# Copyright 2022, Lefebvre Dalloz Services # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import time from typing import Optional, Tuple import numpy as np import onnx import tensorrt as trt import torch from onnx import GraphProto, ModelProto, helper from tensorrt import ICudaEngine, Logger, Runtime from torch.nn import Linear from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5ForConditionalGeneration, TensorType from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput from transformers.models.t5.modeling_t5 import T5Stack from transformer_deploy.backends.ort_utils import create_model_for_provider, inference_onnx_binding from transformer_deploy.backends.pytorch_utils import convert_to_onnx from transformer_deploy.backends.trt_utils import TensorRTShape, build_engine, load_engine, save_engine # TODO pre allocate the largest possible past states and reuse it with tensorrt # https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#reusing-input-buffers # https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#empty-tensors # load_external_data should be set to True for large models (> 2Gb) load_external_data = False model_name = "t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) input_ids: torch.Tensor = tokenizer( "translate English to French: This model is now very fast!", return_tensors=TensorType.PYTORCH ).input_ids input_ids = input_ids.to("cuda") model: T5ForConditionalGeneration = AutoModelForSeq2SeqLM.from_pretrained(model_name) model = model.eval() model = model.to("cuda") model.config.use_cache = True out_enc: BaseModelOutputWithPastAndCrossAttentions = model.encoder(input_ids=input_ids) out_full: Seq2SeqLMOutput = model(input_ids=input_ids, decoder_input_ids=input_ids) num_layers = model.config.num_layers model = model.to("cuda") def are_equal(a: torch.Tensor, b: torch.Tensor, atol: float = 5e-1) -> None: assert np.allclose(a=a.detach().cpu().numpy(), b=b.detach().cpu().numpy(), atol=atol), f"{a}\n\nVS\n\n{b}" convert_to_onnx( model_pytorch=model.encoder, output_path="test-enc.onnx", inputs_pytorch={"input_ids": input_ids}, var_output_seq=True, quantization=False, output_names=["output"], load_external_data=load_external_data, ) enc_onnx = create_model_for_provider("test-enc.onnx", "CUDAExecutionProvider") enc_onnx_out = inference_onnx_binding( model_onnx=enc_onnx, inputs={"input_ids": input_ids}, device=input_ids.device.type, )["output"] are_equal(a=enc_onnx_out, b=out_enc.last_hidden_state) class ExportT5(torch.nn.Module): def __init__(self, decoder: T5Stack, lm_head: Linear): super(ExportT5, self).__init__() self.decoder = decoder self.lm_head = lm_head def forward( self, input_ids: torch.Tensor, encoder_hidden_states: torch.Tensor, final_seq_len: Optional[torch.Tensor], past_key_values: Tuple = None, ): out_dec = self.decoder.forward( input_ids=input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values ) # Rescale output before projecting on vocab out_dec["last_hidden_state"] = out_dec["last_hidden_state"] * (model.model_dim**-0.5) out_dec["last_hidden_state"] = self.lm_head(out_dec["last_hidden_state"]) out_dec["past_key_values"] = list(out_dec["past_key_values"]) for i, layer_out in enumerate(out_dec["past_key_values"]): # type: int, Tuple assert len(layer_out) == 4 layer_out_l = list(layer_out) for j, l in enumerate(layer_out): # type: int, torch.Tensor if j <= 1: layer_out_l[j] = l[:, :, : final_seq_len[0], :] else: layer_out_l[j] = l out_dec["past_key_values"][i] = tuple(layer_out_l) out_dec["past_key_values"] = tuple(out_dec["past_key_values"]) return out_dec model.cuda() model_decoder = ExportT5(decoder=model.decoder, lm_head=model.lm_head).eval() out_model_export: torch.Tensor = model_decoder( input_ids=input_ids, encoder_hidden_states=out_enc.last_hidden_state, final_seq_len=torch.tensor([input_ids.shape[1]], dtype=torch.int32), ) are_equal(a=out_model_export["last_hidden_state"], b=out_full.logits) model_decoder.cuda() # decoder output one step before out_dec_pytorch = model_decoder( input_ids=input_ids[:, :-1], encoder_hidden_states=out_enc.last_hidden_state, final_seq_len=torch.tensor([1], dtype=torch.int32), ) model_inputs = { "input_ids": input_ids[:, -1:].type(torch.int32), "encoder_hidden_states": out_enc.last_hidden_state, "past_key_values": out_dec_pytorch.past_key_values, "final_seq_len": torch.tensor([1], dtype=torch.int32), # make it a 1 dim array } input_names = ["input_ids", "encoder_hidden_states", "final_seq_len"] for i in range(num_layers): input_names.append(f"past_key_values.{i}.decoder.key") input_names.append(f"past_key_values.{i}.decoder.value") input_names.append(f"past_key_values.{i}.encoder.key") input_names.append(f"past_key_values.{i}.encoder.value") output_names = ["logits"] for i in range(num_layers): output_names.append(f"present.