File size: 21,161 Bytes
e0c2d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
#!/usr/bin/env python3
# Copyright 2022, Lefebvre Dalloz Services
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains code related to client interface.
"""
import argparse
import gc
import logging
import os
from pathlib import Path
from typing import Callable, Dict, List, Tuple, Type, Union
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoTokenizer,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizer,
)
from transformer_deploy.backends.ort_utils import (
cpu_quantization,
create_model_for_provider,
inference_onnx_binding,
optimize_onnx,
)
from transformer_deploy.backends.pytorch_utils import (
convert_to_onnx,
get_model_size,
infer_classification_pytorch,
infer_feature_extraction_pytorch,
infer_text_generation,
)
from transformer_deploy.backends.st_utils import STransformerWrapper, load_sentence_transformers
from transformer_deploy.benchmarks.utils import generate_multiple_inputs, print_timings, setup_logging, track_infer_time
from transformer_deploy.t5_utils.conversion_utils import (
ExtT5,
convert_t5_to_onnx,
create_triton_configs,
generate_input_for_t5,
get_triton_output_shape,
)
from transformer_deploy.triton.configuration import Configuration, EngineType
from transformer_deploy.triton.configuration_decoder import ConfigurationDec
from transformer_deploy.triton.configuration_encoder import ConfigurationEnc
from transformer_deploy.triton.configuration_question_answering import ConfigurationQuestionAnswering
from transformer_deploy.triton.configuration_token_classifier import ConfigurationTokenClassifier
from transformer_deploy.utils.accuracy import check_accuracy
from transformer_deploy.utils.args import parse_args
def launch_inference(
infer: Callable[[Dict[str, torch.Tensor]], torch.Tensor],
inputs: List[Dict[str, Union[np.ndarray, torch.Tensor]]],
nb_measures: int,
) -> Tuple[List[Union[np.ndarray, torch.Tensor]], List[float]]:
"""
Perform inference and measure latency.
:param infer: a lambda which will perform the inference
:param inputs: tensor compatible with the lambda (Torch tensor for Pytorch, or numpy otherwise)
:param nb_measures: number of measures to perform for the latency measure
:return: a tuple of model output and inference latencies
"""
assert type(inputs) == list
assert len(inputs) > 0
outputs = list()
for batch_input in inputs:
output = infer(batch_input)
outputs.append(output)
time_buffer: List[int] = list()
for _ in range(nb_measures):
with track_infer_time(time_buffer):
_ = infer(inputs[0])
return outputs, time_buffer
def main(commands: argparse.Namespace):
torch.cuda.empty_cache()
setup_logging(level=logging.INFO if commands.verbose else logging.WARNING)
logging.info("running with commands: %s", commands)
# set seeds:
torch.manual_seed(commands.seed)
np.random.seed(commands.seed)
torch.set_num_threads(commands.nb_threads)
# set device
if commands.device is None:
commands.device = "cuda" if torch.cuda.is_available() else "cpu"
if commands.device == "cpu" and "tensorrt" in commands.backend:
raise Exception("can't perform inference on CPU and use Nvidia TensorRT as backend")
if commands.task == "text-generation" and commands.generative_model == "t5" and "tensorrt" in commands.backend:
raise Exception("TensorRT is not supported yet for T5 transformation")
if len(commands.seq_len) == len(set(commands.seq_len)) and "tensorrt" in commands.backend:
logging.warning("having different sequence lengths may make TensorRT slower")
run_on_cuda: bool = commands.device.startswith("cuda")
if run_on_cuda:
assert torch.cuda.is_available(), "CUDA/GPU is not available on Pytorch. Please check your CUDA installation"
# set authentication
if isinstance(commands.auth_token, str) and commands.auth_token.lower() in ["true", "t"]:
auth_token = True
elif isinstance(commands.auth_token, str):
