl/5Y0qXhRMRrpEpVG6nS8hQpcZmd/zqKaw5wAKlL7zXgxh7G06k8iPgbwD3ABaRE9xpA+VhWZwa1t1dy9Z6ZmZlZdbmSYmZmZnXJSYqZmZnVJScpZmZmVpecpJiZmVldcpJiZmZmdclJipmZmdUlJylmZmZWl5ykmJmZWV1ykmJmZmZ16f8DrYdoCAkL/IEAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "enc_fp16_onnx = create_model_for_provider(encoder_fp16_model_path, \"CUDAExecutionProvider\", log_severity=3)\n",
    "enc_fp16_onnx_binding: IOBinding = enc_fp16_onnx.io_binding()\n",
    "dec_onnx = create_model_for_provider(\n",
    "    dec_if_fp16_model_path, \"CUDAExecutionProvider\", enable_profiling=True, log_severity=3\n",
    ")\n",
    "dec_onnx_binding: IOBinding = dec_onnx.io_binding()\n",
    "_ = model_gen.generate(inputs=input_ids, max_length=10, min_length=10)\n",
    "profile_name = dec_onnx.end_profiling()\n",
    "\n",
    "with open(profile_name) as f:\n",
    "    content = json.load(f)\n",
    "\n",
    "op_timings = defaultdict(lambda: 0)\n",
    "for c in content:\n",
    "    if \"op_name\" not in c[\"args\"]:\n",
    "        continue\n",
    "    op_name = c[\"args\"][\"op_name\"]\n",
    "    if op_name == \"If\":\n",
    "        continue  # subgraph\n",
    "    time_taken = c[\"dur\"]\n",
    "    op_timings[op_name] += time_taken\n",
    "\n",
    "op_timings_filter = dict(sorted(op_timings.items(), key=operator.itemgetter(1), reverse=True)[:10])\n",
    "total_kernel_timing = sum(op_timings.values())\n",
    "op_timings_percent = {k: 100 * v / total_kernel_timing for k, v in op_timings_filter.items()}\n",
    "\n",
    "plt.barh(list(op_timings_percent.keys()), list(op_timings_percent.values()))\n",
    "plt.title(\"Time spent per kernel\\n(top 10 kernels)\")\n",
    "plt.xlabel(\"% total inference time\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "366de2154be95d5d8dfb409ee394df3294ef97f2f15d871b0df4dd91a89cdb4b"
  },
  "kernelspec": {
   "display_name": "Python 3.9.12 ('fast_transformer')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}