{i}.decoder.key") output_names.append(f"present.{i}.decoder.value") output_names.append(f"present.{i}.encoder.key") output_names.append(f"present.{i}.encoder.value") dynamic_axis = { "input_ids": {0: "batch", 1: "decoder_sequence"}, "encoder_hidden_states": {0: "batch", 1: "encoder_sequence_length"}, "logits": {0: "batch", 1: "decoder_sequence"}, } for i in range(num_layers): dynamic_axis[f"past_key_values.{i}.decoder.key"] = {0: "batch", 2: "past_decoder_sequence"} dynamic_axis[f"past_key_values.{i}.decoder.value"] = {0: "batch", 2: "past_decoder_sequence"} dynamic_axis[f"past_key_values.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"} dynamic_axis[f"past_key_values.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"} dynamic_axis[f"present.{i}.decoder.key"] = {0: "batch", 2: "decoder_sequence"} dynamic_axis[f"present.{i}.decoder.value"] = {0: "batch", 2: "decoder_sequence"} dynamic_axis[f"present.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"} dynamic_axis[f"present.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"} with torch.no_grad(): model.config.return_dict = True model.eval() # export can works with named args but the dict containing named args as to be last element of the args tuple torch.onnx.export( model_decoder, (model_inputs,), f="test-dec-cache.onnx", input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axis, do_constant_folding=True, opset_version=13, ) model_inputs_no_cache = { "input_ids": input_ids.type(dtype=torch.int32), "encoder_hidden_states": out_enc.last_hidden_state, "final_seq_len": torch.tensor([input_ids.shape[1]], dtype=torch.int32), } with torch.no_grad(): model.config.return_dict = True model.eval() # export can works with named args but the dict containing named args as to be last element of the args tuple torch.onnx.export( model_decoder, (model_inputs_no_cache,), f="test-dec-no-cache.onnx", input_names=list(model_inputs_no_cache.keys()), output_names=output_names, dynamic_axes={k: v for k, v in dynamic_axis.items() if "past_key_values" not in k}, do_constant_folding=True, opset_version=13, ) _ = model_decoder.cpu() # free cuda memory onnx_model_no_cache_fp16 = onnx.load("test-dec-no-cache.onnx") onnx_model_cache_fp16 = onnx.load("test-dec-cache.onnx") assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output) final_output = list() for node in onnx_model_cache_fp16.graph.output: new_output = onnx.helper.make_empty_tensor_value_info(node.name) new_output.CopyFrom(node) final_output.append(new_output) final_node_names = [n.name for n in final_output] for node in onnx_model_cache_fp16.graph.output: node.name += "-cache" for node in onnx_model_cache_fp16.graph.node: assert len(node.output) == 1 if node.output[0] in final_node_names: node.output[0] += "-cache" for idx, i in enumerate(node.input): if i in final_node_names: node.input[idx] += "-cache" for node in onnx_model_no_cache_fp16.graph.output: node.name += "-no-cache" for node in onnx_model_no_cache_fp16.graph.node: assert len(node.output) == 1 if node.output[0] in final_node_names: node.output[0] += "-no-cache" for idx, i in enumerate(node.input): if i in final_node_names: node.input[idx] += "-no-cache" onnx.checker.check_model(onnx_model_cache_fp16) onnx.checker.check_model(onnx_model_no_cache_fp16) prefix = "cache_node_" mapping_initializer_cache_to_no_cache = dict() to_add = list() for node_cache in onnx_model_cache_fp16.graph.initializer: found = False for node_no_cache in onnx_model_no_cache_fp16.graph.initializer: if node_cache.raw_data == node_no_cache.raw_data: found = True mapping_initializer_cache_to_no_cache[node_cache.name] = node_no_cache.name break if not found: node_cache.name = prefix + node_cache.name to_add.append(node_cache) mapping_initializer_cache_to_no_cache[node_cache.name] = node_cache.name print(f"name: {node_cache.name} - size: {len(node_cache.raw_data)/1024:.2f}") onnx_model_no_cache_fp16.graph.initializer.extend(to_add) # I/O model names should not be prefixed model_io_names = [ n.name for n in list(onnx_model_cache_fp16.graph.input) + list(onnx_model_cache_fp16.graph.output) + list(onnx_model_no_cache_fp16.graph.input) + list(onnx_model_no_cache_fp16.graph.output) ] for node in onnx_model_cache_fp16.graph.node: for index, input_name in enumerate(node.input): if input_name in model_io_names: continue node.input[index] = mapping_initializer_cache_to_no_cache.get(input_name, prefix + input_name) for index, output_name in enumerate(node.output): if output_name in model_io_names: continue node.output[index] = prefix + output_name node.name = prefix + node.name prefix = "init_" cache = dict() for node in onnx_model_no_cache_fp16.graph.initializer: if node.name in model_io_names: new_name = prefix + node.name cache[node.name] = new_name node.name = new_name for node in onnx_model_no_cache_fp16.graph.node: for input_index, n in enumerate(node.input): node.input[input_index] = cache.get(n, n) # mandatory for subgraph in if/else node assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output) graph_cache: onnx.GraphProto = onnx.helper.make_graph( nodes=list(onnx_model_cache_fp16.graph.node), name="graph-cache", inputs=[], outputs=list(onnx_model_cache_fp16.graph.output), initializer=[], ) graph_no_cache: onnx.GraphProto = onnx.helper.make_graph( nodes=list(onnx_model_no_cache_fp16.graph.node), name="graph-no-cache", inputs=[], outputs=list(onnx_model_no_cache_fp16.graph.output), initializer=[], ) enable_cache_input = onnx.helper.make_tensor_value_info(name="enable_cache", elem_type=onnx.TensorProto.BOOL, shape=[1]) if_node = onnx.helper.make_node( op_type="If", inputs=["enable_cache"], outputs=[o.name for o in final_output], then_branch=graph_cache, else_branch=graph_no_cache, ) if_graph_def: GraphProto = helper.make_graph( nodes=[if_node], name="if-model", inputs=list(onnx_model_cache_fp16.graph.input) + [enable_cache_input], outputs=final_output, initializer=list(onnx_model_no_cache_fp16.graph.initializer), ) model_def: ModelProto = helper.make_model( if_graph_def, producer_name="onnx-example", opset_imports=[helper.make_opsetid(onnx.defs.ONNX_DOMAIN, 13)] ) onnx.save(model_def, "test-dec-if.onnx") trt_logger: Logger = trt.Logger(trt.Logger.ERROR) runtime: Runtime = trt.Runtime(trt_logger) trt_model_name = "trt-t5-dec.plan" # 768 for base model, 512 for small, make it dependent from the Pytorch model configuration shape, seq_len = input_ids.shape input_id_shape = TensorRTShape(min_shape=[4, 1], optimal_shape=[4, 1], max_shape=[4, 200], input_name="input_ids") encoder_hidden_states_shape = TensorRTShape( min_shape=[4, 1, 512], optimal_shape=[4, 10, 512], max_shape=[4, 200, 512], input_name="encoder_hidden_states", ) final_seq_len = TensorRTShape( min_shape=[1], optimal_shape=[1], max_shape=[1], input_name="final_seq_len", ) shape_tensors = [final_seq_len] input_shapes = [input_id_shape, encoder_hidden_states_shape, final_seq_len] for i in range(num_layers): input_shapes.append( TensorRTShape( min_shape=[4, 8, 0, 64], optimal_shape=[4, 8, 100, 64], max_shape=[4, 8, 200, 64], input_name=f"past_key_values.{i}.decoder.key", ) ) input_shapes.append( TensorRTShape( min_shape=[4, 8, 0, 64], optimal_shape=[4, 8, 100, 64], max_shape=[4, 8, 200, 64], input_name=f"past_key_values.{i}.decoder.value", ) ) input_shapes.append( TensorRTShape( min_shape=[4, 8, 0, 64], optimal_shape=[4, 8, 10, 64], max_shape=[4, 8, 200, 64], input_name=f"past_key_values.{i}.encoder.key", ) ) input_shapes.append( TensorRTShape( min_shape=[4, 8, 0, 64], optimal_shape=[4, 8, 10, 64], max_shape=[4, 8, 200, 64], input_name=f"past_key_values.{i}.encoder.value", ) ) command_line_min = [] command_line_opt = [] command_line_max = [] for i in input_shapes: command_line_min.append(f"{i.input_name}:{'x'.join([str(s) for s in i.min_shape])}") command_line_opt.append(f"{i.input_name}:{'x'.join([str(s) for s in i.optimal_shape])}") command_line_max.append(f"{i.input_name}:{'x'.join([str(s) for s in i.max_shape])}") print( "/usr/src/tensorrt/bin/trtexec --onnx=test-dec-if.onnx --useSpinWait --verbose --dumpLayerInfo " "--profilingVerbosity=detailed --minShapes=" + ",".join(command_line_min) + " --optShapes=" + ",".join(command_line_opt) + " --maxShapes=" + ",".join(command_line_max) + f"--saveEngine='{trt_model_name}' |& > logs.txt" ) engine: ICudaEngine = build_engine( runtime=runtime, onnx_file_path="test-dec-if.onnx", logger=trt_logger, workspace_size=20000 * 1024**2, fp16=False, # for tests only int8=False, input_shapes=input_shapes, shape_tensors=shape_tensors, # fp16_fix=get_fix_fp16_network_func(keep_fp32=keep_fp32), ) save_engine(engine, trt_model_name) tensorrt_model = load_engine(runtime=runtime, engine_file_path=trt_model_name) c = { "input_ids": torch.ones((4, 1), dtype=torch.int32, device="cuda"), "encoder_hidden_states": torch.ones((4, 10, 512), dtype=torch.float32, device="cuda"), "final_seq_len": torch.tensor([1], dtype=torch.int32, device="cuda"), "enable_cache": torch.tensor([True], dtype=torch.bool, device="cuda"), } for i in range(num_layers): c[f"past_key_values.{i}.decoder.key"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32) c[f"past_key_values.{i}.decoder.value"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32) c[f"past_key_values.{i}.encoder.key"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32) c[f"past_key_values.{i}.encoder.value"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32) for _ in range(100): _ = tensorrt_model(c) start = time() for _ in range(100): _ = tensorrt_model(c) print((time() - start) / 100) a = tensorrt_model(c) print(a)