File size: 20,496 Bytes
2cddd11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "997bed07-1181-4562-962a-cb8aa18e1d16",
"metadata": {},
"outputs": [],
"source": [
"from repcodec.RepCodec import RepCodec\n",
"import torch\n",
"import yaml\n",
"\n",
"config = \"repcodec/configs/repcodec_dim1024.yaml\"\n",
"with open(config) as fp:\n",
" conf = yaml.load(fp, Loader=yaml.FullLoader)\n",
"\n",
"model = RepCodec(**conf)\n",
"model.load_state_dict(torch.load(\"./../models/data2vec_large_l18.pkl\", map_location=\"cuda:0\")[\"model\"][\"repcodec\"])\n",
"model.quantizer.initial()\n",
"model.eval()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c5516f1-3565-4080-8612-d5ce52ea2a4d",
"metadata": {},
"outputs": [],
"source": [
"# input shape: (batch size, hidden dim, sequence length)\n",
"random_features = torch.randn(size=(1, 1024, 100))\n",
"with torch.no_grad():\n",
" x = model.encoder(random_features)\n",
" z = model.projector(x)\n",
" _, idx = model.quantizer.codebook.forward_index(z.transpose(2, 1))\n",
" tokens = idx.cpu().data.numpy().tolist()[0]"
]
},
{
"cell_type": "markdown",
"id": "439ecea7-f0d4-4a61-80c2-729138beee32",
"metadata": {},
"source": [
"## Dump Representations"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6efa1891-0810-4cfb-9552-764297209e99",
"metadata": {},
"outputs": [],
"source": [
"python3 examples/dump_feature.py --model_type data2vec --tsv_path \"./files/train.clean.100.tsv\" --ckpt_path \"./../models/vox_pretrained.pt\" --layer 18 --feat_dir \"./features/train.clean.100\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbd1c550-0606-4217-ac65-55ae92843f19",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from tqdm import tqdm\n",
"import pandas as pd\n",
"\n",
"cache_dir = \"./../../cache\"\n",
"\n",
"dataset = load_dataset(\"openslr/librispeech_asr\", cache_dir=cache_dir, trust_remote_code=True)\n",
"\n",
"# for split in dataset.keys():\n",
"# data = dataset[split]\n",
"# num_frames = []\n",
"# for idx in tqdm(range(len(data))):\n",
"# audio = data[idx][\"audio\"]\n",
"# num_frames.append(int(len(audio[\"array\"]) * 16000 // audio[\"sampling_rate\"]))\n",
" \n",
"# df = pd.DataFrame.from_dict({\n",
"# \"file_path\": list(data[\"file\"]),\n",
"# \"num_frames\": num_frames\n",
"# })\n",
"# df.to_csv(f\"./files/{split}.tsv\", sep=\"\\t\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b4af1af-5726-4899-8272-dfe867cb48a8",
"metadata": {},
"outputs": [],
"source": [
"dataset[\"train.clean.100\"][0]"
]
},
{
"cell_type": "markdown",
"id": "ae6a0ef4-8c0a-4f6e-9a81-a9c3350e1266",
"metadata": {},
"source": [
"## Prepare the Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1247988-5eaa-492a-a3ab-2b11505126a6",
"metadata": {},
"outputs": [],
"source": [
"from datasets import Dataset, load_dataset\n",
"from collections import defaultdict\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"import string\n",
"\n",
"cache_dir = \"./../../cache\"\n",
"\n",
"dataset = load_dataset(\"openslr/librispeech_asr\", cache_dir=cache_dir, trust_remote_code=True)\n",
"\n",
"def process(text):\n",
"\n",
" # Lower case every letter\n",
" text = text.lower()\n",
"\n",
" # Remove punctuation\n",
" punctuation_to_remove = string.punctuation.replace(\"'\", \"\")\n",
" translation_table = str.maketrans('', '', punctuation_to_remove)\n",
" text = text.translate(translation_table)\n",
"\n",
" # Remove whitespaces from front and behind\n",
" while text[0] == ' ' or text[-1] == ' ':\n",
" if text[0] == ' ':\n",
" text = text[1:]\n",
" if text[-1] == ' ':\n",
" text = text[:-1]\n",
" \n",
" return text\n",
"\n",
"dataset = dataset.remove_columns([\"audio\", \"speaker_id\", \"chapter_id\"])\n",
"\n",
"tokenized_ds = defaultdict(lambda: [])\n",
"\n",
"for split in dataset.keys():\n",
"\n",
" texts = []\n",
" tokens = []\n",
" tkns = np.load(f\"./examples/tkns/{split}.npz\")\n",
"\n",
" for idx, key in enumerate(tqdm(tkns.files)):\n",
" tokens.append(list(tkns[key]))\n",
" texts.append(process(dataset[split][idx][\"text\"]))\n",
"\n",
" tokenized_ds[split] = Dataset.from_dict({\n",
" \"text\": texts,\n",
" \"audio_tokens\": tokens\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfc82444-3081-4138-aa06-6fb0b7cbc6c3",
"metadata": {},
"outputs": [],
"source": [
"from datasets import dataset_dict, DatasetDict\n",
"\n",
"tds = DatasetDict(tokenized_ds)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "006171b9-d479-4462-9642-d126f77edfc2",
"metadata": {},
"outputs": [],
"source": [
"tds.save_to_disk(\"librispeech_tokenized.hf\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "12970376-4f6f-4926-a954-29c32043b64c",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {}), NamedSplit('test'): ('json', {})}",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_dataset\n\u001b[0;32m----> 3\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m./librispeech_tokenized.hf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:2594\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2589\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 2590\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 2591\u001b[0m )\n\u001b[1;32m 2593\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2594\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2595\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2596\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2597\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2598\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2599\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2600\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2601\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2602\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2603\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2604\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2605\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2606\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2607\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2608\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2609\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2611\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 2612\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
"File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:2266\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2264\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 2265\u001b[0m download_config\u001b[38;5;241m.\u001b[39mstorage_options\u001b[38;5;241m.\u001b[39mupdate(storage_options)\n\u001b[0;32m-> 2266\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2271\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2272\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2273\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2274\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2275\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_require_default_config_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2276\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_custom_configs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mbool\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2277\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2278\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 2279\u001b[0m builder_kwargs \u001b[38;5;241m=\u001b[39m dataset_module\u001b[38;5;241m.\u001b[39mbuilder_kwargs\n",
"File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:1825\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs)\u001b[0m\n\u001b[1;32m 1818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m LocalDatasetModuleFactoryWithScript(\n\u001b[1;32m 1819\u001b[0m combined_path,\n\u001b[1;32m 1820\u001b[0m download_mode\u001b[38;5;241m=\u001b[39mdownload_mode,\n\u001b[1;32m 1821\u001b[0m dynamic_modules_path\u001b[38;5;241m=\u001b[39mdynamic_modules_path,\n\u001b[1;32m 1822\u001b[0m trust_remote_code\u001b[38;5;241m=\u001b[39mtrust_remote_code,\n\u001b[1;32m 1823\u001b[0m )\u001b[38;5;241m.\u001b[39mget_module()\n\u001b[1;32m 1824\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(path):\n\u001b[0;32m-> 1825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mLocalDatasetModuleFactoryWithoutScript\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1826\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\n\u001b[1;32m 1827\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1828\u001b[0m \u001b[38;5;66;03m# Try remotely\u001b[39;00m\n\u001b[1;32m 1829\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_relative_path(path) \u001b[38;5;129;01mand\u001b[39;00m path\u001b[38;5;241m.\u001b[39mcount(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n",
"File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:1040\u001b[0m, in \u001b[0;36mLocalDatasetModuleFactoryWithoutScript.get_module\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1034\u001b[0m patterns \u001b[38;5;241m=\u001b[39m get_data_patterns(base_path)\n\u001b[1;32m 1035\u001b[0m data_files \u001b[38;5;241m=\u001b[39m DataFilesDict\u001b[38;5;241m.\u001b[39mfrom_patterns(\n\u001b[1;32m 1036\u001b[0m patterns,\n\u001b[1;32m 1037\u001b[0m base_path\u001b[38;5;241m=\u001b[39mbase_path,\n\u001b[1;32m 1038\u001b[0m allowed_extensions\u001b[38;5;241m=\u001b[39mALL_ALLOWED_EXTENSIONS,\n\u001b[1;32m 1039\u001b[0m )\n\u001b[0;32m-> 1040\u001b[0m module_name, default_builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[43minfer_module_for_data_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1041\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1042\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1043\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1044\u001b[0m data_files \u001b[38;5;241m=\u001b[39m data_files\u001b[38;5;241m.\u001b[39mfilter_extensions(_MODULE_TO_EXTENSIONS[module_name])\n\u001b[1;32m 1045\u001b[0m \u001b[38;5;66;03m# Collect metadata files if the module supports them\u001b[39;00m\n",
"File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:596\u001b[0m, in \u001b[0;36minfer_module_for_data_files\u001b[0;34m(data_files, path, download_config)\u001b[0m\n\u001b[1;32m 594\u001b[0m module_name, default_builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(split_modules\u001b[38;5;241m.\u001b[39mvalues()))\n\u001b[1;32m 595\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m((module_name, default_builder_kwargs) \u001b[38;5;241m!=\u001b[39m split_module \u001b[38;5;28;01mfor\u001b[39;00m split_module \u001b[38;5;129;01min\u001b[39;00m split_modules\u001b[38;5;241m.\u001b[39mvalues()):\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt infer the same data file format for all splits. Got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00msplit_modules\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 597\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m module_name:\n\u001b[1;32m 598\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m DataFilesNotFoundError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo (supported) data files found\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m (\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m in \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m path \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n",
"\u001b[0;31mValueError\u001b[0m: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {}), NamedSplit('test'): ('json', {})}"
]
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset = load_dataset(\"./librispeech_tokenized.hf\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b3ba0d58-b788-43b5-87a7-726aaa12dbbd",
"metadata": {},
"outputs": [],
"source": [
"from datasets import dataset_dict, DatasetDict, Dataset\n",
"\n",
"dataset = DatasetDict.load_from_disk(\"./librispeech_tokenized.hf\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b7239186-73ae-407a-b9f6-b5a16f3a7ddc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"726"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(dataset[\"train.clean.100\"][0][\"audio_tokens\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|