auth_token = commands.auth_token
else:
auth_token = None
Path(commands.output).mkdir(parents=True, exist_ok=True)
tokenizer_path = commands.tokenizer if commands.tokenizer else commands.model
tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_auth_token=auth_token)
model_config: PretrainedConfig = AutoConfig.from_pretrained(
pretrained_model_name_or_path=commands.model, use_auth_token=auth_token
)
input_names: List[str] = tokenizer.model_input_names
if commands.task == "embedding":
model_pytorch: Union[PreTrainedModel, STransformerWrapper] = load_sentence_transformers(
commands.model, use_auth_token=auth_token
)
elif commands.task == "classification":
model_pytorch = AutoModelForSequenceClassification.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "token-classification":
model_pytorch = AutoModelForTokenClassification.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "question-answering":
model_pytorch = AutoModelForQuestionAnswering.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "text-generation" and commands.generative_model == "gpt":
model_pytorch = AutoModelForCausalLM.from_pretrained(commands.model, use_auth_token=auth_token)
input_names = ["input_ids"]
elif commands.task == "text-generation" and commands.generative_model == "t5":
model_pytorch = AutoModelForSeq2SeqLM.from_pretrained(commands.model, use_auth_token=auth_token)
input_names = ["input_ids"]
else:
raise Exception(f"unknown task: {commands.task}")
if hasattr(model_config, "type_vocab_size") and model_config.type_vocab_size == 0:
try:
input_names.remove("token_type_ids")
logging.warning("Model doesn't have `token_type_ids`, removing them from `input_names`")
except ValueError:
pass
logging.info(f"axis: {input_names}")
model_pytorch.eval()
if run_on_cuda:
model_pytorch.cuda()
tensor_shapes = list(zip(commands.batch_size, commands.seq_len))
# create onnx model and compare results
if commands.task == "text-generation" and commands.generative_model == "t5":
input_ids = generate_input_for_t5(tokenizer, run_on_cuda)
inputs_pytorch: List[Dict[str, Union[np.ndarray, torch.Tensor]]] = [{"input_ids": input_ids}]
convert_t5_to_onnx(
tokenizer=tokenizer,
model_pytorch=model_pytorch,
path_dir=commands.output,
input_ids=input_ids,
)
else:
onnx_model_path = os.path.join(commands.output, "model-original.onnx")
# take optimal size
inputs_pytorch = generate_multiple_inputs(
batch_size=tensor_shapes[1][0],
seq_len=tensor_shapes[1][1],
input_names=input_names,
device=commands.device,
nb_inputs_to_gen=commands.warmup,
)
convert_to_onnx(
model_pytorch=model_pytorch,
output_path=onnx_model_path,
inputs_pytorch=inputs_pytorch[0],
quantization=commands.quantization,
var_output_seq=commands.task in ["text-generation", "token-classification", "question-answering"],
output_names=["output"] if commands.task != "question-answering" else ["start_logits", "end_logits"],
)
timings = {}
def get_pytorch_infer(model: PreTrainedModel, cuda: bool, task: str):
if task == "text-generation" and commands.generative_model == "t5":
return infer_text_generation(
model=model,
run_on_cuda=cuda,
min_length=commands.seq_len[0],
max_length=commands.seq_len[0],
num_beams=2,
)
if task in ["classification", "text-generation", "token-classification", "question-answering"]:
return infer_classification_pytorch(model=model, run_on_cuda=cuda)
if task == "embedding":
return infer_feature_extraction_pytorch(model=model, run_on_cuda=cuda)
raise Exception(f"unknown task: {task}")
with torch.inference_mode():
logging.info("running Pytorch (FP32) benchmark")
pytorch_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
timings["Pytorch (FP32)"] = time_buffer
if run_on_cuda and not commands.fast:
from torch.cuda.amp import autocast
with autocast():
engine_name = "Pytorch (FP16)"
logging.info("running Pytorch (FP16) benchmark")
model_pytorch_fp16 = model_pytorch.half()
pytorch_fp16_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch_fp16, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=pytorch_fp16_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
elif commands.device == "cpu":
logging.info("preparing Pytorch (INT-8) benchmark")
model_pytorch = torch.quantization.quantize_dynamic(model_pytorch, {torch.nn.Linear}, dtype=torch.qint8)
engine_name = "Pytorch (INT-8)"
logging.info("running Pytorch (FP32) benchmark")
pytorch_int8_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=pytorch_int8_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
# create triton conf for models different from T5
if commands.generative_model != "t5":
if commands.task == "text-generation" and commands.generative_model == "gpt":
conf_class: Type[Configuration] = ConfigurationDec
elif commands.task == "token-classification":
conf_class: Type[Configuration] = ConfigurationTokenClassifier
elif commands.task == "question-answering":
conf_class: Type[Configuration] = ConfigurationQuestionAnswering
else:
conf_class = ConfigurationEnc
triton_conf = conf_class(
model_name_base=commands.name,
dim_output=get_triton_output_shape(
output=pytorch_output[0] if type(pytorch_output[0]) == torch.Tensor else pytorch_output[0][0],
task=commands.task,
),
nb_instance=commands.nb_instances,
tensor_input_names=input_names,
working_directory=commands.output,
device=commands.device,
)
model_pytorch.cpu()
logging.info("cleaning up")
if run_on_cuda:
torch.cuda.empty_cache()
gc.collect()
if "tensorrt" in commands.backend:
logging.info("preparing TensorRT (FP16) benchmark")
try:
import tensorrt as trt
from tensorrt.tensorrt import ICudaEngine, Logger, Runtime
from transformer_deploy.backends.trt_utils import build_engine, load_engine, save_engine
except ImportError:
raise ImportError(
"It seems that TensorRT is not yet installed. "
"It is required when you declare TensorRT backend."
"Please find installation instruction on "
"https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html"
)
tensorrt_path = os.path.join(commands.output, "model.plan")
trt_logger: Logger = trt.Logger(trt.Logger.VERBOSE if commands.verbose else trt.Logger.WARNING)
runtime: Runtime = trt.Runtime(trt_logger)
engine: ICudaEngine = build_engine(
runtime=runtime,
onnx_file_path=onnx_model_path,
logger=trt_logger,
min_shape=tensor_shapes[0],
optimal_shape=tensor_shapes[1],
max_shape=tensor_shapes[2],
workspace_size=commands.workspace_size * 1024 * 1024,
fp16=not commands.quantization,
int8=commands.quantization,
)
save_engine(engine=engine, engine_file_path=tensorrt_path)
# important to check the engine has been correctly serialized
tensorrt_model: Callable[[Dict[str, torch.Tensor]], Dict[str, torch.Tensor]] = load_engine(
runtime=runtime, engine_file_path=tensorrt_path
)
if commands.task == "question-answering":
tensorrt_inf: Callable[[Dict[str, torch.Tensor]], List[torch.Tensor]] = lambda x: list(
tensorrt_model(x).values()
)
else:
tensorrt_inf: Callable[[Dict[str, torch.Tensor]], torch.Tensor] = lambda x: list(
tensorrt_model(x).values()
)[0]
logging.info("running TensorRT (FP16) benchmark")
engine_name = "TensorRT (FP16)"
tensorrt_output, time_buffer = launch_inference(
infer=tensorrt_inf, inputs=inputs_pytorch, nb_measures=commands.nb_measures
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=tensorrt_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
del engine, tensorrt_model, runtime # delete all tensorrt objects
gc.collect()
triton_conf.create_configs(
tokenizer=tokenizer, model_path=tensorrt_path, config=model_config, engine_type=EngineType.TensorRT
)
if "onnx" in commands.backend:
# create optimized onnx model and compare results
num_attention_heads, hidden_size = get_model_size(path=commands.model, auth_token=auth_token)
model_paths = (
[os.path.join(commands.output, "t5-encoder") + path for path in ["/model_fp16.onnx", "/model.onnx"]]
if commands.generative_model == "t5"
else [onnx_model_path]
)
optim_model_paths = (
[model_path[:-5] + "_optim.onnx" for model_path in model_paths]
if commands.generative_model == "t5"
else [os.path.join(commands.output, "model.onnx")]
)
[
optimize_onnx(
onnx_path=model_paths[idx],
onnx_optim_model_path=optim_model_path,
fp16=run_on_cuda,
use_cuda=run_on_cuda,
num_attention_heads=num_attention_heads,
hidden_size=hidden_size,
architecture=model_config.model_type,
)
for idx, optim_model_path in enumerate(optim_model_paths)
]
if commands.device == "cpu" and commands.quantization:
cpu_quantization(input_model_path=optim_model_paths[0], output_model_path=optim_model_paths[0])
ort_provider = "CUDAExecutionProvider" if run_on_cuda else "CPUExecutionProvider"
for provider, is_fp16, benchmark_name in [
(ort_provider, False, "ONNX Runtime (FP32)"),
(ort_provider, True, "ONNX Runtime (FP16)"),
]:
logging.info("preparing %s benchmark", benchmark_name)
torch_type = torch.float16 if is_fp16 else torch.float32
if commands.generative_model == "t5":
encoder_path = os.path.join(commands.output, "t5-encoder") + (
"/model_fp16.onnx" if is_fp16 else "/model.onnx"
)
decoder_path = os.path.join(commands.output, "t5-dec-if-node") + (
"/model_fp16.onnx" if is_fp16 else "/model.onnx"
)
ort_model = (
ExtT5(
config=model_pytorch.config,
device="cuda",
encoder_path=encoder_path,
decoder_path=decoder_path,
torch_type=torch_type,
)
.cuda()
.eval()
)
# warmup generative model:
[
ort_model.generate(
inputs=input_ids, min_length=commands.seq_len[0], max_length=commands.seq_len[0], num_beams=2
)
for _ in range(5)
]
else:
model_path = onnx_model_path if is_fp16 else optim_model_paths[0]
ort_model = create_model_for_provider(
path=model_path,
provider_to_use=provider,
nb_threads=commands.nb_threads,
)
def infer_ort(inputs: Dict[str, torch.Tensor]) -> torch.Tensor:
results = (
ort_model.generate(
inputs=inputs,
min_length=commands.seq_len[0],
max_length=commands.seq_len[0],
num_beams=2,
)[0]
if commands.generative_model == "t5"
else inference_onnx_binding(model_onnx=ort_model, inputs=inputs, device=commands.device)
)
if commands.generative_model == "t5":
return results
elif "output" in results:
return results["output"]
else:
return results["start_logits"], results["end_logits"]
logging.info("running %s benchmark", benchmark_name)
inputs = [input_ids] if commands.generative_model == "t5" else inputs_pytorch
[launch_inference(infer=infer_ort, inputs=inputs, nb_measures=commands.nb_measures) for _ in range(5)]
ort_output, time_buffer = launch_inference(infer=infer_ort, inputs=inputs, nb_measures=commands.nb_measures)
check_accuracy(
engine_name=benchmark_name,
pytorch_output=pytorch_output[0] if commands.generative_model == "t5" else pytorch_output,
engine_output=ort_output,
tolerance=100000,
)
timings[benchmark_name] = time_buffer
gc.collect()
if commands.generative_model == "t5":
encoder_output = ort_model.get_encoder()(input_ids)
decoder_output = ort_model.forward(
input_ids, encoder_output.last_hidden_state, torch.tensor([0], dtype=torch.int32, device="cuda"), None
)
create_triton_configs(
tokenizer,
model_config,
encoder_output,
decoder_output,
EngineType.ONNX,
commands.task,
commands.nb_instances,
input_names,
commands.output,
commands.device,
)
del ort_model, encoder_output, decoder_output
else:
triton_conf.create_configs(
tokenizer=tokenizer,
model_path=optim_model_paths[0],
config=model_config,
engine_type=EngineType.ONNX,
)
if run_on_cuda:
from torch.cuda import get_device_name
print(f"Inference done on {get_device_name(0)}")
print("latencies:")
for name, time_buffer in timings.items():
print_timings(name=name, timings=time_buffer)
print(f"Each inference engine output is within {commands.atol} tolerance compared to Pytorch output")
def entrypoint():
args = parse_args()
main(commands=args)
if __name__ == "__main__":
entrypoint()
|