{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "997bed07-1181-4562-962a-cb8aa18e1d16", "metadata": {}, "outputs": [], "source": [ "from repcodec.RepCodec import RepCodec\n", "import torch\n", "import yaml\n", "\n", "config = \"repcodec/configs/repcodec_dim1024.yaml\"\n", "with open(config) as fp:\n", " conf = yaml.load(fp, Loader=yaml.FullLoader)\n", "\n", "model = RepCodec(**conf)\n", "model.load_state_dict(torch.load(\"./../models/data2vec_large_l18.pkl\", map_location=\"cuda:0\")[\"model\"][\"repcodec\"])\n", "model.quantizer.initial()\n", "model.eval()" ] }, { "cell_type": "code", "execution_count": null, "id": "5c5516f1-3565-4080-8612-d5ce52ea2a4d", "metadata": {}, "outputs": [], "source": [ "# input shape: (batch size, hidden dim, sequence length)\n", "random_features = torch.randn(size=(1, 1024, 100))\n", "with torch.no_grad():\n", " x = model.encoder(random_features)\n", " z = model.projector(x)\n", " _, idx = model.quantizer.codebook.forward_index(z.transpose(2, 1))\n", " tokens = idx.cpu().data.numpy().tolist()[0]" ] }, { "cell_type": "markdown", "id": "439ecea7-f0d4-4a61-80c2-729138beee32", "metadata": {}, "source": [ "## Dump Representations" ] }, { "cell_type": "code", "execution_count": null, "id": "6efa1891-0810-4cfb-9552-764297209e99", "metadata": {}, "outputs": [], "source": [ "python3 examples/dump_feature.py --model_type data2vec --tsv_path \"./files/train.clean.100.tsv\" --ckpt_path \"./../models/vox_pretrained.pt\" --layer 18 --feat_dir \"./features/train.clean.100\"" ] }, { "cell_type": "code", "execution_count": null, "id": "cbd1c550-0606-4217-ac65-55ae92843f19", "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "from tqdm import tqdm\n", "import pandas as pd\n", "\n", "cache_dir = \"./../../cache\"\n", "\n", "dataset = load_dataset(\"openslr/librispeech_asr\", cache_dir=cache_dir, trust_remote_code=True)\n", "\n", "# for split in dataset.keys():\n", "# data = dataset[split]\n", "# num_frames = []\n", "# for idx in tqdm(range(len(data))):\n", "# audio = data[idx][\"audio\"]\n", "# num_frames.append(int(len(audio[\"array\"]) * 16000 // audio[\"sampling_rate\"]))\n", " \n", "# df = pd.DataFrame.from_dict({\n", "# \"file_path\": list(data[\"file\"]),\n", "# \"num_frames\": num_frames\n", "# })\n", "# df.to_csv(f\"./files/{split}.tsv\", sep=\"\\t\", index=False)" ] }, { "cell_type": "code", "execution_count": null, "id": "5b4af1af-5726-4899-8272-dfe867cb48a8", "metadata": {}, "outputs": [], "source": [ "dataset[\"train.clean.100\"][0]" ] }, { "cell_type": "markdown", "id": "ae6a0ef4-8c0a-4f6e-9a81-a9c3350e1266", "metadata": {}, "source": [ "## Prepare the Dataset" ] }, { "cell_type": "code", "execution_count": null, "id": "b1247988-5eaa-492a-a3ab-2b11505126a6", "metadata": {}, "outputs": [], "source": [ "from datasets import Dataset, load_dataset\n", "from collections import defaultdict\n", "from tqdm import tqdm\n", "import numpy as np\n", "import string\n", "\n", "cache_dir = \"./../../cache\"\n", "\n", "dataset = load_dataset(\"openslr/librispeech_asr\", cache_dir=cache_dir, trust_remote_code=True)\n", "\n", "def process(text):\n", "\n", " # Lower case every letter\n", " text = text.lower()\n", "\n", " # Remove punctuation\n", " punctuation_to_remove = string.punctuation.replace(\"'\", \"\")\n", " translation_table = str.maketrans('', '', punctuation_to_remove)\n", " text = text.translate(translation_table)\n", "\n", " # Remove whitespaces from front and behind\n", " while text[0] == ' ' or text[-1] == ' ':\n", " if text[0] == ' ':\n", " text = text[1:]\n", " if text[-1] == ' ':\n", " text = text[:-1]\n", " \n", " return text\n", "\n", "dataset = dataset.remove_columns([\"audio\", \"speaker_id\", \"chapter_id\"])\n", "\n", "tokenized_ds = defaultdict(lambda: [])\n", "\n", "for split in dataset.keys():\n", "\n", " texts = []\n", " tokens = []\n", " tkns = np.load(f\"./examples/tkns/{split}.npz\")\n", "\n", " for idx, key in enumerate(tqdm(tkns.files)):\n", " tokens.append(list(tkns[key]))\n", " texts.append(process(dataset[split][idx][\"text\"]))\n", "\n", " tokenized_ds[split] = Dataset.from_dict({\n", " \"text\": texts,\n", " \"audio_tokens\": tokens\n", " })" ] }, { "cell_type": "code", "execution_count": null, "id": "bfc82444-3081-4138-aa06-6fb0b7cbc6c3", "metadata": {}, "outputs": [], "source": [ "from datasets import dataset_dict, DatasetDict\n", "\n", "tds = DatasetDict(tokenized_ds)" ] }, { "cell_type": "code", "execution_count": null, "id": "006171b9-d479-4462-9642-d126f77edfc2", "metadata": {}, "outputs": [], "source": [ "tds.save_to_disk(\"librispeech_tokenized.hf\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "12970376-4f6f-4926-a954-29c32043b64c", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {}), NamedSplit('test'): ('json', {})}", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[2], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_dataset\n\u001b[0;32m----> 3\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m./librispeech_tokenized.hf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:2594\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2589\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 2590\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 2591\u001b[0m )\n\u001b[1;32m 2593\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2594\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2595\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2596\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2597\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2598\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2599\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2600\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2601\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2602\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2603\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2604\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2605\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2606\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2607\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2608\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2609\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2611\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 2612\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n", "File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:2266\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2264\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 2265\u001b[0m download_config\u001b[38;5;241m.