# Copyright 2022, Lefebvre Dalloz Services # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import importlib import logging import torch from torch import nn from transformer_deploy.QDQModels.ast_operator_patch import Patch2ArgsNode, PatchAdd2ArgsNode, PatchLayer from transformer_deploy.QDQModels.ast_utils import add_quant_to_module, list_class_to_patch class FakeModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(in_features=5, out_features=5, bias=True) def forward(self, inputs: torch.Tensor): a: torch.Tensor = self.linear(inputs) b = torch.ones(a.shape) c = torch.matmul(a, b) d = nn.LayerNorm(a + c) return d def to_skip(self): return self.linear expected_class = """ class QDQFakeModel(nn.Module): def __init__(self): super().__init__() self.linear = quant_nn.QuantLinear(in_features=5, out_features=5, bias=True) self.matmul_quantizer_0 = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.matmul_quantizer_1 = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.layernorm_quantizer_2 = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.layernorm_quantizer_3 = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) def forward(self, inputs: torch.Tensor): a: torch.Tensor = self.linear(inputs) b = torch.ones(a.shape) c = torch.matmul(self.matmul_quantizer_0(a), self.matmul_quantizer_1(b)) d = nn.LayerNorm(self.layernorm_quantizer_2(a) + self.layernorm_quantizer_3(c)) return d def to_skip(self): return self.linear """.strip() def test_list_class(): model_module = importlib.import_module(name=__name__) class_to_patch = list_class_to_patch(model_module=model_module) assert class_to_patch == ["FakeModel"] def test_add_quant(): head = add_quant_to_module(module_to_patch=FakeModel, new_module_name="QDQFakeModel") head = ast.fix_missing_locations(head) logging.error(ast.unparse(head)) assert ast.unparse(head) == expected_class def test_patch_2_args_node(): source_code = "torch.matmul(a, b)" patch = Patch2ArgsNode(op="matmul") head: ast.AST = ast.parse(source_code).body[0].value assert patch.should_patch(head) head_patched = patch.patch(node=head, nb_quant_node=0) assert ast.unparse(head) == "torch.matmul(self.matmul_quantizer_0(a), self.matmul_quantizer_1(b))" assert head_patched == ["matmul_quantizer_0", "matmul_quantizer_1"] def test_add_2_args_node(): source_code = "nn.LayerNorm(hidden_states + input_tensor)" patch = PatchAdd2ArgsNode(op="LayerNorm") head: ast.AST = ast.parse(source_code).body[0].value assert patch.should_patch(head) head_patched = patch.patch(node=head, nb_quant_node=0) assert ( ast.unparse(head) == "nn.LayerNorm(self.layernorm_quantizer_0(hidden_states) + self.layernorm_quantizer_1(input_tensor))" ) assert head_patched == ["layernorm_quantizer_0", "layernorm_quantizer_1"] def test_replace_layer(): source_code = "nn.Linear(config.hidden_size, self.all_head_size)" patch = PatchLayer(origin_module="nn", origin_layer="Linear", target_module="quant_nn", target_layer="QuantLinear") head: ast.AST = ast.parse(source_code).body[0].value assert patch.should_patch(head) head_patched = patch.patch(node=head, nb_quant_node=0) assert ast.unparse(head) == "quant_nn.QuantLinear(config.hidden_size, self.all_head_size)" assert head_patched == []