\u001b[39mstorage_options\u001b[38;5;241m.\u001b[39mupdate(storage_options)\n\u001b[0;32m-> 2266\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2271\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2272\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2273\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2274\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2275\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_require_default_config_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2276\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_custom_configs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mbool\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2277\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2278\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 2279\u001b[0m builder_kwargs \u001b[38;5;241m=\u001b[39m dataset_module\u001b[38;5;241m.\u001b[39mbuilder_kwargs\n", "File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:1825\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs)\u001b[0m\n\u001b[1;32m 1818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m LocalDatasetModuleFactoryWithScript(\n\u001b[1;32m 1819\u001b[0m combined_path,\n\u001b[1;32m 1820\u001b[0m download_mode\u001b[38;5;241m=\u001b[39mdownload_mode,\n\u001b[1;32m 1821\u001b[0m dynamic_modules_path\u001b[38;5;241m=\u001b[39mdynamic_modules_path,\n\u001b[1;32m 1822\u001b[0m trust_remote_code\u001b[38;5;241m=\u001b[39mtrust_remote_code,\n\u001b[1;32m 1823\u001b[0m )\u001b[38;5;241m.\u001b[39mget_module()\n\u001b[1;32m 1824\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(path):\n\u001b[0;32m-> 1825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mLocalDatasetModuleFactoryWithoutScript\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1826\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\n\u001b[1;32m 1827\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1828\u001b[0m \u001b[38;5;66;03m# Try remotely\u001b[39;00m\n\u001b[1;32m 1829\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_relative_path(path) \u001b[38;5;129;01mand\u001b[39;00m path\u001b[38;5;241m.\u001b[39mcount(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n", "File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:1040\u001b[0m, in \u001b[0;36mLocalDatasetModuleFactoryWithoutScript.get_module\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1034\u001b[0m patterns \u001b[38;5;241m=\u001b[39m get_data_patterns(base_path)\n\u001b[1;32m 1035\u001b[0m data_files \u001b[38;5;241m=\u001b[39m DataFilesDict\u001b[38;5;241m.\u001b[39mfrom_patterns(\n\u001b[1;32m 1036\u001b[0m patterns,\n\u001b[1;32m 1037\u001b[0m base_path\u001b[38;5;241m=\u001b[39mbase_path,\n\u001b[1;32m 1038\u001b[0m allowed_extensions\u001b[38;5;241m=\u001b[39mALL_ALLOWED_EXTENSIONS,\n\u001b[1;32m 1039\u001b[0m )\n\u001b[0;32m-> 1040\u001b[0m module_name, default_builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[43minfer_module_for_data_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1041\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1042\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1043\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1044\u001b[0m data_files \u001b[38;5;241m=\u001b[39m data_files\u001b[38;5;241m.\u001b[39mfilter_extensions(_MODULE_TO_EXTENSIONS[module_name])\n\u001b[1;32m 1045\u001b[0m \u001b[38;5;66;03m# Collect metadata files if the module supports them\u001b[39;00m\n", "File \u001b[0;32m/usr/local/lib/python3.8/dist-packages/datasets/load.py:596\u001b[0m, in \u001b[0;36minfer_module_for_data_files\u001b[0;34m(data_files, path, download_config)\u001b[0m\n\u001b[1;32m 594\u001b[0m module_name, default_builder_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(split_modules\u001b[38;5;241m.\u001b[39mvalues()))\n\u001b[1;32m 595\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m((module_name, default_builder_kwargs) \u001b[38;5;241m!=\u001b[39m split_module \u001b[38;5;28;01mfor\u001b[39;00m split_module \u001b[38;5;129;01min\u001b[39;00m split_modules\u001b[38;5;241m.\u001b[39mvalues()):\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt infer the same data file format for all splits. Got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00msplit_modules\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 597\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m module_name:\n\u001b[1;32m 598\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m DataFilesNotFoundError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo (supported) data files found\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m (\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m in \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m path \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n", "\u001b[0;31mValueError\u001b[0m: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {}), NamedSplit('test'): ('json', {})}" ] } ], "source": [ "from datasets import load_dataset\n", "\n", "dataset = load_dataset(\"./librispeech_tokenized.hf\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "b3ba0d58-b788-43b5-87a7-726aaa12dbbd", "metadata": {}, "outputs": [], "source": [ "from datasets import dataset_dict, DatasetDict, Dataset\n", "\n", "dataset = DatasetDict.load_from_disk(\"./librispeech_tokenized.hf\")" ] }, { "cell_type": "code", "execution_count": 13, "id": "b7239186-73ae-407a-b9f6-b5a16f3a7ddc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "726" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(dataset[\"train.clean.100\"][0][\"audio_tokens\"])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }